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Natural bioactive substances for the control
of food-borne viruses and contaminants in
food
Yao Pan1,2, Zeyuan Deng2 and Fereidoon Shahidi1*

Abstract

Food-borne viruses and contaminants, as an important global food safety problem, are caused by chemical,
microbiological, zoonotic, and other risk factors that represent a health hazard. Natural bioactive substances,
originating from plants, animals, or microorganisms, might offer the possibility of preventing and controlling food-
borne diseases. In this contribution, the common bioactive substances such as polyphenols, essential oils, proteins,
and polysaccharides which are effective in the prevention and treatment of food-borne viruses and contaminants
are discussed. Meanwhile, the preventive effects of natural bioactive substances and the possible mechanisms
involved in food protection are discussed and detailed. The application and potential effects of natural bioactive
substances in the adjuvant treatment for food-borne diseases is also described.
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Introduction
Viruses and some contaminants may cause food-borne
diseases and these have become a hot issue in the field
of food science and public health (Li et al. 2013). In re-
cent years, food safety problems arising from food-borne
viruses and contaminants have become a common global
concern (European Food Safety Authority and European
Centre for Disease Prevention and Control 2018).
Researchers believe that food-borne viruses are often
transmitted through the fecal-oral, water, and person-to-
person contact route, or caused by contaminated foods,
such as marine pollution that contaminates shellfish and
fish (Ethelberg et al. 2010; Zomer et al. 2010).
Several measures such as good production chains

(avoiding fecal), strict control of water contamination on
farming and irrigation, and good public health awareness
can, to some extent, prevent food-borne viruses. Physical
and chemical control methods have been widely used in

food production (Baert et al. 2009; Li et al. 2009). How-
ever, there is little research on the prevention and con-
trol of food-borne viruses and contaminants in food by
natural bioactive substances. This review briefly de-
scribes the formation of food-borne viruses and contam-
inants in food, the action mechanism of natural
bioactive substances to control them, and their recent
use in the food industry.

Definition of food-borne viruses and contaminants in
food
Viruses are very small infectious microorganisms com-
posed of a DNA or RNA genome enclosed within a pro-
tein coat. Food-borne viruses, as obligate intracellular
parasites, depending on the living host to survive, are
globally recognized as the major causes of nonbacterial
gastroenteritis or respiratory problems (Nelluri and
Thota 2018). Many viruses show high resistance to
stressors such as heat, drying, freezing, and UV light,
among others, and may survive for long periods in food
or the body (Newell et al. 2010). Common food-borne
viruses include human noroviruses (HNoV), hepatitis A
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virus (HAV), hepatitis E virus (HEV), rotavirus (RV), Aichi
virus (AiV), astroviruses, sap viruses, adenoviruses sero-
types 40 and 41, coxsackievirus A and B, parvoviruses,
and other enteroviruses and picornaviruses (Souza 2015).
Food contaminants refer to harmful substances that

compromise the safety or quality of food and may cause
diseases. Food contamination may occur due to the pres-
ence of toxicants (phytotoxins), bacterial contamination
(Salmonella), pesticide residues, and physical and chem-
ical hazards produced during food processing such as
the generation of polycyclic aromatic hydrocarbons,
among others (Kuswandi et al. 2017).

Defects of chemical/physical control measures on food-
borne diseases
Most food-borne diseases are infections caused by a variety
of food-borne viruses, and harmful toxins or chemicals that
have contaminated food. For example, according to a report
from Food and Drug Administration (FDA) (Foodborne
illness-causing organisms in the U.S. What you need to
know 2018), unpasteurized fruit or vegetable juices may
contain E. coli O157, Salmonella, and Clostridium botu-
linum. Some raw fish and shellfish contain norovirus, hepa-
titis A, and many other pathogens. Therefore, with the new
developments in food science and technology, many
methods for the prevention and treatment of food-borne
diseases have emerged. The traditional methods of physical
and chemical control have some shortcomings and hence
particular attention should be paid to novel methods to
make certain that the safety of food is ensured. However, it
should be noted that some of these methods may still suffer
from certain drawbacks and could render deleterious effects
such as: (1) Reduced the nutritional value of food. For ex-
ample, high-pressure processing shows antimicrobial effects
on orange juice, while it decreases the content of vitamin C
significantly after processing (Bull et al. 2004). (2) The resi-
due of harmful substances may also remain in the food. For
example, sodium hypochlorite and peroxyacetic acid pre-
vent cross-contamination during the washing process by
causing a reduction in the number of pathogens present in
lettuce, but the residues of sodium hypochlorite and perox-
yacetic acid remain in the food (Baert et al. 2009). (3)
Viruses cannot be completely inactivated. For instance,
high-pressure processing changes the protein structures of
viruses but not for RNA on murine norovirus-1 in oysters
(Li et al. 2009).
Therefore, there is more and more interest in using

natural bioactive substances in the farming and produc-
tion of food for the prevention and control of food-borne
viruses and contaminants. This demand by consumers is
leading the search for the development of alternative nat-
ural substances that can simultaneously extend the shelf
life of food while providing a high degree of safety regard-
ing food-borne diseases.

Bioactive substances for the control of food-borne
viruses and contaminants
In recent years, research on controlling food-borne vi-
ruses and contaminants in food has caused widespread
concern. Among them, research on natural bioactive
substances has focused mainly on different aspects as
detailed below.

Polyphenols
Polyphenols, including phenolic acids, stilbenes, flavo-
noids, and lignans, among others, have multiple functions
for human health such as neuroprotective, cardioprotec-
tive, antioxidant, and anticarcinogenic effects (Zhang and
Tsao 2016). Polyphenols are widely found in fruits and
vegetables, herbs, grains, and other plant foods (Abbas
et al. 2017).
It is known that some polyphenols are resistant to

food-borne viruses. Functional components on roots of
Glycyrrhiza uralensis, including glyasperin, glycyrin, 2′-
methoxyisoliquiritigenin, licoflavonol, and glyasperin D,
have proven to be resistant to rotaviruses (Kwon et al.
2010). The extracts of black raspberry which contain
gallic acid, caffeic acid, ellagic acid, quercetin, and
cyanidin-3-glucoside, have been shown to exert a nega-
tive effect on human norovirus (Zhang et al. 2012). In
general, the possible mechanism of polyphenols anti-
virus effect can be summarized as follows. (1) Decreasing
the virus replication. For example, previous research has
indicated that potato peel (containing gallic acid, chloro-
genic acid, caffeic acid, ferulic acid, rutin, and quercetin)
inhibits human norovirus via down-regulating the repli-
cation of viruses (Table 1) (Silva-beltrán et al. 2017). (2)
Binding with virus receptors. For instance, tannic acid
extracted from Chinese gall pomegranate inhibited the
noroviruses via binding with the histoblood group anti-
gens (HBGAs) as receptors, thus preventing the virus
from entering the host cells (Table 1) (Zhang et al.
2012). (3) Causing structural damage to the virus. In this
connection, an earlier study suggested that aged-green
tea extract inactivated the virus by causing structural
damage (Table 1) (Falcó et al. 2019).
Polyphenols are also known to control both biological

and chemical contaminants in food, such as anti-bacterial,
anti-fungal, and other chemical hazards (Table 1). Their
antibacterial action is usually achieved by affecting the
properties of the bacterial cell membrane (Plumed-Ferrer
et al. 2013; Zhang et al. 2014). Meanwhile, polyphenols,
such as ellagic acid, gallic acid, and rutin can also show an
anti-fungal effect by affecting cell membrane morphology
(Saravanan and Parimelazhagan 2014). Moreover, poly-
phenols show inhibition for chemical contaminants. For
example, epicatechin reduces the acrylamide content of
food by trapping of carbonyl compounds and decreasing
lipid oxidation (Liu et al. 2015). Proanthocyanidins could
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down-regulate the residual nitrite because of their antioxi-
dant effects (Wang et al. 2015). Those polyphenols may
affect the nitrite depletion by affecting pH in the food
matrix or antioxidant properties. When the pH of meat is
lower than 6.0, nitrite can be transformed into nitrous acid
or nitric oxide, which can react with polyphenols or other
endogenous substances (Viuda-Martos et al. 2010).

Essential oils
Essential oils (EOs) (esp. herb-based essential oils),
which are enriched in plant-derived volatile aromatic
compounds, have potential as natural agents for food
preservation because of their antibacterial, antifungal,
and antioxidative activities and have long been applied
as flavoring agents in food (Gilling et al. 2014). EOs play
an important role in food processing due to the above-
mentioned myriad of characteristics. Some EOs have
antiviral effects due to the inhibition of virus replication,
anti-absorption of the virus, and inactivation (Table 1).
For example, carvacrol and thymol methyl ether from
Zataria multiflora Boiss were suggested to inhibit noro-
virus via an inactivation mechanism. Meanwhile, carva-
crol from oregano oil could bind to the virus and inhibit
virus adsorption to host cells (Gilling et al. 2014). Mean-
while, lemongrass essential oil has been suggested to in-
hibit norovirus by reducing the virus’s replication (Kim
et al. 2017). Besides, some EOs also display anti-bacterial
effects and are used in the food industry and food pack-
aging in recent years (Table 1) (Wen et al. 2016). EOs
from Australian Eucalyptus (containing piperitone, α-
phellandrene, p-cymene) could interact with the cell
membrane of gram-negative and gram-positive bacteria
(Gilles et al. 2010). Carvacrol and geraniol from herb oils
have been shown to inhibit S. aureus and some gram-
negative bacteria via interacting with their cell membrane,
respectively (Miranda-novales and Solo 2012). Further-
more, cinnamon oil (cinnamaldehyde as the main compo-
nent) could change the membrane potential (a difference
in electric potential between the interior and the exterior
of a biological cell) of E. coli and S. aureus (Zhang et al.
2016a, b) The essential oil also showed anti-fungal proper-
ties in some fruits. For instance, mustard and clove essen-
tial oil combinations in the vapor phase synergistically
inhibited B. cinerea in strawberries (Aguilar-González
et al. 2015). Moreover, methyl cinnamate, γ-terpinene,
and cymene reduced the aflatoxin secretion in food prod-
ucts (Prakash et al. 2011; Kedia et al. 2014).

Protein
Numerous studies have demonstrated that many pro-
teins, especially those from cow milk, breast milk, and
fish, can effectively inhibit food-borne viruses, and bac-
teria (Table 1) (Li et al. 2013). Milk contains an array of
proteins such as casein, lactoferrin, alpha-lactalbumin,

and beta-lactoglobulin with useful bioactivities and anti-
viral activities (Petersen et al. 2004). Lactadherin, which
is widely found in cow milk and breast milk, has proven
to show anti-virus activity via affecting viruses’ protein
structure or reducing viral replication (Petersen et al.
2004; Pan et al. 2006; Ishikawa et al. 2013). α-Caseins
from milk were also down-regulated gram-positive bac-
teria via their cationic glycopeptides (Benkerroum 2010).
Moreover, some fish proteins, such as hepcidin TH1–5
was found to inhibit the activity of gram-positive bac-
teria (Najafian et al. 2012b).

Polysaccharide
Polysaccharides, composed of monosaccharide units
bound together by glycosidic bonds, are polymeric mole-
cules of carbohydrates (Ferreira et al. 2015). Some poly-
saccharides exert anti-viral activity by inhibiting viral
entry into host cells (Table 1).
Chitosan, a biopolymer produced by the deacetylation

of chitin derived from the exoskeleton of crustaceans, is
one of the most widely used materials in this field (Davis
et al. 2012). Previous research has found that water-
soluble chitosan could inhibit enteric viruses by interfer-
ing with viral replication or damaging the structure of
viruses (Davis et al. 2012; Davis et al. 2015). Chitosan ex-
tracted from crab processing discards decreased the ion
contaminants in water via metal chelation (Gamage and
Shahidi 2007).
Algal polysaccharides are obtained from algae and may

include high amounts of mucopolysaccharides, as well as
storage and cell wall structure polysaccharides. Some
polysaccharides extracted from algae exert proliferation
effects on Escherichia coli and Salmonella spp. (Rivas
et al. 2017), which showed antimicrobial potential
against pathogenic and spoilage microorganisms in food.
Besides, polysaccharides from some herbs, for ex-

ample, Houttuynia cordata, could inhibit murine noro-
virus and human noroviruses via deforming and inflating
virus particles (Cheng et al. 2019). Meanwhile, polysac-
charides extracts from fish skin could interact with the
cell membrane of gram-negative and gram-positive bac-
teria (Krichen et al. 2015), thus inhibiting their growth
and are being used to extend the shelf life of food.

Alkaloids
Alkaloids are abundant in herbal extracts and are one of
the most common plant-based formulations in trad-
itional Chinese medicine (Zheng et al. 2018). Despite the
serious health impact of alkaloids, they are also used in
the control of some foodborne viruses (Prasad et al.
2020). For example, some alkaloids derivatives (eg., pyra-
zinecarboxamide derivatives, and indole derivatives) have
been developed as drugs to protect against viruses such
as norovirus in Japan and Russia by interfering with the
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replication of the virus (Hwu et al. 2017). Moreover,
traditional plant-based medicine for treating SARS cor-
onavirus (SARS-CoV) was developed in the Guangdong
Province of China in 2002–2003. For example, quinine,
an alkaloid, has been used in the treatment of malaria
since the 1960s (Achan et al. 2011). Moreover, a struc-
tural analog of quinine was found to be effective in redu-
cing the viral load in SARS-CoV-2 (COVID-19) (Gautret
et al. 2020). Alkaloids are also used as basic medical
agents because of their analgesic and antibacterial prop-
erties (Sharaibi and Osuntogun 2014). For instance, al-
kaloid compounds of Solanum nigrum were proven to
inhibit the growth of Escherichia coli, Proteus mirabilis,
Staphylococcus aureus, Pseudomonas aerogenosa (Jasim
et al. 2015). Pelleteriene, an alkaloid from pomegranate
seed, was found to be effective in preventing the growth
of Staphylococcus aureus by affecting the structure of
cell membrane (Ismail et al. 2012).

Organic sulfur compounds
Organic sulfides are widely found in spices such as garlic,
scallions, and onions as well as some cruciferous vegetables
(e.g., kale, mustard leaf, and broccoli) (Goncharov et al.
2016). Several studies have shown that they exhibit anti-
microbial activity (Table 1). For example, sulfur compounds
extracted from fresh garlic by-products show significant
antimicrobial activity against S. aureus, S. enteritidis, E. coli,
B. cereus, and L. monocytogens (Jang et al. 2018). Organic
sulfur compounds extracts from herbs are known to have
antimicrobial properties against various bacteria such as
Bacillus cereus, Campylobacter jejuni, Clostridium, Escheri-
chia coli, Listeria monocytogenes, Salmonella enterica,
Staphylococcus (Ikeura and Koabayashi 2015). Both diallyl
sulfides, diallyl monosulfide, diallyl disulfide, diallyl trisul-
fide, and diallyl tetrasulfide extracted from chive oil showed
antimicrobial activities (Rattanachaikunsopon and Phum-
khachorn 2008). Although few research on the antiviral
properties of organic sulfides has been carried out, some or-
ganic sulfur compounds found in some green vegetables
may show protection against viruses (eg., hepatitis A virus,
and norovirus) (Sofy et al. 2018). Besides, some sulfides
have been shown to enhance immunity by rendering the
anti-viral effect. For example, allicin, one of the major orga-
nosulfur compounds in garlic was found to improve im-
mune function and to avoid a viral attack (Rahman 2007).

Other compounds
There are still other natural bioactive substances that
show anti-viral effects. For example, the saponin extracts
from Eucalyptus citriodora have been reported to pos-
sess antivirus activity (Zhou et al. 2014). Saponins from
Medicago sativa were found to show antimicrobial activ-
ity against gram-positive and gram-negative bacteria
(Avato et al. 2006). Antimicrobial activities were also

found in other Saponin-rich extracts from plants, such
as guar, quillaja, yucca, and soybean (Hassan et al. 2010).
Moreover, vitamin K could be used as a green biocide
with high bactericidal efficacy toward both Escherichia
coli and Listeria innocua after seven times repeated day-
light exposure (Zhang et al. 2019). Vitamin D was also
proven to innate immunity by regulating the production
of antimicrobial peptides and cytokine response, which
show its potential for use as antimicrobial drugs (Yous-
sef et al. 2011). A detailed discussion about these bio-
active compounds is beyond the scope of this review and
needs to be reviewed separately.

Application of bioactive substances in food
production
Contaminants may enter food through the farming envir-
onment (eg., air, feed/soil, water) or during food processing
(Fischer et al. 2016). The application of bioactive substances
for controlling food contaminants and food-borne viruses
during farming and processing in the food industry is dis-
cussed and detailed in the following subsections.

Farming
Planting
Heavy metals/benzodiazepines in the soil, and overuse of
most synthetic pesticides/fungicides during planting has
created different types of environmental and toxicological
problems. On the one hand, phytoremediation can re-
move, sequester, or stabilize many organic and inorganic
contaminants, including heavy metals, and reduce benzo-
diazepines in the soil (Kidd et al. 2015). Although natural
bioactive substances are not added directly to the soil in
this strategy, it still utilizes the bioactive substances (e.g.
organic acids, polyphenols) in plants in response to the
chelation of metal ions and the reaction of contaminants
after absorption (Thakur et al. 2016).
On the other hand, the popularity of natural bioactive

pesticides is once again increasing and some plant prod-
ucts are being used globally as green pesticides (Cantrell
et al. 2012). For example, some plant extracts, containing
polyphenols, gums, resins, and essential oils have already
been used as antimicrobial substances against a wide
array of microorganisms (Gurjar et al. 2012; Zaker
2016). Some plant extracts show antimicrobial effect and
serve as plant defense mechanisms against pathogenic
microorganisms, such as inhibiting the chitin synthase
enzyme of fungi (Cantrell et al. 2012).

Animal husbandry
The process of animal breeding is very easy to be in-
fected by a wide range of bacteria, thus damaging human
health. Natural bioactive substances mainly enhance the
antibacterial ability of animals by modifying their diet.
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For example, Salmonella, one of the human pathogens,
is always consumed from raw or undercooked contami-
nated poultry products. Previous studies have shown
that primary production, mixing, and processing, in-
crease the chance of contact with insects, and wild ani-
mals which could easily cause contamination at several
stages. However, adding natural organic acids into drink-
ing water for animals could greatly reduce post-harvest
crop contamination with Salmonella (Awad and Ghar-
eeb 2014). Besides, infectious pathogens of birds could
be reduced by modifying the ingredients and nutrient
composition of their diets (Vandeplas et al. 2010). The
mechanism of this strategy may be related to the fact
that the diet contains high-fiber and polysaccharide that
may modify the microflora and physicochemical balance
in the gastrointestinal tract (GIT) of birds, thus improv-
ing a bird’s resistance to colonization by Salmonella and
other pathogens (Vandeplas et al. 2010). Moreover, the
feeding of medium-chain fatty acids (C8-C10) could also
regulate the GIT of birds and has been shown to reduce
the gut colonization of broilers by Campylobacter (van
Gerwe et al. 2010). The study also used essential oils to
prevent or reduce the colonization of broilers by Cam-
pylobacter in a similar manner (Umaraw et al. 2017). Be-
sides, some natural bioactive substances, such as
lysozyme, have been used as growth-promoting subther-
apeutic antibiotic in swine feed because of their ability
to cleave the peptidoglycan component of bacterial cell
walls (Oliver and Wells 2015).

Aquaculture industry
Natural bioactive substances are mainly used to control
contaminants in aquaculture in two ways. One is by re-
placing various chemotherapeutic agents with natural
bioactive substances to reduce the rate of infection from
bacteria as well as the residue and accumulation of
harmful agents in organisms. The other one uses bio-
active compounds to remove harmful substances such as
polycyclic aromatic hydrocarbons, polychlorinated bi-
phenyls, organochlorinated pesticides, potentially toxic
elements, and residues of veterinary drugs and antibi-
otics in aquaculture products (fish, crustaceans, and
mollusks).
In this connection, some studies have intensified ef-

forts to exploit natural products such as herbs in devel-
oping alternative dietary supplements that enhance
growth performance as well as the health and immune
system of fish (Syahidah et al. 2015). Thus, the antibac-
terial potential of aqueous and methanolic extracts of
Malaysian local herbs was tested for this reason (Najiah
et al. 2011). Meanwhile, according to a previous study
(Zilberg et al. 2010), essential oil from rosemary dis-
played positive results in inhibiting a common tilapia
pathogen. These herbs show anti-bacteria/anti-toxicity

effects due to the presence of various bioactive sub-
stances like alkaloids, flavonoids, phenolic acids, terpe-
noids, steroids, and essential oils (Citarasu 2010).
Besides, some natural bioactive substances (eg. chitosan)
could remove the contaminants in water, thus reducing
the acquisition of harmful substances by living organ-
isms (Gamage and Shahidi 2007).

Food industry
Several preservation techniques, such as heat treatment,
salting, acidification, and drying have been used in the
food industry to extend the shelf life of food by prevent-
ing the growth of some microorganisms or food-borne
viruses. Furthermore, foods preserved with natural addi-
tives have gained wide attention in recent years (Table 2).
Such natural bioactive substances can be directly added
into the product formulation, spread on the food sur-
face, added into the packaging material, or used in anti-
microbial films to maintain their activity for shelf life
extension (Lucera et al. 2012).

Food additives
Most natural bioactive substances are added directly to
the food system as additives. These natural products in-
clude essential oils from various plants, such as thyme,
oregano, cinnamon, clove, and rosemary (Gutierrez et al.
2008; Gutierrez et al. 2009). For example, essential oils
are known to control spoilage microorganisms when
added into yogurt (Singh et al. 2011). Essential oils (e.g.
celery, sage, juniper, lemon, and marjoram essential oil)
may also be used to preserve apple juice because of their
anti-yeast effects (Tserennadmid et al. 2011). Some of
the bioactive substances are obtained from animal
sources such as enzymes, including lysozyme, and lacto-
ferrin. For instance, lysozyme and lactoferrin could ex-
tend the shelf life of mozzarella cheese through their
anti-microbiological effects (Sinigaglia et al. 2008; Quin-
tieri et al. 2012). However, another study suggested that
lysozyme only shows significant anti-microbiological ef-
fects at high concentrations (Conte et al. 2011). More-
over, polysaccharides (chitosan) and phenolic acid
derivatives are used in food preservation for preventing
microbial activity, food-borne pathogens, and spoilage
bacteria. For example, chitosan coating has proven to
render anti-microbiological, anti-virus, and antioxidant
effects in beef (Duran and Kahve 2020). In addition, es-
ters of epigallocatechin gallate with polyunsaturated fatty
acids exhibited anti-hepatitis C virus (HCV) activity
(Shahidi and Zhong 2010).

Spreading of coatings on food surface
Food industries have used coatings on highly perishable
foods to protect their nutritional properties, extend their
shelf life, and reduce the negative effects caused by
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processing (eg., enzymatic browning, texture breakdown,
and off-flavor development) for many years (Sánchez-
Ortega et al. 2014). The coating solution could either be
highly viscous or non-highly viscous. The highly viscous
solution has been used in dipping, one of the coating
methods applied for fruits and vegetables, by many food
industries. Meanwhile, when the coating solution is not
highly viscous, spraying, and bushing would be used for
preservation purposes (Valdés et al. 2015). It has been
shown that forming an active coating by some bioactive
substances on the surface of food can extend their shelf
life. For example, spreading essential oils on the food sur-
face has been reported in the literature as a useful tech-
nique to improve the quality of products (Andevari and
Rezaei 2011). This strategy may use several bioactive sub-
stances. For instance, coatings enriched with oregano es-
sential oil combined with whey protein could extend the
refrigerated shelf life of chicken breast through the inhib-
ition of microorganisms (Fernández-Pan et al. 2014). Chi-
tosan coating combined with pomegranate peel extract
(containing polyphenols) showed antimicrobial effects on
white shrimp during iced storage (Yuan et al. 2016). Poly-
saccharides have also been widely used as coating mate-
rials for fresh fruits and vegetables due to their ability as
carriers of natural antimicrobial substances to preserve
postharvest quality (Aloui and Khwaldia 2016).

It is important to note that the active coatings on the sur-
face of foods could act as semi-permeable membranes, thus
reducing gas transfer rates to extend their shelf-life. In
addition, some of the coatings consist of proteins and poly-
saccharides which form cross-linking (process of forming
tridimensional networks by linking polymer chains by cova-
lent or non-covalent bonds), hence increasing their water-
resistance and barrier properties to avoid food spoilage and
contamination (Azeredo and Waldron 2016).

Forming edible films
Edible films may be considered as packaging material in
which preservative agents serve as thin layers applied to
them without being directly added to the food product
but would be eaten together with the food (Salgado et al.
2015). These films are biodegradable or renewable prod-
ucts, which can be completely degraded by microorgan-
isms and finally changed into carbon dioxide, water,
methane, and some other biomass residues (Reddy et al.
2013). Edible films based on carbohydrates or proteins
may contain antimicrobial agents (e.g. lysozyme, chitosan,
essential oils) (Irkin and Esmer 2015). For example, hy-
droxypropyl methylcellulose based films combined with
propolis (containing polyphenols) show physical and anti-
fungal properties (Pastor et al. 2010). In addition, previous
results suggest that essential oils (EOs) can be added to

Table 2 Strategies used in the food industry to control food contaminants and food-borne virus through bioactive substances

Strategies Natural substances Application Results References

Food additives Essential oil Yogurt Anti-microbiological effects (Singh et al. 2011)

Clary, Sage, Juniper, Lemon,
and Majoram Essential oil

Apple juice Anti-yeast (Tserennadmid et al. 2011)

Oregano essential oil Apple fruits Anti-microbiological effects (Lopez-Reyes et al. 2010)

Essential oil from O. vulgare L. a
nd Rosmarinus officinalis L.

Vegetables Anti-bacterial growth (De Azeredo et al. 2011)

Carvacrol and thymol essential oil Lemon Antifungal effects (Pérez-Alfonso et al. 2012)

Lysozyme Cheese Anti-microbiological effects (Sinigaglia et al. 2008;
Quintieri et al. 2012)

Lactoferrin Chicken filets Anti-microbiological effects (Del Olmo et al. 2012)

Chitosan Beef Anti-microbiological,
Anti-virus

(Duran and Kahve 2020)

Epigallocatechin gallate-polyunsaturated
fatty acid esters

Food products Anti-virus effects (Shahidi and Zhong 2010)

Coatings Polysaccharides Fruits/Vegetables Anti-microbiological effects (Aloui and Khwaldia 2016)

Oregano essential oil and whey protein Chicken breast Anti-microbiological effects (Fernández-Pan et al. 2014)

Chitosan and pomegranate peel extract White shrimp Anti-microbiological effects (Yuan et al. 2016)

Oregano and thyme essential oil Food package Anti-microbiological effects (Solano and de Gante 2012)

Chitosan Food package Form a protective layer (Pinheiro et al. 2012)

Edible films. Polyphenols from propolis Food package Antifungal properties (Pastor et al. 2010)

Lysozyme, Lactoferrin Food package Anti-microbiological effects (Barbiroli et al. 2012)

Chitosan, Essential oil Food package Anti-microbiological effects
Form a protective layer

(Hafsa et al. 2016; Shahidi and
Hossain 2020)
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the film to improve antimicrobial and antioxidant proper-
ties (Shahidi and Hossain 2020).
Several bioactive agents can be incorporated into or

onto coatings, such as essential oil, chitosan, and lyso-
zyme. For instance, it has been demonstrated that essen-
tial oils of oregano and thyme display anti-fungal effects
when incorporated into coatings (Solano and de Gante
2012). κ-Carrageenan and chitosan have proven to be
suitable edible coatings that could be used by the food
industry (Pinheiro et al. 2012). Therefore, edible films
may be considered as combinations consisting of various
natural substances. In these, the most important compo-
nent is the biopolymer, such as proteins (e.g. soybean
proteins, wheat gluten, corn zein, sunflower proteins,
gelatin, whey, casein, and keratin), lipids (e.g. wax, triac-
ylglycerols, monoacylglycerols, and free fatty acids) and
polysaccharides (e.g. cellulose derivatives, starches, algi-
nates, pectins, chitosans, carrageenans, gums, and fibers).
These films also contain solvents (eg., water or ethanol)
and additives (e.g. antioxidants, antimicrobials, and fla-
vors) (Salgado et al. 2015). Previous studies have shown
that a film based on chitosan which contained Eucalyp-
tus globulus essential oil rendered antimicrobial effects
in food products (Hafsa et al. 2016). Moreover, a variety
of combination treatments of some natural bioactive
agents, including lysozyme in starch-based edible pack-
aging film showed significant antimicrobial effects (Bhatia
and Bharti 2015).
In general, edible films are suggested to decrease the

diffusion of active compounds onto food surfaces and
maintain their concentrations at a critical level for inhib-
ition of microbial growth during the storage period
(Gyawali and Ibrahim 2014). Such films also act as an ef-
fective barrier to gas transfer such as oxygen and carbon
dioxide, thus inhibiting the growth of microorganisms
(Cazón et al. 2017).

Action mechanisms
Anti-bacterial and anti-fungal mechanisms
Destruction of the cell membrane
The resistance of natural substances to bacteria or fun-
gal attack/growth is mainly due to the destruction of cell
membranes. The cell membrane is responsible for
respiration and transport processes, osmotic regula-
tion, biosynthesis, and cross-linking of some essential
substances (e.g. peptidoglycan, and lipids). Therefore,
the destruction of the cell membrane can result in
metabolic dysfunction and finally lead to bacterial
death (Hartmann et al. 2010). In general, the damage
of natural bioactive substances to bacterial cell mem-
branes can follow either a direct and an indirect
mechanism (Fig. 1).
Some natural substances could directly kill bacteria

through interaction with the cell membrane (e.g.

proteins, and lipid layers). This may occur via the de-
struction of cellular proteins. For example, the sugarcane
bagasse extract, containing some phenolic acids proved
to decrease the content of cellular soluble protein con-
tent by permeating and disrupting the cell membrane of
bacteria (Zhao et al. 2015). Moreover, some of the bio-
active substances could change the hydrophobic proper-
ties of the cell wall or cell membrane. For instance,
phenolic acids (eg., gallic acid, and cinnamic acid) can
induce irreversible changes of the membrane through al-
tering hydrophobicity or forming local rupture/pore in
the cell membranes, thus resulting in leaking intracellu-
lar compounds (Borges et al. 2013). The essential oil can
cause irreversible damage to the cell membrane by indu-
cing the lysis of bacterial cells (cytolysis), thus resulting
in cell death (Villa and Veiga-Crespo 2014). The inter-
action of chitosan with bacterial cell surfaces results in an
increase in cell membrane permeability and its destruction
caused by non-specific binding of polycationic chitosan
molecules (Su et al. 2009). Besides, some natural sub-
stances, such as flavonoids, can interact with lipid bi-
layers of bacteria through accumulating non-polar
flavonoids in the hydrophobic region of the cell mem-
brane or forming hydrogen bonds between polar head
groups of lipids and hydrophilic flavonoids at the
interface (Tsuchiya 2015). As an example, quercetin,
rutin, and salidroside were found to decrease lipid bi-
layer thickness, thus disrupting the lipid monolayer
structure (Sanver et al. 2016). In addition, some flavo-
noids can interact with phospholipids, thus resulting
in structural changes in the membrane (Górniak et al.
2019). For example, catechins are able to destroy the
bacterial membrane through binding to the lipid bi-
layer, thus inactivating or inhibiting the synthesis of
intracellular and extracellular enzymes of bacteria
(Reygaert 2014).
The destruction of bacterial cell membrane structures

by reactive oxygen species (ROS) due to the high con-
centrations of bioactive substances is another mechan-
ism of action that may be followed. For instance,
catechins were found to kill bacteria or fungi through an
oxidative burst by the generation of ROS which induces
membrane permeability or causing membrane damage
at high concentrations (Fathima and Rao 2016).
The interaction between polyphenols and bacterial cell

membranes is especially related to the structure of poly-
phenols. To be exact, previous studies have found that
the position of hydroxyl groups in polyphenols, and the
presence of methoxy groups in the C ring can signifi-
cantly influence their antimicrobial activities. For in-
stance, some flavonoids with more methyl groups in the
B ring proved to render stronger anti-bactericidal effects
because of their lipophilic properties (Matijaševic et al.
2016).
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Interference with nucleic acid synthesis
Some natural phytochemicals are inhibitors of nucleic
acid synthesis, especially nucleic acid-related enzymes in
bacteria (Fig. 1). On the one hand, natural bioactive sub-
stances affect DNA supercoiling. One route is direct
interaction with the amino acid residues of DNA gyrase.
For example, some flavonoids (eg., chrysin, and kaemp-
ferol) can form hydrogen bonds to occupy ATP binding
pocket between its –OH groups and the B subunit of
gyrase (Wu et al. 2013). Another way is that some nat-
ural substances competitively interact with the ATP
binding site of the DNA gyrase B subunit according to
some molecular docking results (Wu et al. 2013). Thus,
these compounds combine with DNA to form a complex
that eventually leads to DNA degradation, blocking cell
transcription, and replication (Fang et al. 2016). On the
other hand, some bioactive substances affect the re-
arrangement of nucleic acid double chains. The mechan-
ism of this action is similar to that of the DNA gyrase
mentioned above, which makes helicases as important
targets.

Bioactive substances such as epigallocatechin gallate
can affect the folic acid synthesis pathway through inhi-
biting dihydrofolate reductase (Raju et al. 2015). This re-
action affects the synthesis of pyrimidines and purines in
the bacteria, thus affecting DNA transcription and repli-
cation (Bhosle and Chandra 2016). This effect may result
in the loss of bacterial organs. For example, phloretin
has proven to inhibit the formation of fimbriae through
influencing DNA, thus resulting in a decrease of adhe-
sion and the break down of biofilms. This weakens the
bacteria to resist antibacterial drugs (Lee et al. 2011).
Chitosan can also interfere with the synthesis of DNA
and mRNA in bacteria or fungi (Su et al. 2009).

Reducing metabolism
Natural bioactive substances regulate bacterial metabol-
ism mainly by inhibiting electron transport chains and
ATP synthesis/hydrolysis (Fig. 1). For example, quer-
cetin, quercetin-3-glucoside, and quercetin-3-O-rhamno-
side have proven to prevent ATP hydrolysis (Chinnam
et al. 2010). Moreover, proanthocyanidins isolated from

Fig. 1 Mechanism of anti-bacterial and anti-fungal effects of natural bioactive substances
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cranberries down-regulated the ATP synthesis (Ulrey
et al. 2014). For some fungus, amylase and protease can
be inhibited by essential oils, which stop toxin produc-
tion and electron flow, thus resulting in coagulation of
the cell content. A decline in metabolism will lead to the
inhibition of biofilm formation, which is a kind of three-
dimensional biofilms formed by mature cells (Adlard
2010). For example, anti-biofilm activity was decreased
by flavonoids and triterpenes isolated from the extracts
of Ficus Sansibarica warb (Awolola et al. 2014).

Anti-virus mechanisms
Inhibition of binding to host cells
Unlike other microorganisms, with the exception of nu-
cleic acid, viruses do not have the structures that are the
same as other living cells. Viruses consist of a protein
coat (a capsid), protein subunits (capsomeres), a small
number of enzymes for infection of host cells, and a cen-
tral core of nucleic acid (Boxman 2013). Therefore, vi-
ruses must rely on host cells to survive. Some
polyphenols, polysaccharides, and proteins are thought
to prevent the viral attachment to host cells, either by
causing damage on the viral capsids or change of the re-
ceptors on the cell membranes (Li et al. 2013). More-
over, bioactive substances isolated from some specific
plants containing terpenoids and lignoids have shown
antiviral activities against severe acute respiratory syn-
drome coronavirus through inhibiting postbinding and
entering to host cells (Wen et al. 2007). Furthermore, in-
hibition of viral infection by black raspberry juice (con-
tains polyphenols) on murine norovirus-1 and feline
calicivirus-F9 probably occurs at the internalization of
virions into the cell or the attachment of the viral sur-
face protein to the cellular receptors (Oh et al. 2012).

Destroying the virus envelope and modifying the capsid
When the virus has not yet entered the host cell,
destroying the virus envelope is effective in the preven-
tion of food-borne viruses. Several studies have found
that various plant-based bioactive substances, such as es-
sential oils, seem to act directly on enveloped viruses
(Schnitzler et al. 2011). Moreover, some bioactive sub-
stances can modify the virus capsid. For instance, cran-
berry juice and proanthocyanidins, which contain
polyphenols were found to damage the capsid of feline
calicivirus (Su et al. 2010). In addition, a visible capsid
disintegration of murine norovirus was found in the es-
sential oil-treated samples (Gilling et al. 2014).
Several studies have found that some negatively

charged viruses could bind positively charged chitosan,
thus resulting in weakening or disruption of the capsid
structure of viruses (Su et al. 2009). Moreover, various
chitosans with different charges, molecule size, and solu-
bility show different inhibition on food-borne viruses

(Su et al. 2009). The difference in the effectiveness of
chitosan on the reduction of foodborne viruses suggests
that its use as an inhibitory agent may be limited.
However, destroying the virus envelope and modifying

the capsid are ineffective against viruses once they are
located within cells. Some non-enveloped viruses can
protect the integrity of the viral nucleic acid and initiate
infection by adsorption to the host cell (Cliver 2009).
Some bioactive substances have been shown to resist
food-borne viruses by inhibiting nucleic acid replication
or interfering with lysosome production, which will be
discussed in detail as adjuvant treatment of food-borne
diseases in this review.

Detoxification
In addition to bacteria, fungi, and food-borne viruses, food
contaminants also include some toxins produced by mi-
croorganisms, and chemical residues, among others. Cer-
tain natural bioactive substances can interact with toxins
or chemical residues. For example, aflatoxin B1 (AFB1),
produced by the common Aspergillus flavus and Aspergil-
lus parasiticus, is common and widespread in food prod-
ucts, including poultry, corn, rice, oilseeds, dried fruits,
and peanuts, especially in hot, humid, and unsanitary con-
ditions (Hamid et al. 2013). To solve this problem, chemo-
prevention strategies aimed at reducing AFB1 toxicity in
both animal-based and plant-based food have been con-
sidered. Some studies suggest that these naturally active
substances act as antioxidants, increasing the expression
of many large molecules in poultry cells, such as phase II
enzymes to act against aflatoxicosis (Rawal et al. 2010).
Moreover, for some plant-based food, compounds from
essential oil, such as cinnamaldehyde, could cause a re-
duction in AFB1 through structural degradation or down-
regulating the concentration of ROS because of its antioxi-
dant properties (Sun et al. 2015).
Chemical residues, such as nitrite, are ubiquitous com-

ponents of dietary regimens, and can be found in cured
or pickled meats (eg., bacon, fermented sausage, hot
dogs, ham and smoked meat), as nitrate in vegetables
(e.g., spinaches, beets, radishes, celery, and cabbages),
fertilizers and polluted drinking waters. Several studies
have shown that some natural bioactive substances, es-
pecially polyphenols, may interact with nitrite through
oxidation or nitration directly. For example, catechins
and rutin-like flavones react mainly by oxidation,
whereas hydroxycinnamates react mainly by nitration.
Besides, flavonols with a hydroxyl group at the 3-
position reduce nitrous acid to NO (D’Ischia et al. 2011).

Adjuvant treatment of food-borne diseases with
natural bioactive substances
Many natural bioactive substances are used not only as
food additives to prevent the production of food-borne
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viruses and food spoilage, but also have the potential in
the treatment of some food-borne diseases. The follow-
ing subsections provide details about their role in food.

Detoxification of heavy metals
Heavy metals from the environment and food chain cre-
ate a potential health hazard, thus becoming toxic when
they are not metabolized and hence accumulate in the
human body. Natural bioactive substances, such as flavo-
noids and pectin, among others, have been recognized in
the disease prevention recovery against heavy metal in-
toxication (Sharma et al. 2016). These compounds affect
biological systems not only through the chelation of
toxic metal(s) but also via formatting a “box” structure
to restraint the metal (Fig. 2). For example, pectin can
bind with metals such as Pb, Cu, Co, Ni, Zn, and Mg,
among others. Pectin is used for effective treatment
against poisoning in clinical studies as a chelator (Zhao
et al. 2008). Moreover, some flavonoids have been
shown to chelate heavy metal ions (Fig. 2). On the other
hand, pectin can form a “box” like structure between the

metal ions and the ionized carboxyl groups, thus de-
creasing the absorption of heavy metals (Fig. 2). Com-
plexes of some proteins with heavy metals can also
reduce the absorption of heavy metals in the body
(Kinoshita et al. 2013). In addition, some bioactive sub-
stances detoxify certain metal ions indirectly, for ex-
ample, increasing the formation of urine in the body,
thus accelerating their metabolism (Sharma et al. 2016).

Anti-viral effects
Numerous experiments based on animal or cell models
suggest that some natural bioactive substances or their
extracts show anti-rotaviral effects (Gandhi et al. 2016).
For example, Alfajaro et al. (2014) suggested that the
Sophora flavescens extract is a potential curative medica-
tion for rotaviral diarrhea in pigs. Besides, Calliandra
haematocephala leaf extracts showed anti-rotaviral ef-
fects in mice (Shaheen and Mostafa 2015). On the one
hand, this antiviral effect was shown directly earlier in
this review. The natural bioactive compounds interact
directly with viruses and cause irreversible damage or

Fig. 2 Interaction natural between bioactive substances and heavy metals
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reversible blocking of certain regions/areas (Howell and
D’Souza 2013). In addition, some natural bioactive com-
pounds prevent viruses from host cell binding and/or
entry into the host (D’Souza 2014). For instance, the
specific binding ability of human NoVs to salivary
HBGA receptors could effectively be enhanced or de-
creased by fruit and vegetable extracts (Jacob et al.
2014). Moreover, natural bioactive substances interfere
with DNA replication or inhibit viral antigen secretion
after the virus entering the host cell (Li et al. 2018). In
addition, natural bioactive substances may improve im-
munity in the host. For example, bioactive substances
from ginger and garlic showed immune promoting ef-
fects that prevented the human body from infection
(Pandey 2018).

Anti-bacterial and anti-fungal effects
The growing problem of antibiotic resistance has made
the routine therapy of many bacterial and fungal infec-
tious diseases challenging (Hare 2009). Therefore, con-
sidering that the microbial resistance has become an
increasing global problem, there is a need to find new
potent antimicrobial agents as accessories to antibiotic
therapy. Several natural bioactive compounds not only
have been tested to combat resistant bacteria (as dis-
cussed earlier) but also show a reduction of multidrug
resistance as an efflux pump inhibitor in bacteria (Kuete
et al. 2011). On the one hand, many natural active sub-
stances can inhibit the growth of some pathogenic mi-
croorganisms or the formation of biofilm in the human
body. For example, the consumption of green tea poly-
phenols shows antimicrobial activity and the inhibition
of biofilm formation in the human oral cavity (Cho et al.
2010). However, after digestion through the gastrointes-
tinal tract, the direct antibacterial properties of some
natural bioactive substances, such as rose phenolic ex-
tracts are greatly weakened, which is mostly due to the
chemical effects such as pH (Zhang et al. 2016a, b).
Therefore, several studies have focused on nanoparticles
against bacterial gastrointestinal pathogens that con-
tained chitosan nanoparticles loaded with phenolic com-
pounds (Madureira et al. 2015). Furthermore, several
research reports have suggested that certain natural bio-
active substances should be considered as a strategy to
defend against fungi or bacteria; these could be used in
combination with antibiotics to provide synergistic ef-
fects (Coutinho et al. 2009; Coutinho et al. 2008). The
main mechanism involved in this application is increas-
ing the sensitivity of the bacteria to antibiotics. For ex-
ample, phenolic-rich maple syrup extracts were found to
inhibit efflux pump activity as well as significantly
repressing multiple-drug resistance genes, thus enhan-
cing bacterial antibiotic susceptibility (Maisuria et al.
2015). Moreover, thyme essential oil was found to

inhibit multidrug-resistance of some food-borne bacter-
ial strains (eg., Staphylococcus, Enterococcus, and Escheri-
chia) (Sienkiewicz et al. 2012). In addition, most natural
bioactive substances have antioxidant and anti-
inflammatory effects. Therefore, they are used in the
treatment of many fungal or bacterial toxins or induced
inflammation (Palaska et al. 2013; Iranshahi et al. 2015).

Conclusion
Several natural bioactive substances, including polyphe-
nols, proteins, essential oils, and polysaccharides, or their
extracts, have demonstrated anti-virual, anti-bacterial,
and anti-fungal effects as well as inhibiting the adverse
effects of containments. Therefore, these natural bio-
active substances are widely used in agricultural farming,
animal husbandry, and food processing as natural medi-
cinal products or food additives. The advantages of nat-
ural bioactive substances in controlling food-borne
viruses and contaminants include their generally mild
treatment condition compared to the traditional physical
and chemical treatments. These natural bioactive sub-
stances show inhibition of microorganisms by destroying
the cell membrane, interfering with nucleic acid synthe-
sis, and reducing the metabolism of bacteria and fungi.
They also show inhibition of binding to host cells,
destroying the envelope, and modifying the capsid on
the virus. In addition, these natural bioactive substances
were found to have detoxification ability against food
poisoning caused by heavy metals in the body. They
could also have a therapeutic effect on some diseases
caused by viruses, bacteria, and fungi. Due to these
properties, natural active substances are not only used in
the field of food production and processing but also play
an important role in the treatment of foodborne dis-
eases. Research on the therapeutic effects of natural ac-
tive substances on food-borne diseases is one of the
fields that deserve particular future attention.
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