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Abstract

Functional MRI (fMRI) is extremely challenging to perform in subjects who move because subject 

motion disrupts blood oxygenation level dependent (BOLD) signal measurement. It has become 

common to use retrospective framewise motion detection and censoring in fMRI studies to 

eliminate artifacts arising from motion. Data censoring results in significant loss of data and 

statistical power unless the data acquisition is extended to acquire more data not corrupted by 

motion. Acquiring more data than is necessary leads to longer than necessary scan duration, which 

is more expensive and may lead to additional subject non-compliance. Therefore, it is well 

established that real-time prospective motion monitoring is crucial to ensure data quality and 

reduce imaging costs. In addition, real-time monitoring of motion allows for feedback to the 

operator and the subject during the acquisition, to enable intervention to reduce the subject motion. 

The most widely used form of motion monitoring for fMRI is based on volume-to-volume 

registration (VVR), which quantifies motion as the misalignment between subsequent volumes. 

However, motion is not constrained to occur only at the boundaries of volume acquisition, but 

instead may occur at any time. Consequently, each slice of an fMRI acquisition may be displaced 

by motion, and assessment of whole volume to volume motion may be insensitive to both intra-

volume and inter-volume motion that is revealed by displacement of the slices. We developed the 

first slice-by-slice self-navigated motion monitoring system for fMRI by developing a real-time 

slice-to-volume registration (SVR) algorithm. Our real-time SVR algorithm, which is the core of 

the system, uses a local image patch-based matching criterion along with a Levenberg-Marquardt 

optimizer, all accelerated via symmetric multi-processing, with interleaved and simultaneous 

multi-slice acquisition schemes. Extensive experimental results on real motion data demonstrated 

that our fast motion monitoring system, named Slice Localization Integrated MRI Monitoring 

(SLIMM), provides more accurate motion measurements than a VVR based approach. Therefore, 

SLIMM offers improved online motion monitoring which is particularly important in fMRI for 

challenging patient populations. Real-time motion monitoring is crucial for online data quality 

control and assurance, for enabling feedback to the subject and the operator to act to mitigate 

motion, and in adaptive acquisition strategies that aim to ensure enough data of sufficient quality is 

acquired without acquiring excess data.
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1. Introduction

Head motion adversely affects data quality in functional magnetic resonance imaging 

(fMRI), leading to distorted images, biased analyses, and increased cost due to the need for 

repeating scans (Kim et al., 1999; Lanka and Deshpande, 2019; Muraskin et al., 2013; 

Murphy et al., 2007; Power et al., 2014; 2015; Schulz et al., 2014).

Systematic bias in fMRI analyses due to residual motion artifacts, such as spurious reduction 

of long-range functional connectivity and increased strength of short-range functional 

connectivity, has been well documented (Deen and Pelphrey, 2012; Power et al., 2012). 

Motion effects in fMRI are subtle and cannot be easily evaluated during acquisition to 

ensure data of sufficient quality are obtained for robust fMRI analysis.

1.1. Background and significance

fMRI is routinely acquired as time series of stacks of 2D gradient-echo, echo planar imaging 

(EPI) slices (Stehling et al., 1991) that generate a blood oxygenation level dependent 

(BOLD) contrast by measuring the T2* relaxation of nuclei, which changes by the 

concentration of deoxyhemoglobin. The BOLD signal is thus used to measure neural activity 

due to the hemodynamic response. Task-based and resting state fMRI are both widely used, 

and range in duration from around 5 min to over an hour. In fact, during the relatively long 

fMRI acquisition time, head motion is common, even for healthy and cooperative adult 

subjects, as is physiological motion associated with respiration and cardiac pulsation. 

Research has shown that sub-millimeter head movements systematically degrade the 

accuracy of fMRI analyses (Power et al., 2012; Satterthwaite et al., 2012; Schulz et al., 

2014; Van Dijk et al., 2012).

Much effort has been made in alleviating the effects of head motion artifacts on fMRI 

analysis by means of post-acquisition processing (Ciric et al., 2017; Power et al., 2012; 

2015; Satterthwaite et al., 2013). However, since these techniques are retrospective, they 

require that sufficient motion-free data is collected. To ensure that the acquired data are 

sufficient for analysis, a typical strategy, in the face of unknown motion-induced data loss, is 

to acquire additional data (i.e., over-scanning). Data that are corrupted by motion are then 

excluded by retrospective data censoring (Ciric et al., 2017). Although such a strategy 

increases the likelihood of collecting sufficient data, it is highly inefficient, and significantly 

increases imaging time and costs. Ultimately, it does not guarantee that data of sufficient 

quality is acquired for every subject in a cohort. This strategy renders imaging studies of 

challenging populations particularly inefficient and costly. As MRI resources are often 

expensive and limited, it is desirable to optimize the length of data acquisition, and to 

acquire data without motion as much as possible. Unnecessarily long scans also increase the 

burden of imaging on patients and vulnerable cohorts. The increased imaging time due to 
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patient motion has been estimated to cost clinical and research studies over $115,000 per 

scanner per year, and $1.4B per year in the United States alone (Andre et al., 2015). In 

resting state fMRI alone, motion increases the scan times and the associated costs by over 

57% (Dosenbach et al., 2017).

The issues listed above affect the design of all fMRI studies, but are significantly more 

prominent in fMRI studies of non-cooperative subjects, such as infants, toddlers, and 

patients who have difficulty in avoiding moving their heads during fMRI scans. In a 

pediatric patient cohort studied by Dosenbach et al. (2017), over 50% of the fMRI data were 

reported to be unusable under their data censoring criteria (frame displacement > 0.2 mm). 

The high rate of data loss in pediatric fMRI suggests it would be beneficial to monitor for 

motion during the acquisition itself. This is known as real-time motion monitoring. Real-

time motion monitoring allows the scanner operators to intervene, to provide feedback to 

subjects when they are moving, and to ensure that data acquisition may be extended until a 

sufficient amount of motion-free data is acquired. Real-time motion monitoring enables the 

design of adaptive scanning strategies based on the analysis of motion and their effect on 

fMRI quality. Research has shown that immediate feedback to the subject, such as direction 

from the operator, or motion-induced modification of stimuli presentation, substantially 

improves the time for which children hold still during fMRI (Dosenbach et al., 2017; Greene 

et al., 2018).

1.2. State-of-the-art in MRI motion monitoring

A variety of techniques can be used for motion monitoring in fMRI (Zaitsev et al., 2017), 

including optical motion tracking systems (Forman et al., 2010; Schulz et al., 2014; Zaitsev 

et al., 2006), systems based on active markers (Muraskin et al., 2013), navigator-based 

methods (Ehman and Felmlee, 1989; White et al., 2010), and image alignment-based 

methods (Friston et al., 1995; Jenkinson et al., 2002; Thesen et al., 2000). These techniques, 

however, have limitations. Navigator-based methods (Ehman and Felmlee, 1989; White et 

al., 2010) that insert k-space or image navigators into the imaging sequences at different 

time points for motion measurement, are highly dependent on the imaging platform and 

typically require constraints on protocol parameters, such as repetition and echo times (TR 

and TE), which may adversely affect the acquisition time and signal-to-noise ratio (SNR).

Optical trackers (Forman et al., 2010; Schulz et al., 2014; Zaitsev et al., 2006) often require 

markers attached to the patient’s head and a direct line of sight between camera and markers 

(or face) must be maintained. These systems can be difficult to set up or incompatible with 

the visual presentation of fMRI stimulus on a set of goggles, or fixation on a visual cross on 

a mirror during resting state fMRI acquisitions. Moreover, methods with external hardware 

and navigators are generally platform-dependent, increase costs, and may raise safety 

concerns. Attaching markers on skin may irritate or disturb infants and young children.

Self-navigated methods do not require additional navigator data or hardware as they rely on 

the acquired data only to estimate motion (Dosenbach et al., 2017; Greene et al., 2018; 

Thesen et al., 2000). Among these, a method known as Prospective Acquisition Correction 

(PACE) (Thesen et al., 2000), uses volume-to-volume registration (VVR) to infer motion 

parameters between fMRI volumes. PACE correction estimates the motion by calculating the 
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registration of one volume to another volume, and is then able to steer to the position of the 

previous volume at the time of the next volume acquisition. PACE assumes there is no 

motion between the volume that was acquired and the next volume to be acquired. Since it 

can only correct for motion once per volume, it is unable to correct for the displacement of 

slices that occurs when motion is entirely within a volume, or when different motion 

patterns occur for slices that are part of more than one volume. Therefore, PACE is not 

effective for the fast and frequent motion that commonly happens with non-cooperative 

subjects (Lanka and Deshpande, 2019). A more recent technique in this category is FIRMM 

(framewise integrated real-time MRI monitoring) (Dosenbach et al., 2017; Greene et al., 

2018), which is a self-navigated technique for motion monitoring during fMRI with real-

time performance (i.e., motion is measured within the time period of the next volume 

acquisition). Motion monitoring in FIRMM also relies on a VVR strategy.

Nevertheless, fMRI is acquired as a sequence of 2D slices, and motion happens at the slice 

level. Techniques that monitor fMRI motion at the volume level have limited temporal 

resolution and are insufficiently sensitive to intra-volume motion. The limitations of VVR-

based strategies have been investigated in a series of studies. Kim et al. (1999) were the first 

to develop and show the added value of retrospective slice-level motion correction via slice-

to-volume registration (SVR) over VVR. Beall and Lowe (2014b) developed a retrospective 

slicewise motion correction method for fMRI data, known as the SLOMOCO, and 

quantitatively assessed the superiority of the correction at the slice level over that at the 

volume level in (Beall and Lowe, 2014a). Compared to VVR-based techniques, motion 

correction using retrospective SVR followed by image reconstruction has shown 

significantly improved results in a range of MRI applications including diffusion-weighted 

imaging (DWI) of non-cooperative patients, e.g. (Bastiani et al., 2019; Hutter et al., 2018; 

Marami et al., 2016; 2019), fetal brain MRI (Alansary et al., 2017; Ebner et al., 2019b; 

Gholipour et al., 2010; Kainz et al., 2015; Marami et al., 2017), fetal cardiac MRI (van 

Amerom et al., 2019; Lloyd et al., 2019), and body MRI (Ebner et al., 2019a; Kurugol et al., 

2017).

All of the above-mentioned techniques, however, are based on retrospective SVR. Despite 

the proven advantages of SVR over VVR to estimate and correct for slice-level motion, there 

is currently no real-time motion monitoring system based on SVR. This is mainly due to the 

technical challenges in achieving fast and yet accurate and reliable SVR in ultra-fast 

sequences such as fMRI. In this paper, we report the first development and evaluation of a 

real-time slice-by-slice motion monitoring algorithm for fMRI. Real-time in this context 

means that motion is measured within the time period of the next slice acquisition during 

fMRI, which is in the order of 40–80ms.

To achieve real-time performance, our technique extracts a set of local image features and 

incorporates a feature selection scheme to create a similarity metric for SVR. Accelerated 

optimization is achieved through finite difference computation of the similarity gradients 

with respect to transformation parameters within a Levenberg-Marquardt (LM) optimization 

framework (Levenberg, 1944; Marquardt, 1963).
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The experimental results reported in this paper are based on fMRI data sets with observed 

patterns of motion. Our analysis and experimental results show that our feature selection and 

gradient computation schemes led to improved registration accuracy and an accelerated 

optimization process that has enabled real-time SVR for a fast, self-navigated motion 

monitoring system.

1.3. Contributions

This work has two main contributions:

1. A real-time slice-to-volume image registration algorithm in which a local image 

feature extraction and selection scheme is leveraged to compute a (dis)similarity 

metric for improved registration performance; and a parallelized gradient 

computation method accelerates the optimization process for image registration. 

The technique leverages interleaved and simultaneous multi-slice acquisition 

schemes to improve registration stability and robustness.

2. A real-time slice-by-slice motion monitoring system, called SLIMM for Slice-

Localization Integrated MRI Monitoring, is established with the proposed slice-

to-volume registration algorithm. To the best of our knowledge, this is the first 

work to perform self-navigated slice-by-slice motion monitoring in real-time for 

fMRI. Extensive experimental results on fMRI data sets with observed patterns 

of motion show that SLIMM is able to process 27.7 slices per second with 

motion estimation errors under 0.8 degrees in rotation and, on average, under 

0.75 mm (1/4 voxel size) in translation. The achieved performance is satisfactory 

for slice-by-slice motion monitoring in fMRI.

The remainder of this paper is organized as follows: The material and methods are presented 

in Section 2. The results are shown in Section 3. We discuss our results and concluding 

observations in Section 4.

2. Methods

The purpose of the approach developed and presented here is to prospectively measure the 

subject motion during fMRI slice acquisitions via a real-time SVR algorithm, enabling the 

data acquisition duration to be dynamically adjusted to be shorter or longer, and enabling the 

motion information to be presented to the scan operator and the subject during the data 

acquisition. In this work we used 2D EPI sequences for fMRI experiments, with 

simultaneous multi-slice acquisition, where each slice is acquired in around 80ms. In order 

for the real-time motion monitoring to use every slice, the alignment of the slice to the 

reference volume should be completed in less time than required to construct the next slice 

(<= 80 ms). As each fMRI slice was acquired, we registered each slice to a reference volume 

using our real-time SVR algorithm. Motion is thus measured by the change in the position of 

the acquired slice before and after SVR. Online motion measurements are then fed back to 

scanner operators to make immediate decisions on continuing or stopping scans, or to enable 

them to direct the subject to hold still, or to modify the stimuli seen by the subject to indicate 

excessive motion is occurring, again enabling the subject to reduce their motion.
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2.1. Our algorithm and theory

In SVR, a reference 3D volumetric (moving) image is transformed in 3D space to align to an 

input (fixed) 2D slice image. Therefore, given a 2D slice image I and a 3D volumetric image 

J, SVR can be formulated by a minimization problem:

θ* = arg min
θ

f I, Tn(J; θ) + λr(θ), (1)

where the function f(·, ·) serves as a matching criterion that measures the similarity between 

the reference and source images; Tn(·; θ) transforms the input volumetric image to the space 

of the slice image that has the motion state θ and then outputs the n-th oblique slice; r(θ) 

defines a regularization term (i.e., prior knowledge on θ) that constrains the transformation; 

and λ > 0 is a weight parameter balancing the cost between the similarity and the 

regularization terms. The solution θ* represents the spatial transformation between the slice 

and the volume in a common space.

2.1.1. Motion representation—When a subject is deliberately and carefully holding 

still, there are still several physiological sources of motion or apparent motion. These 

include small magnitude displacements such as pulsation due to the cardiac cycle, and 

motion induced at the head due to breathing, together with dynamic modulations of the static 

field induced by respiration and motion of other body parts that induce phase encoding 

artifacts that disrupt spatial coding. There may also be referred motion at the head associated 

with moving the legs or arms. The head often moves if a subject swallows. Thus, even in the 

absence of overt movement, there are a number of sources of motion or apparent motion that 

may be characterized by nonrigid motion. Typically no motion monitoring is carried out for 

these types of motion, and retrospective motion correction is used to correct for cardiac and 

respiratory related effects.

In addition to these physiological sources, subjects may displace their head in a rigid body 

fashion, undergoing certain types of rotation and translation. It is this rigid body motion 

imposed on top of smaller magnitude physiological motion sources, that is sought to be 

measured by volume to volume monitoring with techniques such as PACE and FIRMM, and 

retrospective correction. Similarly, our goal is to monitor the rigid body motion that may 

displace the position of each source.

Head motion is therefore modeled as a rigid body transformation in our SVR algorithm with 

6 degrees of freedom in 3D space (Birkfellner et al., 2007; Fogtmann et al., 2014; Gholipour 

et al., 2011; Jiang et al., 2007; Kainz et al.,2015; Marami et al., 2016), with the parameters θ 
= [α, β, γ, tx, ty, tz]T that represent the motion state of the subject head in the scanner 

(world) coordinate system; where α, β, and γ denote the rotation angles about the axes-x, y, 

and z, and tx, ty, and tz denote the translations along the axes-x, y, and z, respectively. In 

neuroimaging, padding and soft restraints are put around the patient’s head in head coils to 

restrict motion and protect the head in particular for children and infants. Since this limits 

the range of subject motion, the rigid-body assumption is sufficiently expressive to represent 

patient motion, considering that the interaction effects of field in-homogeneities and 

geometric distortions present but yield second order (Beall and Lowe, 2014a). In motion 
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measurement, we compute the motion state θt of slice It acquired at time t by registering 

slice It to the reference volume (with a prior motion state θ0). The absolute motion of the 

slice It against the reference volume is thus computed as Δθt = θt − θ0. Correspondingly, 

head movement at the tth slice is measured by Δθt – Δθt−1.

2.1.2. Matching criterion—The matching criterion, also known as the similarity metric, 

quantifies how well (accurately) a slice is registered to the reference volume. The choices of 

the matching criterion depend on the nature of the problem. For the matching criterion in 

image registration, two approaches are mainly adopted: iconic and geometric (Akselrod-

Ballin et al., 2011; Ferrante and Paragios, 2017). Iconic criteria employ voxel intensities to 

quantify the similarity (Bhagalia et al., 2009; Elen et al., 2010; Ferrante and Paragios, 2013; 

Fogtmann et al., 2014; Jiang et al., 2007; Kainz et al., 2015; Marami et al., 2016), whereas 

geometric criteria exploit the correspondences between anatomical locations or salient image 

regions (Bay et al., 2006; Besl and McKay, 1992; Dalal and Triggs, 2005; Lowe, 1999; Nir 

et al., 2014).

As shown in Eq. (1), the similarity between the slice and the reference volume is computed 

from the similarity between the slice and a second slice formed from a plane of the volume 

according to θ (position and orientation). With the input slice I and the extracted slice I′, the 

similarity f(·, ·) can be evaluated. In this work, we build a matching criterion based on the 

Euclidean distance between local image patches. There are two advantages to be gained 

from this matching criterion when minimizing f(·, ·) in the registration: first, it poses a 

nonlinear, unconstrained least squares problem that can be solved by gradient descent-based 

algorithms scaled by parallel computing techniques; and second, it can be easily extended to 

other metrics, e.g., the global normalized correlation metric by zeroing the means and 

rescaling the two slices to unit l2‐norm, respectively.

The gradient descent-based algorithms that find transformation parameters by maximizing 

the matching criterion, benefit from data being independent and identically distributed 

(i.i.d), because 1) if the data samples are strongly correlated to each other, the gradient used 

to update the objective would be dominated by only a few representative samples (e.g., 

centers of the clusters); and 2) if the data samples are from different distributions, they 

would compete against each other when computing the gradient and may weaken the 

gradient magnitude. These can lead to slow convergence or convergence to local optima. It 

is, however, unreasonable to assume that pixel intensities of the slices are i.i.d, because of 

their strong correlations to their neighboring pixels. In contrast, densely sampled local image 

patches can be considered to be i.i.d based on the inherent structures that have been 

demonstrated to exist in MR images (Plenge et al., 2013), and also in natural images (Sui 

and Zhang, 2016). This is known as the local self-similarity in MR images, and as the local 

structure in natural images. Motivated by this, we define our matching criterion based on 

distances of local image patches sampled from the moving and target image slices:

f I, I′ = ∑
k ∈ S

pk(I) − pk I′ 2
2, (2)
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where the patch extractor operation p(·) densely samples, with overlap, the local image 

patches from input slice. Those patches are indexed by the set S. Since the densely sampled 

local patches reside on a low-dimensional subspace or manifold due to their strong local 

correlations, they can be approximated by samples drawn from an independent and identical 

multivariate Gaussian distribution.

Certain slice images contain a large number of homogeneous patches, e.g., patches from the 

background. Using such patches that have many correspondences in the volume adds to the 

computational requirement while not facilitating convergence to the minima of the 

alignment criterion (Akselrod-Ballin et al., 2011; Clatz et al., 2005; Hedouin et al., 2017). 

We have exploited a patch selection scheme to select patches that contain pixels from 

regions with rich features that help improve the matching process. In this scheme, patches 

are selected based on their pixel variance; i.e., only patches with top 60% pixel variance are 

incorporated into the matching criterion. Eq. (2), therefore, is rewritten as:

f I, I′ = ∑
k ∈ Sv

pk(I) − pk I′ 2
2,

(3)

where the set Sv ⊂ S indexes the patches from the input slice I with the top 60% greatest 

pixel variances. Therefore, this patch selection criterion identified patches that drive the 

alignment and reduced the computational cost of the matching criterion by 40%.

2.1.3. EPI fMRI acquisition—The ease with which the correct alignment of a slice with 

a reference volume can be computed depends on the amount of brain tissue visible in the 

slice. Slices at the very top and bottom of the brain may have good matches in several 

positions due to the reduced amount of brain tissue visible in those slices, whereas slices in 

the middle of the brain more frequently have a unique good match. Consequently, it can be 

advantageous to consider more than one slice at a time in computing the alignment. 

Simultaneous multi-slice (SMS) acquisitions reconstruct two or more maximally separated 

slices at the same time and are a good choice for alignment. Slices may be acquired in an 

interleaved order that may be used to improve alignment by computing the alignment using 

two or more slices that are consecutively acquired in time, rather than using slices that are 

physically adjacent to each other. Limited features in border slices may lead to misalignment 

and errors in SVR. As a result, correct alignment of a single slice is more challenging than 

alignment of two or more slices that cover the anatomy at different locations. EPI slices in 

fMRI are typically acquired in an interleaved manner, primarily to avoid cross-talk between 

slices, with the number of slices skipped referred to as the interleaving parameter (Parker et 

al., 2017). This strengthens feature matching in SVR; and makes SVR robust especially at 

border slices.

In an SMS acquisition scheme, patches taken from N simultaneously acquired slices sample 

the anatomy at positions that are at 1
N  distances of each other, where FOVs is the field-of-

view in the slice select direction (i.e., the number of slices times slice thickness). The N 
slices that are acquired at the same time, have the same motion state; therefore they can 
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regularize SVR and improve its accuracy (Marami et al., 2019). Our simultaneous-N-slice-

based similarity minimization is thus written as

min
θ

∑
i = 1

N
∑

k ∈ Svi
τi pk Ii − pk Tni(J; θ) 2

2, (4)

where the subscript ni denotes the index of the ith slice from the volume, and Sv
i

i = 1:N
indexes patches that are selected from the i-th input slice. A linear interpolator is employed 

in the transformer Tn(·, ·) to make a trade-off between accuracy and computational 

efficiency. N weight parameters τ1:N are used to balance between the N similarity terms 

related to the N simultaneous slices. As a result, more flexible strategies can be applied to 

fine tune the stability and accuracy of the registration by setting different values of τi for 

different input slices. For example, the value of τi can be chosen dynamically based on the 

area covered by the slice Ii, approximated by pixel intensities; i.e., if a slice contains more 

features, τi is set to a larger value:

τi = τi′
∑i τi′

, τi′ = exp 1
σ ∑

k
Ii(k) , (5)

where σ > 0 is a scale parameter for the exponential function. The τi value could also be set 

manually according to empirical knowledge. In the particular case of single slice acquisition, 

when τ2:N = 0, Eq. (4) leads to the ordinary SVR problem.

2.1.4. Theory of our algorithm—Eq. (4) can be solved by either a single-valued 

optimizer, e.g., the Powell algorithm (Powell, 1964), or a multi-valued optimizer such as the 

Levenberg–Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963). We chose the 

latter for its faster convergence. Eq. (4) poses a standard nonlinear unconstrained least 

squares problem with respect to the motion states θ, where the set of ∑i = 1
N Sv

i  datum pairs 

is described as

∪
i = 1

N fk
i (θ), 0 ∣ k ∈ Sv

i , (6)

where fk
i (θ) is written as

fk
i (θ) = τi pk Ii − pk Tni(J; θ) 2

2 . (7)

The LM algorithm involves iterations of this form:

θt + 1 = θt + δt, (8)

where δt indicates the search direction and the step size that can maximally reduce the 

objective function (i.e., the similarity function in Eq. (4)) at the tth iteration.
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According to the first-order Taylor series expansion, the similarity at the (t + 1)th iteration is 

approximated by

fk
i θt + 1 = fk

i θt + δt ≈ fk
i θt +

∂fk
i θt

∂θt δk
t . (9)

It is derived in the LM algorithm that δt can be solved analytically from the following 

closed-form solution

δt = JTJ + λdiag JTJ −1JTf θt , (10)

where all the fk
i θt  values with respect to θt are combined into a vector f(θt); J ∈ ℝM × 6

denotes the Jacobian matrix of f(θt) for M = ∑i = 1
N Sv

i ; diag(JTJ) denotes the diagonal 

matrix consisting of the diagonal elements of JTJ; and λ is a weight parameter.

The iterative LM algorithm requires an initial guess for the solution, i.e., θ0, which is critical 

to the final solution. We initialize the solution θ0 for slice Ii by the motion state of the slice 

acquired prior to it. The algorithm stops if any of the following criteria is reached: 1) both 

the actual and predicted relative reductions in the sum of squares are at most 10−8; 2) the 

relative error between two consecutive iterations is at most 10−8; and 3) the cosine of the 

angle between the functions evaluated at θt and any column of the Jacobian is at most 10−5 

in absolute value.

The solution to dnewt shown in Eq. (10) involves a Jacobian matrix, matrix multiplications, 

and a matrix inversion. Although the matrix inversion has a cubic order O n3  of 

computational complexity, the matrix being inverted is of size 6 × 6. The matrix 

multiplications can be performed efficiently by applying a QR decomposition on the 

Jacobian matrix J. The Jacobian matrix has M × 6 elements to be computed. The 

computational cost of computing J increases linearly with a factor 6 with the number of 

patches in Eq. (4). As a result, computing the Jacobian matrix J is the main computational 

burden in Eq. (10), in particular over a large number of empirical datum pairs such as image 

data. Based on our results on real data, the LM algorithm takes 60% execution time in 

computing the Jacobian matrix, 21% for QR decomposition, and 19% for the remaining 

steps. Thus, here we focus on speeding up the Jacobian matrix computation for the LM 

algorithm.

We use a finite difference method to compute the Jacobian matrix. The forward difference 

for the Jacobian is written as

J = J1, …, JN T , (11)

where the sub-matrices are found by

Jkj
i = 1

ℎj
fk

i θj + ℎj − fk
i θj , (12)
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with i = 1, 2, … , N, j = 1, 2, … 6, and hj > 0 being the step length of the forward difference 

obtained from

ℎj = max max 10−11, ϵ , max 10−11, ϵ ⋅ θj , (13)

where ϵ denotes the machine precision.

The N sub-matrices Ji can be computed independently over the simultaneous-N-slice by 

using N sets of threads, leading to N times acceleration. For each sub-matrix Ji, the function 

values fk
i θj + ℎj  only depend on θj. Hence, another 6 threads are employed to compute the 

6 columns of Ji in parallel, resulting in an additional 6 times acceleration for the Jacobian 

matrix computation. The parallelization and the flowchart of the complete SVR algorithm 

are depicted in Fig. 1.

In summary, our SVR algorithm is accelerated for real-time performance by optimizing the 

matching criterion and parallelizing the optimization algorithm. The patch-based matching 

criterion leads to fewer iterations to enable the optimization algorithm to rapidly converge. 

The patch selection scheme identifies 60% of patches for the similarity evaluations, which 

constitutes a saving of 40% of computational costs. Further, the multi-threaded LM 

algorithm speeds up the Jacobian matrix computation by 6N × by the parallelization design. 

We will show the actual acceleration performance in the results section.

2.1.5. Auto-calibration for reference volume—When our motion monitoring system 

is launched with an fMRI scan, it starts with an auto-calibration stage that uses our real-time 

SVR algorithm to find a reference volume. The auto-calibration stage works as follows: the 

first fMRI volume is regarded as a provisional reference volume. The slices of the second 

volume are registered to this volume using SVR as they are acquired. If the motion 

measurements on all slices of the second volume are below a predefined threshold, the first 

volume is confirmed as the reference volume as this indicates no motion was detected within 

any of the slices of the first and second volume. If the motion measurements do not pass the 

threshold condition, the first volume is discarded, the second volume is regarded as the 

provisional reference, and all slices of the third volume are registered to the second volume. 

The motion measurements between the second and third volumes are then evaluated and 

compared against the threshold. This process continues until no motion is detected within 

the slices of two consecutive volumes, which means that the first volume of the two is 

chosen and used as the motion-free reference for SVR.

2.1.6. Motion monitoring system—Our fMRI sequence writes the slices as they are 

acquired, in DICOM format, to a local file system or a network mapped file system mounted 

using the SMB protocol on the MRI scanner. We export a file system from a Linux 

workstation to the scanner, and execute the SVR alignment on the workstation. The motion 

measurements are then dispatched asyn-chronously to one or more receiving clients. The 

clients may present the motion trajectory through a graphic display, or as a text stream, or 

may be used to modify the visual or audio stimulus presented to the subject. The architecture 

of our motion monitoring system is shown in Fig. 2.
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2.2. Material

To assess our method (SLIMM), we acquired extensive real fMRI data with real, in-scanner 

motion. All the prospective imaging experiments for this study were done on 3T Siemens 

MR scanners (Siemens Healthcare, Erlangen, Germany). All scans were performed in 

accordance with a protocol approved by the institutional review board committee. Some 

important parameters of the fMRI sequences used in this study are shown in Table 1, and the 

data sets are described below. Beside that, all scans used the parameters: pixel bandwidth of 

2230Hz/pixel, field of view of 192 mm × 192 mm × 108 mm, in-plane acceleration factor of 

2, and flip angle of 90 degrees. Conventional fMRI sequences of ascending order use the 

slice order of [1: 1: n] in the directions from foot to head with n being the number of slices 

per volume, and i: j: k denoting a number sequence from i to k by a step j. Our fMRI 

acquisitions used the interleaved scheme, where an even-first ascending order was 

incorporated. An interleave factor of ni in our fMRI sequences means that the slice order is 

[2 : ni : n, 1 : ni : n − 1]. Moreover, SMS was accomplished in combination of the interleaved 

scheme. An SMS factor of nSMS in our fMRI acquisitions means that nSMS slices are 

simultaneously acquired and the slice order of these nSMS slices is i, i + j1, …, i + jnSMS − 1

with jk = k ⋅ n
nSMS

 and i ∈ {1, …, n}. For example, with an SMS factor of 2, an interleave 

factor of 2, and number of slices n = 36, the slice order is (2, 20), (4, 22), (6, 24), …, (18, 

36), (1, 19), (3, 21), (5, 23), …, (17, 35), where (i1, i2) indicates slices i1 and i2 are 

simultaneously acquired.

Electromagnetic Sensor Motion-Tracking Data Set (EM-Tracking).—To assess the 

accuracy of our approach in motion measurement with real in-scanner motion, it is desirable 

to construct gold standard motion measurements as the reference motion points, and also to 

acquire the motion-free reference data. We conducted fMRI scans in 6 volunteer subjects 

with real, in-scanner motion. For each volunteer, two fMRI time series were acquired: in one 

scan the volunteer stayed still and the acquired scan was used as the “no motion ” reference. 

During the other scan the volunteer was instructed to move via audio cues. We used an 

electromagnetic (EM) motion tracking sensor (Afacan et al., 2019) developed by Robin 

Medical Inc. (Baltimore, MD) to monitor motion during scans. Motion measurements from 

the EM tracker were used as the reference.

Optical Motion Tracking Data Set.—To thoroughly assess the accuracy of our approach 

in motion measurement, gold standard motion measurements for real in-scanner motion 

from various motion sensors are required. As a result, we employed an optical motion 

tracking system to establish the gold standard measurements. For one volunteer subject, we 

recorded two head motion tracking data sequences using the Kineticor camera system 

(Siemens and KinetiCor, 2018) (KinetiCor Inc., Honolulu, Hawaii) during fMRI scans in 

which the volunteer performed real, in-scanner motion. During the scan, the volunteer was 

instructed to perform nodding head motion. The measurements obtained from the Kineticor 

optical motion tracking system were used as reference motion points for this data set.

Patient Data Set.—Beyond the volunteers’ scans where the volunteers were instructed to 

move, it is desirable to assess our approach in the real, unconstrained acquisitions. 

Sui et al. Page 12

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Therefore, we acquired this data set from 3 patients with real, in-scanner motion, containing 

2 resting-state fMRI scans and a task-based fMRI scan (finger tapping). For these scans the 

patients were encouraged to stay still, but they moved.

Healthy Brain Network (HBN) Data Set.—To evaluate the efficacy of our auto-

calibration module on large real pediatric data, we used the HBN data set (Alexander et al., 
2017), which contains resting state fMRI scans of 251 subjects. The age range of these 

subjects is from 5.8 to 21.4 years. The fMRI time series have 375 measurements, slice 

thickness of 2.4 mm, number of slices = 60, and matrix size = 84 × 84.

2.3. Experimental plan

We implemented our algorithms in C++. All experiments reported in this work were 

conducted on a workstation with 20 cores of Intel(R) Xeon(R) CPU E5–2698 v4 @ 2.20 

GHz.

Since VVR methods have been popular and used in the past, we implemented a VVR 

method to compare to. The VVR method, that we called the VVR-LM in this work, was 

implemented with a mean squares metric obtained from Numpy, a linear interpolator 

provided by SimpleITK for resampling image, and an LM optimizer implemented by Scipy. 

The rigid transform was implemented by 3 Euler angles and 3 translations, and initialized by 

the transform estimate of the prior volume. VVR-LM is able to perform in real-time, and 

thus it enables motion monitoring. As a result, it was designed with different aims from 

those retrospective VVR methods, such as SPM (Penny et al., 2007) and FSL/FLIRT 

(Jenkinson et al., 2002; Jenkinson and Smith, 2001). VVR-LM we implemented in this work 

aims at measuring motion in real-time, while those retrospective VVR methods target more 

complicated registration designs, e.g., performing both intra- and inter-modality 

registrations, and removing motion artifacts from the images.

VVR-LM was used to compare the performance of using the SVR strategies in comparison 

to using the VVR strategy. Our SVR method described in Section 2.1 above was called 

SLIMM in the experiments.

The assessments of our approach focused on the accuracy and actual speed of motion 

measurement, and acquisition efficiency and quality. We did not compare to alternative 

approaches that were too slow to complete the motion monitoring before the next slice was 

acquired.

2.3.1. Accuracy of motion measurement—In order to accurately detect the volumes 

during which motion has occurred, it is important that the motion measurement be accurate. 

In order to accurately identify sections of data that are corrupted by motion, for which 

additional data will be acquired, accurate estimation of the motion of each slice is necessary. 

In addition, the motion measurement should not wrongly indicate that there is motion when 

the subject is holding still. We thus conducted extensive experiments to assess the accuracy 

of our motion measurement.

We assess the accuracy of motion measurement through two types of criteria:
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• Motion measurement error. We calculated and reported the error in terms of both 

motion transformation parameters and slice displacement (SD) on the data sets 

where reference motion parameters are available.

• tSNR from the retrospective correction. Temporal signal-to-noise ratio (tSNR) is 

an important metric to assess the fMRI data quality (Murphy et al., 2007). The 

calculation of tSNR is required to run on the motion-corrected data. Therefore, 

the accuracy of our motion measurement is highest when the tSNR is highest, 

because the tSNR is reduced by increased signal variance when the alignment is 

wrong.

Accuracy through Motion Measurement Error.: We had two real motion data sets 

acquired along with gold standard motion measurements. The errors in motion parameters 

and SD can be investigated on these data sets to assess the accuracy of our approach in 

motion measurement by referring to the gold standard motion measurements. The motion 

parameter error ep(k) at the kth slice in an fMRI data sequence was obtained from

ep(k) = pref(k) − pm(k) , (14)

where pref and pm respectively denote the motion transformation parameters, consisting of 3 

rotational and 3 translational parameters, obtained from the reference and the image 

alignment-based motion measurement method (SLIMM or VVR-LM in the experiments), 

and |·| was applied for elementwise absolute value.

Similarly, the SD error ed(k) at the kth slice in an fMRI data sequence was computed from

ed(k) = dref(k) − dm(k) , (15)

where dref and dm respectively denote the SD obtained from the reference and the motion 

measurement method by using Power et al. (2012) approach that is used to compute frame 

displacement.

Frame displacement (FD) assessment was first proposed by Power et al. (2012) in order to 

characterize the amount of head motion, and FD was used to demonstrate that widely used 

retrospective motion correction strategies do not eliminate the influence of motion on the 

BOLD signal. In that paper, each volume i of an fMRI time series was aligned to a reference 

volume, providing a rigid body transformation Ti. FD was defined as: 

FDi = Δαi + Δβi + Δγi + Δtxi + Δtyi + Δtzi ,, where Δtxi = tx(i − 1) − txi , and similarly for the 

other rigid body parameters αi, βi, γi, txi , tyi , tzi . Rotation parameters were converted from 

degrees to millimeters by computing the arc length subtended by the angle on the surface of 

a sphere of radius 50 mm. This radius is approximately the average distance from the center 

of the head to the cortex. Different numerical values could be used for different sized heads.

The FD can be generalized to slices by considering the possibility that each slice, not just 

each volume, may undergo an independent rigid body transformation. In this case, for a slice 

Sui et al. Page 14

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



j of volume i, the SD can be denoted: SDji = Δαji + Δβji + Δγji + Δtxji + Δtyji + Δtzji , where 

the differences in displacement are computed similarly to that of the volumes.

As presented in Section 2.2, the reference motion parameters (gold standard measurements) 

were available on the EM-Tracking and the optical motion tracking data sets. We ran 

SLIMM and VVR-LM separately to measure the motion at the slice and the volume level, 

respectively, on the two data sets. We were thus able to evaluate the motion parameter error 

and the SD error. Since VVR-LM measured the motion at the volume level, we generated 

the motion measurements at the slice level for VVR-LM by assigning the measurements of 

each volume to its all slices. Our goal in this experiment was to validate SLIMM performed 

with smaller errors than VVR-LM in terms of both above criteria, indicating SLIMM 

performed more accurately than VVR-LM in motion measurement.

Accuracy through retrospective correction.: As addressed above, tSNR is an important 

metric to assess the fMRI data quality (Murphy et al., 2007). However, the calculation of 

tSNR was required to run on the motion-corrected data. We thus corrected the volumes by 

reconstructing volumes from individually registered slices. For this, we used a slice 

acquisition model, as a slice-based motion correction technique, to reconstruct time series of 

fMRI volumes from motion-corrected slices. Let x be the vector form of the reconstructed 

volume, and yi the vector form of the i-th acquired slice Ii. The slice acquisition model is 

written as

yi = PiSiTix + μi, (16)

where Ti transforms x according to θi (Ti defines the inverse transform according to θi); Si 

denotes the slice profile which is approximated here by a truncated Gaussian for the 2D 

gradient-echo EPI for fMRI; Pi extracts the ith slice from the volume; and μi denotes an 

additive noise term. Assuming that the noise μi yields a zero-mean Gaussian distribution, the 

motion-free volume x can be reconstructed from

min
x

∑
i

yi − PiSiTix 2
2 + λ ∥ ∇x ∥1 , (17)

The first term is least squares and the second term is total variation regularization weighted 

by λ > 0; where ∇ denotes the derivative operation. We solve Eq. (17) by gradient descent, 

where the update for x at the kth iteration is found by

x(k) = x(k − 1) − η g x(k − 1) + λr x(k − 1) , (18)

with the derivatives of the data fidelity term g(·) and the regularization term r(·) defined by

g(x) = ∑
i

TiTSiTPiT PiSiTix − yi ,
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r(x) = I − ∇−1 sign(∇x) . (19)

where Ti
T  denotes the inverse transform of Ti (corresponding to θi); Si

T  denotes the 

convolution kernel with flip of Si from left to right, top to bottom; Pi
T  performs zero-slice 

padding for the ith slice; I denotes the identity matrix; ∇−1 computes the backward 

derivative; and the operator sign(·) computes the sign of its input. In Eq. (18), we set the 

learning rate η = 0.1, and the regularization weight λ = 10−3. Note that the slices yi may 

move out-of-plane after performing the SVR, leading to artifacts in reconstruction. Total 

variation regularization, therefore, enhances the reconstruction by edge-preserving 

smoothing.

We analyzed the performance gained from our SLIMM approach in terms of tSNR. In the 

experiments, we retrospectively corrected the data with motion at the slice and volume level, 

through the motion measurements obtained from SLIMM and VVR-LM, respectively. We 

were then able to compute the tSNR over these motion-corrected data for the comparisons. 

In addition, on the EM-Tracking data set, the reference scans containing the data with no 

motion (from the “no motion ” reference scans during which the volunteers were asked to 

hold still) were available and adopted as the references for the comparisons in tSNR. In 

those comparisons, frame censoring was also incorporated to investigate the tSNRs and their 

respective changes. When frame censoring was turned off, all 96 corrected volumes of each 

subject were used to compute the tSNRs. When frame censoring was enabled, we excluded 

motion-corrupted volumes and computed tSNRs over the remaining corrected volumes. We 

used a method similar to Power et al. (2012) to identify motion-corrupted volumes, where 

motion measurements of each slice were compared against a threshold (1/4th of slice 

thickness). We removed a volume if it had ≥ 1 motion-corrupted slices.

2.3.2. Acquisition efficiency and quality—One goal of our motion monitoring 

approach, SLIMM, is to reduce the scan duration and to improve the data quality through the 

online frame censoring and real-time feedback to the subject as well as the scanner operator. 

The online frame censoring enabled adjusting the length of acquisition dynamically and 

adaptively. It collected the motion-free volumes only, which were identified through the real-

time slice-by-slice motion measurements, and automatically increased the length of 

acquisition until sufficient motion-free volumes have been collected. SLIMM also provided 

real-time feedback during the scan, which has been demonstrated to be effective to reduce 

scan duration (Dosenbach et al., 2017; Greene et al., 2018).

Motion Identification.: Both the online frame censoring and the real-time feedback relies 

on the motion identification incorporated in the motion monitoring system. In SLIMM, we 

identified the motion from the motion measurements by thresholding the SD according to a 

predefined motion threshold parameter. If a slice was measured to displace over the motion 

threshold, then it was identified as a motion-corrupted slice. If a volume contained any 

motion-corrupted slices, then this volume was identified as a motion-corrupted volume, and 

was excluded from the data collection with the online frame censoring protocol.
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As presented above, the motion threshold is critical to motion identification. We thus 

investigated appropriate threshold values for SLIMM. In the VVR-based method, the motion 

threshold from the range of [0.2,0.6] is widely used on frame displacements (FD) that are 

computed volume by volume, from high to low. In our assessments of SLIMM, the motion 

threshold was imposed on SDs computed slice by slice. Therefore, we first verified if or not 

the motion identified through the SDs was consistent with the FDs for the same volumes, 

i.e., were all the SDs of those volumes less than tFD as well when the FDs of those volumes 

were less than tFD, for a motion threshold tFD ∈ [0.2, 0.6]? In this experiment, on the EM-

Tracking data set where the gold standard motion measurements were available, we 

collected the volumes with the FDs < tFD according to the measurements of VVR-LM. We 

calculated the SDs of the same volumes over the gold standard motion measurements, and 

then constructed distributions of these SDs to analyze the results. If the SDs were consistent 

with the FDs, we could directly use the same threshold values in [0.2,0.6] for SLIMM; 

otherwise, we had to find the appropriate threshold values corresponding to those on the FDs 

in this range.

In the latter case (not consistent), we first computed the FD measured by using VVR-LM, 

and found out all the fMRI data volumes of FD ≥ tFD, as the motion-corrupted volumes, for 

a motion threshold tFD ∈ [0.2, 0.6], on the EM-Tracking data set where the gold standard 

motion measurements were available. Since VVR-LM may identify by mistake these 

motion-corrupted volumes from the less accurate FDs, we excluded 20% of these volumes 

that led to the top 20% largest differences in SD between the measurements of gold standard 

and VVR-LM, to form a set of motion-corrupted volumes.

SLIMM should identify all the volumes in this set as motion-corrupted. To this end, we 

looked for a motion threshold t that should be less than or equal to all the maximum SDs of 

each volume in this set, to ensure that at least one slice of each volume was motion-

corrupted. The threshold t was thus found by

t = min max D j j = 1
N , (20)

where {D}j denotes the set of SDs obtained from all slices of the j-th volume, for j = 1, 2, 

… , N motion-corrupted volumes identified using the above-mentioned method. We thus 

found the corresponding motion thresholds on SD to those of FD.

Online Frame Censoring.: We evaluated the acquisition lengths, that were adaptively 

determined by SLIMM and VVR-LM, for collecting a desired number of motion-free 

volumes. More importantly, the quality of the collected data was assessed in terms of tSNR, 

to demonstrate that the motion monitoring system made a correct decision on increasing the 

length of the acquisition (i.e., with online frame censoring the motion-corrupted volumes 

were successfully excluded from the data collection). In the experiments, we set the desired 

number of volumes to be 80% of the total number of volumes on each fMRI data sequence 

of all data sets that we acquired in this work, and the rest of the 20% of volumes were 

viewed as the over-scanned volumes in the face of unknown motion-induced data loss 

without any motion monitoring system applied, as done in the retrospective frame censoring-

based methods. It indicated by this setting that the acquisition lengths were manually 
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increased by a fixed rate of 25% (20%÷80%) with no motion monitoring. In the 

experiments, we ran SLIMM and VVR-LM separately on each of the data sequences 

according to the above online frame censoring protocol. We expected to achieve increased 

acquisition lengths of less than 25% and higher tSNRs with motion monitoring, to 

demonstrate that motion monitoring can reduce the acquisition duration and improve the 

data quality.

Online Feedback.: We also ran an experiment to validate that SLIMM was able to 

successfully suggest the scanner operator to intervene in the acquisition through the real-

time feedback, if the continuous motion was observed. In the experiment, the motion 

monitoring system would suggest the operator to stop the acquisition until the subject 

stopped moving, if no motion-free volumes were collected in the past 30 seconds. During 

the acquisition, we instructed the volunteer to move continuously, as described in Section 

2.2, optical motion tracking data set, to trigger the suggestion of the motion monitoring 

system. We compared SLIMM to VVR-LM in time when the suggestion for intervention 

was triggered, since earlier intervention indicated more reduction in the scan duration.

2.3.3. Efficacy of auto-calibration for reference volume—The reference volume is 

important in SVR, since it is damaging to the SVR if the reference volume contains any 

motion. Therefore, for a comprehensive investigation, we examined the practical efficacy of 

our auto-calibration method for the reference volume on the HBN data set (a large scale data 

set containing the fMRI scans of 251 pediatric subjects).

2.3.4. Computational evaluation—The real-time motion measurement in our 

approach means that the motion of a slice can be measured within the period of its next 

consecutive slice acquisition. We used the slices processed per second (SPS) as an indicator 

to assess the speed of motion measurement. We evaluated the SPS for SLIMM on the slices 

from all data sets that we acquired.

3. Results

3.1. Accuracy of motion measurement

3.1.1. Accuracy through motion measurement error—Table 2 shows the mean 

and standard deviation of motion measurement errors obtained from VVR-LM and SLIMM 

on the EM-Tracking data set. Our approach SLIMM outperformed VVR-LM. We also 

performed t-test on the errors of motion parameters. In the test, we assumed the errors of the 

motion parameters obtained from the two methods came from normal distributions with 

unknown, but equal, variances. At 5% threshold for the significance level, the hypothesis 

was rejected as the p-values were 3.7 ×10−15 for the translation errors and 5.4 ×10−25 for the 

rotation errors, respectively. This indicated that the transformation errors of the two methods 

statistically yielded different distributions, and the difference was significant. Consequently, 

the difference showed the average accuracy gained from slice-by-slice motion measurement 

in our SVR method in comparison to the method relying on volume-by-volume motion 

measurement.
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Fig. 3 shows the motion measurements in terms of rotation parameters α obtained from 

SLIMM, VVR-LM, and the optical motion tracking system (camera) on the optical motion 

tracking data set. It can be seen that both VVR-LM and our method, SLIMM, closely 

followed the real, reference motion pattern measured by the optical tracker. As shown in 

Table 3, the overall mean and standard deviation of the motion measurement errors in terms 

of SD obtained from SLIMM are lower than those obtained from VVR-LM. As the subject 

moved faster at the beginning compared to the end of the sequence, we separately analyzed 

the data points from the range of [200, 300]. The means and standard deviations of the errors 

in SD obtained from VVR-LM and SLIMM were shown in Table 3. Our method 

outperformed VVR-LM in this period of fast motion.

Overall, our SLIMM approach considerably outperformed the baseline VVR-LM 

consistently on the real motion data sets in terms of motion measurement error.

3.1.2. Accuracy through retrospective correction—Fig. 4 shows the distributions 

of the tSNR scores obtained from the two motion measurement methods on the EM-

Tracking data set of all 6 subjects. We denoted by Raw-No-Motion the data from the “no 

motion” reference scans during which the volunteers were asked to hold still, and by Raw-

Motion the data with motion. The numbers of the remaining volumes of the 6 subjects were 

41, 79, 68, 48, 62, and 54, respectively, when applied frame censoring. Table 4 shows the 

average tSNR scores over all the voxels of the tSNR volumes on the EM-Tracking data set 

of the 6 subjects with the frame censoring turned on and off. We see that the tSNRs of Raw-

No-Motion had very slight changes when the frame censoring was on and off, whereas, both 

SLIMM and VVR-LM improved the tSNRs, as compared to the Raw-Motion. Our method, 

SLIMM, considerably outperformed VVR-LM. A tSNR map from a representative subject is 

also shown in Fig. 4, from which we can see results that are consistent with the histograms 

and the average tSNRs.

Table 5 shows the average tSNR scores over all voxels of the tSNR volumes of the original 

data (i.e., no motion correction applied), and of the retrospectively corrected data through 

the motion measurements obtained from SLIMM and VVR-LM, respectively, on the patient 

data set. It can be seen that both the VVR- and SVR-based motion correction methods 

improved tSNR. It is also evident that, as compared to the VVR-LM method, our SLIMM 

approach, substantially improved the motion correction performance in terms of tSNR.

In summary, attributed to more accurate motion measurement, our SLIMM approach 

considerably outperformed the baseline VVR-LM consistently on the real motion data sets 

in terms of tSNR over the retrospectively corrected data.

3.2. Acquisition efficiency and quality

3.2.1. Motion identification—Fig. 5 shows the distribution of the number of volumes 

with regard to the number of slices of the volume impacted by motion, considering only 

those volumes with an FD < 0.2 mm on the EM-Tracking data set. We investigated the SDs 

measured from over 10,000 slices by using the electromagnetic motion tracking sensor. Only 

16.5% volumes had all of its slices exhibit displacement less than 0.2 mm, while the rest 

volumes contained at least one slice subject to SD ≥ 0.2 mm. This figure shows that even 
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when volumes meet the criterion of FD < 0.2 mm, there are often many slices displaced by 

over 0.2 mm.

Fig. 6 shows the corresponded threshold values between SDs and FDs on the EM-Tracking 

data set. The most widely used threshold on FD ranges from 0.2 mm to 0.6 mm, from high 

to low. The corresponding threshold on SD on this data set was between 1.33 mm and 1.87 

mm, from high to low. This figure shows that VVR-LM was unaware of a moved slice in a 

volume with an FD = 0.2 mm unless this slice displaced at least 1.33 mm. Considering the 

widely used FD threshold is between 0.2 and 0.4mm, according to this result, we set the SD 

threshold to range from one fourth to a half of the slice thickness in all experiments reported 

in this paper. We were unable to ensure that all slices of a collected volume displaced less 

than 0.2 mm in VVR-LM with a threshold of 0.2mm on the FD. In contrast, according to our 

protocol elaborated above, a collected volume by SLIMM guaranteed that all its slices had a 

motion amount of less than one-fourth of the slice thickness.

3.2.2. Online frame censoring—Table 6 shows the results of experiments with and 

without motion monitoring on the fMRI sequences of all the data sets that we acquired. 

Table 7 shows details of the results on the patient data set. Since only 20% of the total 

number of volumes on each fMRI data sequence were preserved for extending the 

acquisitions with motion monitoring, there were too many failures in acquiring the desired 

numbers of motion-free volumes (i.e., over 20% of volumes were excluded from the data 

collection) when we used the motion threshold of one fourth of the slice thickness for both 

VVR-LM and SLIMM in this experiment. Therefore, we increased the motion threshold to 

half of the slice thickness. The lengths of the acquisitions with motion monitoring were 

shorter than those without motion monitoring. SLIMM took longer acquisitions on average 

than VVR-LM, since SLIMM performed more accurately in measuring intra-volume 

motion, and thus successfully identified more volumes containing slices that were subject to 

motion that VVR-LM overlooked. As a result, SLIMM correctly determined to increase the 

acquisition lengths. The data quality was improved by excluding all volumes with motion. 

As shown in Table 6, the tSNR of the motion-corrected data was improved on average by 

around 88% with SLIMM, and by around 37% with VVR-LM.

3.2.3. Real-time feedback to operator for intervention—Fig. 7 shows the results 

of the acquisitions with intervention online monitored by SLIMM and VVR-LM, 

respectively. With a motion threshold of one fourth of the slice thickness, the SLIMM 

motion monitoring system was aware of the continuous motion when 10 volumes have been 

acquired, as shown in Fig. 7(a), and suggested operator to intervene in the scan at the 30th 

volume. In contrast, with the same motion threshold, VVR-LM was unable to trigger the 

suggestion for intervention. When the threshold was decreased to 0.2 mm, VVR-LM started 

responding to the continuous motion at the 30th volume, as shown in Fig. 7(b), and 

suggested intervention when 50 volumes have been acquired. The results showed that both 

motion monitoring systems were able to reduce the scan times by enabling early intervention 

through their online feedback. SLIMM suggested intervening in the scan much earlier than 

VVR-LM, and correspondingly further reduced more scan duration and more associated 

costs.
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3.3. Auto-calibration for reference volume

As shown in Fig. 8, which shows the distribution of subjects as a function of the number of 

elapsed volumes until successful auto-calibration. We used a threshold of one fourth of the 

slice thickness on motion measurements of all slices as an indicator for motion. For about 

80% of the subjects on the HBN data set, auto-calibration was completed after the 

acquisition of the second volume. In these cases the first volume was automatically selected 

as the reference. The distribution in Fig. 8, with its heavy-tailed shape, also shows that for a 

few subjects, much more fMRI volumes elapsed until a “motion-free” period was detected to 

complete the auto-calibration. According to our fMRI protocol a volume can be acquired 

within 1.5 s with the interleaved and simultaneous multi-slice scheme. With this data, the 

average time of auto-calibration would be 5.7 s; for 99.5% of the subjects on the HBN data 

set the auto-calibration time was less than 30 s; and only for two cases (among 251 subjects) 

the auto-calibration took 90–110 s. In fact, this analysis and the heavy-tailed distribution of 

the auto-calibration time also provides another evidence for the necessity of real-time 

motion monitoring to ensure useful fMRI scans are acquired for all subjects within a cohort.

3.4. Computational efficiency

We evaluated the SPS of SLIMM on the slices from all the data sets that we acquired. The 

average SPS was 27.7, i.e., the average time taken in measuring the motion of a slice was 

~36 ms. According to our fMRI protocol, it took about 80ms to acquire a simultaneous-2-

slice. It thus suggested that SLIMM enabled real-time performance for motion monitoring 

with our fMRI protocol.

4. Discussion

We have developed a real-time SVR algorithm, and applied it to establish a motion 

monitoring system that we called SLIMM. The interleaved and SMS acquisition schemes 

have been incorporated in SLIMM. We have conducted extensive experiments to 

demonstrate the efficacy of SLIMM, and the experimental results have shown that SLIMM 

led to substantial improvements in the accuracy of motion measurement, and in turn in 

acquisition efficiency and quality, over the widely-used VVR-based motion monitoring 

method, resulting in reduced imaging cost and improved data quality.

4.1. Motion identification: SVR vs VVR

SVR (VVR) is able to estimate the position and orientation of the subject’s head as the 

corresponding slice (the volume for VVR) has been acquired, referring to a motion-free 

volume as the motion reference. Motion can thus be identified from the difference of the 

motion parameters between the estimate and the reference. In general, SD (FD for VVR) is 

used to identify motion, which is calculated from the difference of the motion parameters 

between two consecutively acquired slices (volumes for VVR). Motion happens at the slice 

level, rather than just at the periods between the acquisitions of consecutive volumes, in the 

2D EPI-based fMRI acquisition. By this nature, the VVR-based methods estimate the 

motion less accurately, and have high temporal delays to be aware of the motion. Since the 

VVR-based estimate integrates the information from all slices of a volume of interest in the 
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registration, VVR leads to two types of motion identification errors, depending on the time 

when motion occurs during a single volume acquisition:

• False positive. This type of error commonly happens in the case of fast and 

abrupt motion. As shown in Fig. 3, false positive happened in the acquisition 

with the VVR-LM motion monitoring system at the period between data points 

of [200,400] where fast motion occurred. By referring to the optical motion 

tracking results, VVR-LM had an obvious latency to identify the volumes 

acquired when fast and abrupt motion happened as motion-corrupted by mistake. 

Since VVR-LM took all the slices of a real motion-corrupted volume into 

consideration, it was able to estimate that the volume was corrupted by motion, 

but the estimated motion amount may be lower than it actually was. This residual 

led to the false positive error at the next volume, even if the position and 

orientation of the next volume were accurately estimated.

• False negative. This type of error is the major factor to affect the accuracy of 

VVR, and in particular when frequent motion happened. In the case that the 

subject moves at the time near the end of a volume acquisition, i.e., only a few 

slices are corrupted by the motion, the VVR-based monitoring system shows no 

motion observed, even if the motion amount is high. As shown in Tables 6 and 7, 

the VVR-LM motion monitoring system yielded slightly higher efficiency in 

terms of length increment rate than SLIMM, but much lower quality in terms of 

tSNR. This was caused by the fact that VVR-LM missed to identify the motion 

and collected by mistake these motion-corrupted volumes.

It is straightforward to perform SVR to estimate the motion in 2D EPI-based fMRI 

acquisitions. Our protocol for collecting data is that, a volume would be excluded, if any of 

its slices are motion-corrupted. As a result, SLIMM leads to the above errors at a very low 

probability, i.e., only when intra-slice motion happens. Considering the EPI slices are 

acquired very fast (60–80ms), the above errors can be negligible in SLIMM. This is the 

major reason that SLIMM substantially improved the monitoring efficiency and data quality, 

and considerably decreased the temporal monitoring delay, as compared to VVR-LM.

4.2. Displacement: frame vs slice

The frame displacement (FD) (Power et al., 2012) is computed by the sum of absolute head 

movement in all six rigid body directions from two consecutively acquired volumes. Similar 

definitions are possible, but the precise nature of the measure is not critical to the overall 

purpose of characterizing motion. For example, a Euclidean distance could be used in place 

of the Manhattan distance described above, and a chord length could be used instead of an 

arc length. Let Ti−1 and Ti be consecutive rigid body transforms aligning each of the 

consecutive volumes number (i − 1) and i to a reference volume. The transform that 

describes the change in position and orientation between these two volumes is then T = Ti−1 

(T)−1, the composition of the transform aligning the volume at the prior position to the 

reference volume, with the transform from the reference volume to the current position. 

Other measures of displacement using this composed transformation are possible.
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We have generalized the FD to slices, as denoted by the slice displacement (SD), by 

considering the possibility that each slice, not just each volume, may undergo an 

independent rigid body transformation. We have used the SD measure for monitoring motion 

occurring at the slice level. When imaging subjects, the head may undergo rigid body 

motion at any time during the slice readout, not only at the times that are instants between 

different volumes. Consequently, although rigid body motion is assumed for the volumes in 

order to calculate the FD, the motion of the collection of slices in the volume cannot always 

be described as a single rigid body motion. Instead, the possibility of rigid body motion at 

each slice must be considered. The observed motion of the slices j ∈ {1, … , n} of the 

volume i is then SDji with n being the number of slices per volume. The sum of the 

displacements of each slice of a volume is then a measure of the total displacement during 

the volume acquisition, but this is not equal, in general, to the FD which assumes one rigid 

body transform describes the motion of all of the slices: ∑j
nSDji ≠ FDi.

Consequently, the FD measure represents the displacement of an overall rigid body 

transformation that is estimated by the rigid registration when one or more of the slices may 

be displaced by different rigid body transformations. In contrast, our SD measure reflects the 

change in position of the slice that undergoes rigid body transformation, which is easy to 

interpret.

Note also that if the slice is not encoded correctly, or there is motion during the acquisition 

of calibration lines used to compute the GRAPPA kernel, or coil sensitivity profiles for 

SENSE, severe signal intensity artifacts may be present, and such slices or volumes should 

be dropped from consideration rather than used in the computation of an alignment.

4.3. Motion threshold on slice displacement

The most widely used protocol in motion monitoring is to impose a motion threshold on FD 

(Power et al., 2012). If a volume has an FD less than the threshold, it is considered as 

motion-free and accepted to be collected; otherwise, the volume is regarded as motion-

corrupted and excluded from the data collection (frame censoring) (Ciric et al., 2017). In 

general, the threshold is set between 0.2 and 0.4mm from high to low. Using a higher 

threshold is more sensitive to small motion, and excludes more volumes during the 

monitored acquisition, leading to longer scans but higher data quality. Using a lower 

threshold tolerates more significant motion, and thus collects more volumes with low 

movements, resulting in shorter scans but lower data quality. As a result, it is a trade-off to 

set a motion threshold for the monitored acquisition between motion sensitivity and motion 

tolerance.

In motion monitoring system at the slice level, subject motion is measured slice by slice. 

Therefore, SD is leveraged, instead of FD, to identify if a slice displaces. Our protocol used 

in SLIMM was to exclude a volume if this volume contained any motion-corrupted slices; 

and otherwise, to collect it.

As addressed above, while it has been determined empirically that an FD of between 0.2 mm 

and 0.4 mm indicates the amount of motion that can be tolerated during an fMRI 

experiment, this numerical value cannot be used for SD, because the FD represents the 
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displacement of an overall rigid body transformation that is estimated by the rigid 

registration when one or more of the slices may be displaced by different rigid body 

transformations. We set the threshold on SD at one fourth and half of the slice thickness, 

from high to low. This setting was much lower than that used for FD thresholding in the 

numerical value. However, it did not indicate that we tolerated significant motion much 

more in the experiments. We have demonstrated that one fourth of the slice thickness is high 

enough to the SD thresholding, since a volume was examined slice by slice under this 

criterion. In fact, it was unable to ensure that all slices of a collected volume displaced less 

than 0.2 mm in VVR-LM with a high threshold of 0.2mm on the FD. A slice may displaced 

up to 1.33 mm within a volume of FD less than 0.2 mm according to our results that have 

shown in Fig. 6. In contrast, a collected volume by SLIMM was guaranteed that all its slices 

had a motion amount of less than one fourth of the slice thickness. This was also the reason 

that SLIMM performed with more accurate motion measurement than VVR-LM. For 

consistency, we used the same motion threshold of one fourth of the slice thickness in the 

experiments for both SLIMM and VVR-LM. Such a setting was preferred by VVR-LM for 

low acquisition duration in the experiments, such as those reported in Section 3.2. Although 

it was unfair to SLIMM with this threshold setting, the experimental results have still shown 

that SLIMM considerably outperformed VVR-LM consistently on various data sets.

4.4. Motion monitoring: SLIMM vs VVR-LM

As shown in the experiments reported in Section 3.2, SLIMM acquired more volumes than 

VVR-LM, while achieved much higher improvement in data quality in terms of tSNR. 

During the acquisitions, SLIMM correctly identified that there were slices that were subject 

to motion that VVR-LM overlooked. Consequently, SLIMM was able to correctly 

recommend increasing the scan duration to account for the motion-corrupted data that was 

incorrectly missed by VVR-LM, since VVR-LM examined only volumes. As a result, 

motion monitoring (with either SLIMM or VVR-LM) led to fewer actually acquired 

volumes and thus reduced the scan duration compared to acquisitions with no motion 

monitoring, and SLIMM led to much higher data quality (according to tSNR) than VVR-

LM.

If the subject does not move at all, and the VVR-LM user knows ahead of time that the 

subject will not move, then head motion is not a concern, and both SLIMM and VVR-LM 

may lead to the same quality of data and the same minimum scan time. In practical fMRI 

acquisitions, however, head motion is the single most important confounder in fMRI studies, 

and is common and widespread. Consequently, it is desirable to mitigate against the 

possibility of motion.

If there is intra-volume slice motion, then SLIMM will indicate the need to acquire 

additional data, and VVR-LM may fail to detect the motion, and falsely indicate there is no 

problem, when there is a problem. This leads to worse tSNR with VVR-LM. If there is intra-

volume slice motion, and detectable volume-to-volume motion, then again SLIMM will 

indicate the need to acquire additional data, and VVR-LM will indicate the need to acquire 

some additional data. Since VVR-LM is insensitive to some motion, it may fail to fully 
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signal the true extent of motion, leading to a worse tSNR with VVR-LM in addition to 

extended scan time.

When the designer of an fMRI experiment considers monitoring motion with VVR-LM and 

acknowledges that 1) motion is common and 2) VVR-LM does not detect all the motion, and 

3) reduced tSNR is bad for data analysis, then they may prefer to mitigate against the 

possibility of motion, and consequent data quality loss, by acquiring additional data. 

Extending the scan time may lead to the capture of sufficient data to compensate for the 

tSNR loss that occurs with VVR-LM motion monitoring. Thus, the VVR-LM user chooses 

to extend their scan time beyond the minimum, in order to mitigate against the possibility of 

unrecognized head motion, and to restore some lost tSNR (without knowing how successful 

they will be). In comparison, the SLIMM user who does not know if their subject will move 

or will not move, does not need to extend the scan time in case there is unmonitored motion 

because all the motion is monitored, and can use a shorter scan time to achieve the desired 

tSNR. The VVR-LM users who is certain that their subjects will either not move at all, or 

will not exhibit unmonitored motion, are able to achieve the same short scan time and 

sufficient tSNR as SLIMM. However, in designing practical fMRI acquisitions, it is usually 

not possible to know before imaging that subjects will not move or will not exhibit motion 

that VVR-LM is insensitive to. As a result, a designer planning to use VVR-LM for motion 

monitoring instead of SLIMM should choose to run for a longer scan time in order to expect 

to achieve the same desired level of tSNR.

In addition, both the motion monitoring systems were able to provide real-time feedback to 

the operator to enable immediate intervention for the scans. Therefore, the scan times and 

the associated costs were substantially reduced. Moreover, SLIMM suggested intervening in 

the scan much earlier than VVR-LM for the acquisitions with continuous subject motion, 

since SLIMM was able to correctly identify the motion-corrupted slices that VVR-LM 

overlooked during the monitoring. It indicated that SLIMM further saved more scan time 

and more associated costs than VVR-LM.

4.5. SVR: single-slice vs SMS

Our SLIMM algorithm can be used with sequences where one single slice is acquired at a 

time, instead of using SMS. The potential advantage of SMS is that two or more slices 

maximally separated across a volume of n slices have a more accurate and stable registration 

optimum than one slice alone. One slice alone may even be outside of the brain, or contain a 

very small amount of brain tissue at the edge of the brain, which may lead some slices to 

have poor alignment. This type of error can be tolerated when doing motion monitoring, but 

it can be mitigated by using more than one slice for the motion monitoring even when a 

single slice at a time is acquired. This leads to a slower update rate for the motion 

monitoring, but remains much faster than volume to volume motion monitoring.

4.6. Insights of auto-calibration for reference volume

In the demonstration of our auto-calibration method for the reference volume, experimental 

results in a large cohort of pediatric subjects in Fig. 8 showed that our auto-calibration 

method quickly found a reference volume for the majority of subjects. In a few cases with 
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significant motion, it took a relatively long time. This analysis showed the efficacy of our 

auto-calibration method, and also showed the importance of motion monitoring during fMRI 

acquisitions. It indicated that we cannot just rely on a long acquisition protocol and expect to 

get sufficient data for all cases in a cohort. Without real-time motion monitoring, we may 

end up scanning a large number of pediatric subjects for unnecessary long scan time, and yet 

not be successful in acquiring useful data for some subjects. These issues with subject 

motion become more prominent when studying and scanning non-cooperative patient 

populations such as infants, toddlers, and young children. With real-time motion monitoring 

and an adaptive strategy for extending the length of fMRI scans, until a desirable number of 

“motion-free ” periods are collected, we can ensure that an fMRI protocol runs efficiently 

for a cohort of patients and subjects as well as for an individual in critical condition scanned 

in a clinical setting, e.g., for presurgical planning. Therefore, real-time motion monitoring 

results in a substantial reduction in average scan times, reduces the burden of long 

acquisitions on patients, and reduces the costs and delays associated with repeated 

acquisitions. Our approach (SLIMM) is a cost-efficient and safe, self-navigated, fast, slice-

level motion monitoring system, that does not require any external hardware attachment or 

pulse sequence modification, therefore it can be safely and easily used with different fMRI 

paradigms for pediatric and non-cooperative patients.

4.7. Conclusion

Two major challenges for constructing a real-time slice-by-slice motion monitoring system 

are 1) to ensure high accuracy of motion measurement, and 2) to perform the monitoring in 

real-time with the ultrafast 2D EPI fMRI acquisition. In this work, we developed and 

presented a real-time slice-to-volume image registration algorithm with a parallelized patch-

based approach. Based on this registration algorithm, a motion monitoring system, named 

SLIMM, was established for fMRI. Extensive experiments on real fMRI data sets with real 

motion demonstrated that SLIMM performed accurately, robustly, and in real-time for slice-

by-slice fMRI motion monitoring. Extensive experimental results reported here have shown 

that 1) motion monitoring is critical for efficient and high quality fMRI acquisition; 2) 

SLIMM outperformed VVR-LM (a VVR-based approach which is currently the most widely 

used method in fMRI motion monitoring) in terms of both accuracy of motion measurement 

and data acquisition efficiency; 3) using both interleaved and simultaneous multi-slice 

acquisition schemes improved robustness of the SVR; 4) our patch-based matching criterion 

improved both the accuracy and running speed of the SVR; 5) SLIMM ensured that the 

amount of acquired fMRI data was sufficient for the desired analysis, while not spending 

time on acquiring data that was in excess of what was required, i.e., scanning-to-criterion, 

leading to considerable improvement in motion measurement accuracy and substantial 

reduction in scan times and the associated costs; and 6) SLIMM provided real-time feedback 

to the scanner operator and the subject to enable further motion reduction, and 

correspondingly further reduced the scan duration.
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Fig. 1. 
The flow diagram of the proposed slice-to-volume registration algorithm. The inputs and the 

outputs are highlighted by the light and dark gray boxes respectively. (left) The patch 

extraction and selection processes. (middle) The slice-to-volume registration process. (right) 

Iterative optimization.
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Fig. 2. 
Architecture of our real-time motion monitoring system (SLIMM). Slices are transferred 

through SAMBA from the scanner computer to a workstation that runs our algorithm. The 

slice monitoring module watches the new slice acquisitions and sends the file names of the 

new slices to the registration server. Motion measurements are conducted by the registration 

service. The measured transformations (each contains 6 motion parameters) are dispatched 

to the presentation server and shown by one or more client services.
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Fig. 3. 
Motion measurements in terms of rotational motion parameters α on the optical motion 

tracking data set. Our method, SLIMM closely followed the real, reference motion pattern 

measured by the Kineticor optical motion tracking system. The magnitudes of total 

differences of the measurements between the reference and SLIMM/VVR-LM in α were 

SLIMM = 726.4, VVR-LM = 1740.0.
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Fig. 4. 
Distributions of the tSNRs over data from all subjects calculated by four methods compared 

to Raw-No-Motion and Raw-Motion data acquired with no motion and in-scanner motion 

respectively. The tSNR map calculated from the reconstructed fMRI time series by each 

method is also shown for an axial slice of a representative subject in each subfigure. These 

results show that our SVR method substantially improved the tSNR of the Raw-Motion data 

and outperformed VVR-LM. While tSNR is lost naturally due to motion in fMRI, the SVR 

methods were able to recover a large portion of tSNR despite the continuous subject 

movements that occurred during these scans. Our method, SLIMM, generated the best 

results according to the average tSNR values reported in Table 4.

Sui et al. Page 34

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Distribution of the number of volumes over number of moved slices in each volume with FD 

< 0.2 mm on the EM-Tracking data set. Only 16.5% volumes had all slices displaced less 

than 0.2 mm, while the rest of the volumes contained at least one slice subject to SD ≥ 0.2 

mm. The figure shows that much of the time a volume has an FD < 0.2 mm it still has slices 

displaced more than 0.2mm.
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Fig. 6. 
Corresponded threshold values between slice and frame displacements on the EM-Tracking 

data set. The most widely used threshold on FD is in the range of [0.2,0.6]mm. The 

corresponding threshold on SD on this data set was between 1.33 mm and 1.87 mm, from 

high to low. It suggested that VVR-LM was unaware of a moved slice in a volume with FD 

= 0.2 mm unless this slice displaced at least 1.33 mm.

Sui et al. Page 36

Neuroimage. Author manuscript; available in PMC 2020 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Acquisitions with interventions suggested by the motion monitoring systems of (a) SLIMM 

and (b) VVR-LM. The gray areas indicate the periods where no motion-free data was 

collected in the past 30 seconds. The results showed that both motion monitoring systems 

were able to reduce the scan times by enabling early intervention through their online 

feedback. SLIMM suggested to intervene in the scan much earlier than VVR-LM, and 

correspondingly further reduced more scan duration and more associated costs.
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Fig. 8. 
Distribution of the number of subjects over number of elapsed volumes until auto-calibration 

was successful with a threshold of one-fourth of the slice thickness on the HBN data set. 

This analysis showed a heavy-tailed distribution with a heavy concentration around 1, which 

indicated that for the majority of subjects (~ 200 subjects) on the HBN data set, the first 

volume was successfully chosen as the reference volume; whereas for a few subjects, that 

apparently moved continuously and significantly, it could take between 15 to 70 volumes 

before a “motion-free ” reference volume could be obtained. According to our fMRI 

protocol, for 99.5% of the subjects the auto-calibration time was less than 30 seconds; and 

only for two cases (among 251 subjects) the auto-calibration took 90–110 s. In addition to 

showing the efficacy of our auto-calibration method, this analysis is another evidence for the 

necessity of real-time motion monitoring as it indicates without real-time motion monitoring 

there is no guarantee that fMRI of sufficient quality is obtained for every subject in a cohort.
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Table 2

Mean and standard deviation of motion measurement errors in terms of motion transformation parameters and 

SDs obtained from SLIMM and VVR-LM methods on the EM-Tracking data set. Our method, SLIMM, 

offered sub-voxel slice-level accuracy in this difficult task.

Translation (mm) Rotation (degree) Displacement (mm)

VVR-LM 1.17 ± 1.20 1.64 ± 3.00 3.14 ± 4.36

SLIMM 0.71 ± 0.64 0.77 ± 1.03 1.37 ± 1.81
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Table 3

Mean and standard deviation of the motion measurement errors in SD obtained from SLIMM and VVR-LM 

methods on the optical motion tracking data set. Our methods, SLIMM, offered sub-voxel slice-level accuracy 

in this difficult task. The difference in performance which showed the advantage of SLIMM was very large for 

fast motion.

Overall (mm) Fast Motion Period (mm)

VR-LM 0.77 ± 0.94 3.12 ± 2.24

SLIMM 0.32 ± 0.22 0.44 ± 0.37
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Table 4

Average tSNR scores on all voxels of the tSNR volumes on the EM-Tracking data set with the frame censoring 

on (shown without parentheses) and off (shown in parentheses). The best results are highlighted by the bold-

face font.

Reference scans Evaluation results

Raw-No-Motion Raw-Motion VVR-LM SLIMM

Subject 1 61.56 (63.32) 8.16 (6.93) 18.77 (11.83) 27.49 (17.63)

Subject 2 62.63 (62.67) 17.59 (16.12) 32.47 (24.69) 46.11 (36.52)

Subject 3 65.94 (65.50) 14.55 (14.43) 14.80 (14.45) 51.26 (36.10)

Subject 4 44.18 (42.56) 10.88 (10.13) 27.85 (20.22) 37.86 (28.13)

Subject 5 81.42 (76.53) 11.86 (10.82) 15.08 (13.29) 30.10 (23.51)

Subject 6 70.97 (69.70) 10.80 (10.14) 10.80(10.14) 27.44 (21.62)

mean 64.76 (63.72) 12.33 (11.45) 19.87 (15.71) 36.83 (27.28)
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Table 5

Average tSNR on all voxels of tSNR volumes on the patient data set. The best results are highlighted by the 

bold-face font. Compared to VVR-LM, our method, SLIMM, substantially improved the tSNR on all 3 patient 

data sequences.

Original data VVR-LM SLIMM

Patient #1 (resting state) 35.89 40.72 47.29

Patient #2 (resting state) 52.23 55.48 62.81

Patient #3 (finger tapping) 28.21 30.17 35.45
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Table 6

Analysis results of the two motion monitoring methods on all data sets that we acquired with the motion 

threshold of half of the slice thickness on SD (for SLIMM) and FD (for VVR-LM). Both methods reduced the 

scanning duration; but SLIMM led to much higher data quality (according to tSNR) compared to VVR-LM at 

the cost of only marginally longer scans (measured by the length increment rate).

Length increment rate tSNR gain

No Monitoring VVR-LM SLIMM No Monitoring VVR-LM SLIMM

25% 16.67% 17.86% - 37.15% 88.04%
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