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Conductivity tensor imaging (CTI) has been recently proposed to map the conductivity
tensor in 3D using magnetic resonance imaging (MRI) at the frequency range of the
brain at rest, i.e., low-frequencies. Conventional CTI mapping methods process the
trans-receiver phase of the MRI signal using the MR electric properties tomography
(MR-EPT) technique, which in turn involves the application of the Laplace operator.
This results in CTI maps with a low signal-to-noise ratio (SNR), artifacts at tissue
boundaries and a limited spatial resolution. In order to improve on these aspects,
a methodology independent from the MR-EPT method is proposed. This relies on
the strong assumption for which electrical conductivity is univocally pre-determined
by water concentration. In particular, CTI maps are calculated by combining high-
frequency conductivity derived from water maps and multi b-value diffusion tensor
imaging (DTI) data. Following the implementation of a pipeline to optimize the pre-
processing of diffusion data and the fitting routine of a multi-compartment diffusivity
model, reconstructed conductivity images were evaluated in terms of the achieved
spatial resolution in five healthy subjects scanned at rest. We found that the pre-
processing of diffusion data and the optimization of the fitting procedure improve
the quality of conductivity maps. We achieve reproducible measurements across
healthy participants and, in particular, we report conductivity values across subjects
of 0.55 ± 0.01 S

m , 0.3 ± 0.01 S
m and 2.15 ± 0.02 S

m for gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF), respectively. By attaining an actual
spatial resolution of the conductivity tensor close to 1 mm in-plane isotropic,
partial volume effects are reduced leading to good discrimination of tissues with
similar conductivity values, such as GM and WM. The application of the proposed
framework may contribute to a better definition of the head tissue compartments in
electroencephalograpy/magnetoencephalography (EEG/MEG) source imaging and be
used as biomarker for assessing conductivity changes in pathological conditions, such
as stroke and brain tumors.

Keywords: conductivity tensor imaging, magnetic resonance imaging, electrical properties tomography, water
content mapping, diffusion tensor imaging

Abbreviations: LF, low frequency; HF, high frequency; CJV, coefficient of joint variation.

Frontiers in Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 694645

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.694645
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.694645
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.694645&domain=pdf&date_stamp=2021-07-30
https://www.frontiersin.org/articles/10.3389/fnins.2021.694645/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-694645 July 26, 2021 Time: 18:16 # 2

Marino et al. CTI Using Water Mapping

INTRODUCTION

The brain is a conductive medium characterized by different
electrical conductivity values within each tissue type. Electrical
conductivity defines how electrical currents propagate in
biological tissues, and it depends on the tissue specific structures
and composition (McCann et al., 2019), which might be altered
in presence of pathological conditions, such as stroke and tumors
(Katscher et al., 2013; Shin et al., 2015; Balidemaj et al., 2016a,b;
Jensen-Kondering et al., 2020). Thus, being able to measure
electrical conductivity in the brain in vivo is of great interest.

Electrical impedance tomography (EIT) measures electrical
conductivity by injecting low frequency (LF) currents through
electrodes placed on the scalp. With this technique, surface
voltages are measured and then processed to reconstruct the
conductivity values of the brain via the inversion of the
Laplace equation. EIT techniques are subject to limitations,
including: (i) the need to place electrodes around the head,
(ii) the ill-posed nature of the inverse solution of the Laplace
equation (Sylvester and Uhlmann, 1987; Chauhan et al., 2017),
and (iii) the presence of the skull that by having high
impedance values tends to divert the current away, which has
a negative impact on the sensitivity of the technique itself
(Oh et al., 2009; Chauhan et al., 2017). EIT techniques have
been combined with magnetic resonance (MR) imaging (MR-
EIT) to improve the spatial resolution of the conductivity
maps. This is achieved by processing the information enclosed
within the MR signal (Oh et al., 2003; Seo and Woo, 2014).
Recently, MR-EIT has been combined with diffusion tensor
imaging (DTI) data (Jeong et al., 2016; Chauhan et al., 2017)
to probe the anisotropy of the conductivity tensor, which is
prominent at the physiological LF range of the brain at rest, i.e.,
approximately 10 Hz.

MR electric properties tomography (MR-EPT) measures
conductivity values using conventional MR sequences without
the need of injecting currents in the head (Voigt et al., 2011).
In MR-EPT, the conductivity is assumed to be embedded
within the trans-receiving phase of the MR signal, which
can be estimated via the Helmholtz equation (Borsic et al.,
2015; Leijsen et al., 2019). However, the conductivity values
are relative to high frequencies (HF), i.e., the resonance
frequency of the MR scanner, or Larmor frequency—which
for 3T systems corresponds to 128 MHz. While determining
HF conductivity values allows, for example, a more accurate
calculation of the specific absorption rate (SAR) (Katscher
et al., 2009), it does not measure the electrical properties
within the frequency range of the brain at rest. Furthermore,
MR-EPT methods do not capture the anisotropic nature of
the conductivity tensor of the brain at LF (Katscher et al.,
2013), which is especially relevant for white matter (WM) fiber
tracks, where conductivity values are higher along the main
direction of the fibers.

Similarly to MR-EIT (Jeong et al., 2016; Chauhan et al., 2017),
a recent study (Sajib et al., 2018) proposed an MR-EPT based
technique to probe the anisotropy of the conductivity tensor.
The conductivity tensor imaging (CTI) method combines MR-
EPT measurements with multi b-value DTI data, exploiting the

correlation that exists between water diffusivity and electrical
conductivity (Sen and Torquato, 1989; Tuch et al., 2001; Sajib
et al., 2018). Since their introduction, CTI methods (Sajib
et al., 2018; Jahng et al., 2020; Lee et al., 2020) enabled
measuring the conductivity tensor at LF using conventional MR
scanners, open source software (Sajib et al., 2017), and without
requiring extra hardware.

MR-EPT techniques are based on the processing of the phase
of the MR signal. However, there are limitations including:
(i) the assumption of spatial symmetry of the electric media
when halving the trans-receiver phase (Van Lier et al., 2012),
(ii) the involvement of the Laplace operator when solving the
Helmholtz equation, which is sensitive to noise (Ropella and
Noll, 2017), and (iii) the challenges posed by tissue boundaries
with different conductivity values, where a reliable estimate of
the Laplace is hard to obtain without substantial pre-smoothing
and/or regularization (Katscher et al., 2013; Ropella and Noll,
2017).

Previous studies have suggested an association between the
electrical properties of the tissues and their water concentration
(Schepps and Foster, 1980). For example, a decrease in water
content due to aging has been associated with decreased
conductivity measurements (Peyman et al., 2001). Building on
these observations, a recent study proposed a method to achieve
HF isotropic electrical conductivity mapping (Michel et al., 2017).
More specifically, by considering that the water in biological
tissues [rather than electrolyte concentrations (Choi et al., 2020)]
is a strong predictor of tissue’s electrical properties at HF, a
direct relationship between water content and conductivity maps
was built. Crucially, since the conductivity values were obtained
without relying explicitly on the Helmholtz equation and thus
on the Laplace operator, this method is by construction less
sensitive to artifacts commonly found in MR-EPT. Consequently,
despite this strong assumption, water mapping techniques might
represent an alternative approach for CTI.

In this study, we propose a framework to achieve CTI in the
human brain using water mapping techniques. Our methodology
seeks to overcome the limitations of previous approaches, such
as CTI mapping based on MR-EPT, by designing a framework
independent from the Laplace operator. This objective is achieved
by combining HF conductivity mapping based on water maps
(Michel et al., 2017) and multi b-value DTI data (Tuch et al.,
2001; Sajib et al., 2018; Jahng et al., 2020; Lee et al., 2020). Care
is devoted toward a pipeline that optimizes (i) the acquisition
of the DTI data, which is accelerated by means of multiband
(Larkman et al., 2001) and SENSE (Pruessmann et al., 1999),
(ii) the DTI pre-processing—for which a dedicated framework
is employed to reduce noise and to correct for susceptibility
induced spatial distortions and motion—and (iii) the fitting of
a multi-compartment neurite orientation dispersion and density
imaging (NODDI) (Zhang et al., 2012)—like model used to
calculate the conductivity tensor (Lee et al., 2020). We tested
our methodology on five healthy volunteers scanned at rest.
Our results suggest that it is possible to attain high-signal-to-
noise ratio (SNR) CTI maps at approximately 1 mm in-plane
isotropic resolution without substantial image blurring/artifacts
at tissue boundaries.
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MATERIALS AND METHODS

Overview
The CTI framework relates the conductivity tensor CLF at LF to
the extracellular water diffusion tensor De (Sajib et al., 2018):

CLF =
χeσHF

χede+(1− χe)diβ
De (1)

In this equation, σHF represents the isotropic conductivity at
HF, χe the extracellular volume fraction, di and de intra and
extracellular water diffusivities, respectively, and β = 0.41
the ratio of ion concentrations between intra and extracellular
spaces. Note that the value for β was retrieved from a recent
publication (Sajib et al., 2018). Equation 1 assumes a linear
relationship between the electrical conductivity tensor and the
extracellular diffusion tensor. Different processing pipelines have
been developed for the estimation of σHF, χe, di, de and De (Sajib
et al., 2018; Jahng et al., 2020; Lee et al., 2020).

In the following, a brief overview of the proposed pipeline
is provided. The pipeline uses an MR-based framework, which
combines spin echo (SE) images and multi b-value DTI data
(Figure 1). The whole procedure is oriented toward the
reconstruction of the conductivity tensor CLF .

For the estimation of σHF , two SE images at different
repetitions times (TR1 and TR2, Figure 1A) are acquired. These
are then fused to compute a water map W (Figure 1B) which
was employed to derive σHF (Michel et al., 2017). The procedure
is explained in detail in section “HF Conductivity Estimation.”
Concerning the DTI, the data is pre-processed according to an
optimized pipeline (Figure 1C), which is described in section
“DTI Pre-processing.” The pre-processed DTI data is used to
derive De and to estimate di, de, and χe (Figure 1D) using a
recently proposed model (Lee et al., 2020). A sub-routine that
optimizes the fit for di, de, and χe is also proposed in section
“Model Fitting”. All data is compounded to reconstruct CLF
by means of Equation 1 (Figure 1E). To validate the proposed
methodology, an “isotropic equivalent” LF conductivity map σiso

LF
(Figure 1F) is constructed from CLF .

The source code, together with a sample dataset and relevant
documentation specifying software requirements etc., is freely
available at https://github.com/gferrazzi/CTI_mapping.

Image Acquisition
The methodology has been validated on five healthy volunteers
(S1 to S5, one female, mean age 38 ± 5 years) scanned on a
3T Philips Ingenia scanner equipped with a 32-channel receiver
head coil. This study was approved by the regional scientific
ethics committee and written informed consent was obtained
from all participants.

The acquisition protocol consists of the following:

Anatomical Scan
A 3D magnetization prepared rapid acquisition gradient echo
(MPRAGE) scan was acquired at 1 mm isotropic resolution,
field of view (FOV) = 256 × 240 × 240 mm3, repetition/echo
time TR/TE = 8.1/3.7 ms, inversion time TI = 950 ms, SENSE
acceleration 2 and 2.6 along primary [Right-Left, (RL)] and

secondary [Foot-Head, (FH)] phase encoding (PA) directions,
flip angle (FA) = 8◦. Total scan time was 5 min and 13 s.

SE Scans
A pair of 2D multi-slice SE images with an in-plane isotropic
resolution and slice thickness of 1 mm were acquired. In order to
cover the entire extent of the brain within a reasonable scan time,
81 slices were acquired using a slice gap of 1 mm. This resulted in
a FOV of 256× 192× 161 mm3. In both cases, TE was 11 ms and
FA/refocusing angles were 90◦/180◦. TR1 and TR2 were 700 ms
and 3000 ms, respectively (Michel et al., 2017). Total scan time
was 6 min and 49 s and 9 min and 39 s.

DTI 1.5 mm
Diffusion tensor imaging data was acquired using an in-plane
isotropic resolution and a slice thickness of 1.5 mm, together with
a slice gap of 1 mm. The PA direction was set to be Anterior-
Posterior (AP). Fifty six slices were acquired with a multiband
acceleration of 2. An in-plane SENSE factor of 2.5 was employed,
without Partial Fourier (PF) acceleration. FOV coverage was
256 × 239 × 139 mm3. 5 b-values (50, 150, 1000, 1800, and
4500 s/mm2) each with 16 directions and one b0 image were
acquired. FA refocusing angles were 90◦/180◦, TE = 134 ms and
TR = 4899 ms. Note that the water fat shift (WFS) was roughly
20 pixels, which combined to the in-plane spatial resolution of
1.5 mm, made a shift of approximately 3 cm between water
and fat. Total scan time was 6 min and 47 s. To correct for
susceptibility-induced spatial distortions, two SE echo planar
imaging (EPI) images with reversed PA blips and no diffusion
weighting were acquired using the same TR/TE combination and
readout settings.

DTI 1 mm
In one additional case (subject S1), a second DTI dataset was
acquired. Parameters were matched to the DTI 1.5 mm protocol
in terms of slice gap, b-values/directions, flip/refocusing angles,
multiband factor and FOV. Note that the DTI 1 mm protocol
was also matched in terms of spatial distortions to the DTI
1.5 mm, since the WFS was 30 pixels and the in-plane resolution
1 mm isotropic. A thinner slice of 1 mm was employed. Other
parameters were: number of slices = 70, SENSE factor = 3.5, no PF
acceleration, TR/TE = 8808/152 ms, total scan time 12 min and
12 s. Similarly to the DTI 1.5 mm case, two SE EPI images with
reverse PA blips but otherwise identical parameters were acquired
to correct for susceptibility-induced spatial distortions.

HF Conductivity Estimation
At HF, the electrical properties of biological tissues depend on
their water content (Michel et al., 2017) and ion concentrations
(Choi et al., 2020). Magnetic resonance imaging (MRI) allows
to derive water content maps (Neeb et al., 2006), enabling
tissue characterization in terms of size, type, physiological and/or
pathological condition of the cells involved. The water content W
is related to the T1 longitudinal relaxation time according to the
following relationship:

W =
1

A+ B
T1

(2)

Frontiers in Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 694645

https://github.com/gferrazzi/CTI_mapping
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-694645 July 26, 2021 Time: 18:16 # 4

Marino et al. CTI Using Water Mapping

FIGURE 1 | CTI reconstruction framework. (A) SE data acquired at TR1 and TR2. (B) Water map W and isotropic conductivity σHF map. (C) DTI data before (left)
and after (right) pre-processing at all b-values (vertical direction, diffusion encoding direction chosen at random). (D) Estimated extracellular volume fraction χe, intra
and extracellular water diffusivities di and de, and extracellular water diffusion tensor De. (E) LF conductivity tensor CLF (top) together with the orientation distribution
function (ODF) representation (bottom) in WM and GM. (F) “isotropic equivalent” LF conductivity map σiso

LF .

where A and B are parameters which depend on the field
strength (Fatouros and Marmarou, 1999). Equation 2 states that,
in order to derive water content maps, the exact knowledge of
the longitudinal relaxation time T1 is required. In this study, an
alternative approach was employed (Michel et al., 2017), where a
transfer function between water maps and a SE T1w image was
built. In particular, a SE T1w image is derived from the ratio of

two SE images acquired at two repetition times TR1 and TR2.
Such relationship holds:

W = w1e−w2Ir (3)

where Ir is the image ratio (TR1/TR2) of the SE image,
w1 = 1.525 and w2 = 1.443 are coefficients which were
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optimized considering typical water concentrations for gray
matter (GM), WM, and cerebrospinal fluid (CSF). It is important
to note that Equation 2 is optimized for the ratio of SE images
acquired at TR1 = 700 ms and TR2 = 3,000 ms. These were in fact
the shortest values that lead to the highest sensitivity of Ir to signal
changes in T1 for GM, WM, and CSF at 3T (Michel et al., 2017).

From the water content map, by assuming that water
concentration univocally pre-determines electrical properties in
biological tissues, HF conductivity values can be computed
through a second transfer function—which has been optimized
considering tissues with large amount of water:

σHF = c1+c2ec3W (4)

Coefficients were optimized to be c1 = 0.286,
c2 = 1.526 x 10−5, and c3 = 11.852. Note that Equation
4 was defined for water concentrations within the range
0.6 <= W <= 1 (Michel et al., 2017) and that receiver gain
settings and shimming values were kept the same across scans.

DTI Pre-processing
The DTI data underwent two levels of pre-processing:

• The first level, which is called “prep. intermediate,” includes
the denoising procedure described in in Veraart et al.
(2016a,b) and the correction for slowly varying receiver bias
fields as implemented in MRTricks3 (Tournier et al., 2019).
• The second level, called “prep. final,” includes the denoising

and bias field procedures just described plus distortion
correction and linear registration onto a common
anatomical space. To achieve distortion correction, the SE
EPI datasets with reversed phase-encode blips are used to
estimate the susceptibility induced off-resonance distortion
field (Andersson et al., 2003; Smith et al., 2004). These
fields are then converted into mm and applied to the DTI
data using an interpolation scheme, which considered
the effect of the Jacobian. The resulting images are finally
rigidly registered (Studholme et al., 1999) onto the space
defined by σHF using the IRTK software that was used
under License from Ixico Ltd.

Estimation of LF Variables
To estimate the extracellular volume fraction χe, and the intra
and extracellular water diffusivities di and de, the model recently
proposed by Lee et al. (2020) was used. This model builds upon
the NODDI method, a multi-compartment model widely used
to investigate the microstructure of biological tissues (Zhang
et al., 2012). NODDI uses three microstructural environments,
which are directly related to specific tissue structures, including
anisotropic intra and extracellular spaces, and isotropic CSF.

The model works on the DTI signal Sb independent from the
choice of the gradient direction applied. In particular, an estimate
for Sb (hereafter referred to as Sb) is obtained by averaging the n
acquired gradient directions:

Sb =
1
n

n∑
j = 1

Sj
b (5)

Once the average Sb is obtained, the Sb signal can be expressed as a
function of NODDI-like sub-variables. These are the intracellular
volume fraction vic, the isotropic volume fraction viso, and the
extracellular mean diffusivity d∗e:

Sb

So
= (1− viso) [vice−bvicdic+ (1− vic) e−b(1−vic)d∗e ]

+visoe−bdiso (6)

where So is the SE EPI signal without diffusion weighting
applied, dic = 1.7 x 10−3 mm2

s the intracellular diffusivity,
and diso = 3 x 10−3 mm2

s the isotropic water diffusivity.
Note that dic and diso, whose values were gathered from well-
established literature (Zhang et al., 2012), were defined a priori
to stabilize the fit.

The values for vic, viso, d∗e can be estimated using the following
cost function:

f = argmin(vic,viso,d∗e )|
∣∣Sb − Sb

∣∣ |22 (7)

This is done following the optimized procedure outlined in
section “Model Fitting”. The resulting fit is then used to estimate
χe, de and di:

χe = (1− viso) (1− vic)+viso (8)

de =
(1− viso) (1− vic)

2d∗e
χe

+
visodiso

χe
(9)

di = vicdic (10)

To compute the extracellular diffusion tensor De, the following
steps were undertaken. The diffusion tensor D was estimated at
a fixed b-value of 1,000 using the method developed by Veraart
et al. (2013) as implemented in MRTricks3 (Tournier et al., 2019).
Subsequently, a singular value decomposition (SVD) of the tensor
was performed. We denote with dxx, dyy and dzz the computed
eigenvalues at each voxel. Finally, under the assumption that
C and De share the same eigenvectors (Lee et al., 2020), the
following relationship is established:

De = ηD (11)

where

η =
3de

dxx+dyy+dzz
(12)

A detailed description on how Equations 8–12 are derived has
been recently published (Lee et al., 2020).

Model Fitting
Minimizing Equation 7 is not straightforward, since in Sb of
Equation 5 there are six measurements to fit with only three
parameters from Equation 6. Furthermore, the procedure relies
on the assumption that Sb is a true representation of Sb. As a
result, the fitting procedure was unstable, with the sub-variables
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vic, viso and d∗e that were consistently underestimated (see section
“Estimation of LF Variables” for details).

In this study, the following fitting sub-routine was therefore
developed. Instead of fitting vic, viso and d∗e onto Sb of Equation 5
one time, several fitting experiments were performed in parallel.
vic, viso, and d∗e from Equation 6 were estimated 16 times each
time employing a slightly different estimate of Sb, which was
drawn by choosing n− 1 gradient directions from the n available.
In this study, n = 16, so there were

(
16
15

)
= 16 unique subsets

of gradient directions available. Maximum intensity projection
(MIP) images were then calculated by selecting the maximum
across the 16 estimates of vic, viso, and d∗e, independently at each
voxel. Initial conditions for each individual run where vic = 0,
viso = 0.5 and d∗e = 0 mm2

s (the initial condition of viso was
empirically set to 0.5, so that the fit converged faster and with
fewer iterations). The minimization was carried out by employing
a variant of the fminsearch function of MATLAB (MathWorks,
Natick, MA, United States), which allowed the definition of
boundary conditions of the search space. In particular, vic and
viso were constrained to be within the range [0 1], whereas d∗e
was forced to be a non-negative quantity. Although the MIP
reconstructions improved the overall quality of vic, viso with
respect to the individual iterations (see section “Estimation of LF
Variables”), some residual artifacts were present in the form of
localized darker regions of limited size. After careful inspection
of vic and viso, these darker regions were labeled by defining a cut-
off value 0.15 below which the maps were assumed to be outside
the physiological range (i.e., it is assumed that isotropic water and
intracellular volume fractions are always greater than 15% in each
voxel). Note that, for vic, it was also necessary to exclude voxels
belonging to the CSF since vic must be 0 in these regions. After
the labeling was performed, missing values were imputed using a
2D Delaunay triangulation (Delaunay, 1934) in combination with
linear interpolation.

Conductivity Values
To extract the “isotropic equivalent” σiso

LF from the
electrical conductivity tensor CLF (see Figures 1E,F), the
following procedure was adopted. An eigenvalue/eigenvector
decomposition of CLF at each voxel was carried out. We denote
the eigenvalues at a particular voxel location as cxx, cyy and
czz . The “isotropic equivalent” conductivity ciso is computed as
ciso = (cxx cyyczz)

1
3 . Thus, ciso represents the conductivity value

required to generate an isotropic tensor whose volume matches
that of the measured ellipsoids. Repeating this procedure at every
location lead to σ iso

LF .
Following the calculation of σiso

LF , the segmentation of the brain
structures was performed according to the following procedure.
At first, brain extraction of the MP-RAGE data was performed
using the brain extraction tool (BET) of FSL (Smith, 2002).
The brain extracted data was subsequently rigidly registered
and re-sampled onto the space defined by σiso

LF using IRTK and
segmented into WM, GM and CSF tissue classes using the
FMRIB’s Automated Segmentation Tool (FAST) of FSL (Zhang
et al., 2001). In order to reduce partial volume effects, a threshold
value of 99% was applied to the probability maps returned by

FAST. The obtained eroded masks were then used to segment
WM and GM. In order to segment the CSF, a threshold value
of 2 S

m was applied directly on σHF , since the conductivity values
are considerably higher than those of the GM and WM (see
Figure 1B). We indeed observed better performances than the
MP-RAGE segmentation, especially in the apical regions of brain,
where the interfaces between CSF and GM are thin.

Gray matter, WM, and CSF masks were employed to segment
σiso

LF . We denote with φk the LF isotropic conductivity distribution
of tissue type k, with k ∈ (GM, WM, CSF). To assess
distribution properties, we compute its mean (meanφk ), standard

deviation (stdφk ), and coefficient of variation (CVφk =
stdφk

meanφk
).

To ascertain the amount of overlap between GM and WM
distributions, we employ the coefficient of joint variation
CJV(φGM,φWM) =

stdφGM + stdφWM
meanφGM − meanφWM

(Ganzetti et al., 2016).
Note that this was not performed for combinations of tissues
containing the CSF, since its conductivity values are considerably
higher than GM and WM and there is no overlap.

Resolution Test
To measure the achieved spatial resolution of the CTI maps, the
following two steps were carried out.

First, we assessed in one subject, i.e., S1, the differences in σiso
LF

obtained with the DTI 1 mm vs. DTI 1.5 mm protocols (hereafter
referred to as σiso

LF, DTI 1mm and σiso
LF, DTI 1.5 mm, see section “Image

Acquisition” for details). In particular, φk was computed for GM,
WM and CSF tissue classes. To assess the capability of the two
maps to distinguish GM and WM, CJV(φGM,φWM) was calculated.

To investigate whether σiso
LF, DTI 1mm had higher spatial

resolution than σiso
LF, DTI 1.5 mm, the power spectral density (PSD)

along the PA direction was computed. The resulting spectra were
then averaged and converted into a decibel (dB) scale. Please note
that in order to normalize the spectra, the DC component in the
dB scale was removed in all cases.

A second test aimed at assessing the spectral spatial properties
of σiso

LF, DTI 1.5 mm relative to the conductivity at HF, i.e., σHF . To
do so, a second PSD was computed on σHF (hereafter referred
to as σHF, 1mm). To further substantiate the potential loss in
spatial resolution of σiso

LF, DTI 1.5 mm with respect to σHF, 1mm, two
new reference images at a lower resolution were obtained by:
(i) down sampling the original σHF, 1mm to 1.5 mm and 2 mm
in-plane resolution, respectively, and (ii) by up sampling them
again to match the original grid-size of 1 mm. On these lower
resolution images (σHF, 1.5 mm and σHF, 2mm, respectively), new
PSDs were computed.

RESULTS

DTI Pre-processing
Our optimized DTI pipeline lead to an improved definition of
the conductivity maps, especially at the brain tissue interfaces
in the apical regions. Figure 2A reports the changes in σiso

LF as
a function of the different DTI pre-processing steps described
in section “DTI Pre-processing.” Figure 2 shows incremental
improvements following the application of the denoising step
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together with the correction for slowly varying receiver bias
fields, i.e., “prep. intermediate,” and distortion correction plus
linear registration to the common anatomical space, i.e., “prep.
final.” A more accurate co-registration to the anatomical image
improves the overlap between structural properties and HF
conductivity values. Accordingly, the LF conductivity pattern
of the GM emerged from the darker WM of the background
(Figure 2B, yellow arrows).

Estimation of LF Variables
Figure 3A shows the estimates for vic, viso and d∗e chosen for
two runs of the fitting procedure described in section “Model
Fitting”. While these appear reproducible and stable over the
CSF, the fitting is not stable in the WM and in the GM regions,
where isolated and/or clusters of pixels for both vic and viso maps
are underestimated or close to zero. For d∗e, instead, estimates
appear to be acceptable in the cortical areas, but they are subject
to noise enhancement deeper in the brain, where the anatomy is
farther away from the receiver coils and therefore the SNR lower.
MIP maps (plus Delaunay correction) for vic, viso and d∗e are
displayed in Figure 3B.

χe, de, and di estimates from Equations 8–10 are shown
in Figure 3C. As expected, χe showed values close to one
in areas corresponding to the CSF, while di and de had
richer information, depending on the presence of higher fiber
directionality and/or water content.

Finally, an example of the estimated extracellular diffusion
tensor De calculated using Equations 11, 12 is provided in
Figure 1D.

Resolution Test and Conductivity Values
We did not observe strong qualitative differences in the
conductivity tensor obtained using the DTI 1 mm and DTI
1.5 mm protocols (CLF, DTI 1 mm vs. CLF, DTI 1.5 mm, Figure 4,
top) nor in σ iso

LF, DTI 1 mm vs σ iso
LF, DTI 1.5 mm (Figure 4, center).

Tissue distributions were also similar (Figure 4, bottom). From
a quantitative standpoint, mean and standard deviations of φGM ,
φWM and φCSF for S1 were 0.58 ± 0.18 S

m , 0.33 ± 0.05 S
m , and

2.17 ± 0.15 S
m for σ iso

LF, DTI 1 mm, and 0.55 ± 0.17 S
m 0.30 ± 0.05

S
m , and 2.16± 0.15 S

m for σ iso
LF, DTI 1.5 mm. Finally, σ iso

LF, DTI 1.5 mm
had a similar capacity to distinguish GM from WM as compared
to σ iso

LF, DTI 1 mm (CJV(φGM,φWM) = 91.48/92.57).
Figure 6A reports the reconstructions for σHF, 1 mm,

σHF, 1.5 mm, σHF, 2 mm and σiso
LF, DTI 1.5 mm in subject S5. The PSDs

for all other subjects are shown in Figure 6B.
Figure 7 shows the distributions of φk obtained in subjects S2

to S5. Table 1 reports meanφk and stdφk in GM, WM and CSF,
at LF and HF. We obtained similar values across subjects, with
conductivity values for WM, GM and CSF of 0.55±0.01 S

m , 0.3±
0.01 S

m and 2.15± 0.02 S
m at LF, and of 0.63±0.02 S

m , 0.37± 0.01 S
m

and 2.19 ± 0.01 S
m at HF. Table 2 reports mean and std for the

diagonal components of the conductivity tensor in GM, WM and
CSF at LF. Finally, Table 3 shows CVφk in GM, WM and CSF and
CJV(φGM,φWM) at LF/HF in all subjects that were imaged.

DISCUSSION

In this study, we propose a framework to perform CTI of the
human brain without relying on the Laplacian operator of MR-
EPT methods. This was achieved by combining HF conductivity
mapping based on water maps with multi b-value DTI data.

Traditional CTI methods estimate the conductivity values at
HF by means of phase-based MR-EPT techniques (Sajib et al.,
2018; Jahng et al., 2020; Lee et al., 2020). Whilst reliable and
reproducible conductivity values can be obtained using phase-
based MR-EPT (Mandija et al., 2020), there are limitations
connected to the use of the Laplace operator, which is noise
sensitive and less reliable at tissue boundaries. Several studies
aimed at improving image quality of MR-EPT maps and to
compensate for boundary artifacts by making assumptions on
the trans-receiving phase of the MR signal (Van Lier et al.,
2012; Seo and Woo, 2014), and by implementing optimized
smoothing operators (Ropella and Noll, 2017; Sajib et al.,
2018; Jahng et al., 2020). Though all this work successfully
tackled most of these challenges, MR-EPT methods are generally
characterized by modest to low spatial resolution levels. In fact,
when considering the nominal resolution without accounting
for the effect of the Laplace operator and/or other smoothing
kernels, which extend blurring (Van Lier et al., 2012), typically
reported values have been 1.6 × 1.6 × 2 mm3 (Voigt et al.,
2011), 1.7 × 1.7 × 1.7 mm3 (Gurler and Ider, 2017) and
1.87× 1.87× 4 mm3(Katoch et al., 2018).

For these reasons, we propose an alternative strategy for the
estimation of the conductivity at HF (Michel et al., 2017). In
particular, water maps are estimated using a set of deterministic
equations applied to SE data, which are then used to calculate
a conductivity map. Because this is done on a pixel-by-pixel
basis (as opposed to MR-EPT where the Laplace operator is
typically defined as a convolution kernel in 3D), the achieved
spatial resolution of the conductivity HF maps and of the SE
data should be very close. Moreover, since the SE sequences are
acquired in steady state, there is no spatial blurring introduced
by signal decay as it is for non-steady state sequences (Brown
et al., 2014). Thus, by employing the proposed method, it is
possible to attain an actual in-plane isotropic resolution for
σHF of 1 mm with a slice thickness of 1 mm (note that, in
this context, the achieved resolution should be independent
from the choice of the slice gap, since σHF is retrieved solely
from the ratio of two SE images acquired in 2D on a pixel-by-
pixel basis).

By designing a framework independent from the Laplace
operator, our approach could effectively discriminate
boundaries between different brain tissues, both in terms
of conductivity values and fiber orientations, and to pave
the way for the use of CTI maps to several applications.
These include (although they are not restricted to)
electroencephalography/magnetoencephalography (EEG/MEG)
source imaging (Cho et al., 2015; Liu et al., 2017; Marino
et al., 2019). To perform accurate EEG/MEG source imaging, a
realistic head model of the subject undergoing the experimental
investigation is needed (Cho et al., 2015; Morales et al., 2019).
This head model is derived from a whole-head image of
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FIGURE 2 | Effect of DTI pre-processing. (A) Changes in σiso
LF as a function of the different DTI pre-processing steps. (Left) No pre-processing applied (“no prep.”).

(Center) Intermediate pre-processing applied (“prep. intermediate”); i.e., denoising plus bias field correction). (Right) Full pre-processing applied (“prep. final”); i.e.,
“prep. intermediate” plus distortion correction and linear registration onto σHF . (B) Magnified region from panel (A). Yellow arrows point to WM/GM boundaries.

FIGURE 3 | Model estimation. (A) Estimated vic, viso and d∗e at runs 1 to n-1. (B) MIP projections for vic, viso and d∗e (plus Delaunay correction). (C) χe, di and de.

the subject, and it relies on multiple sources of information
including electrode positions (Marino et al., 2016; Taberna et al.,
2019), tissue geometry (Taberna et al., 2021), and conductive
properties. With this work, we aim at contributing to the

optimization of the latest aspect, by proposing a methodology
for subject-specific head-modeling. In particular, as the reference
head geometry is typically provided by a high-resolution
anatomical scan, the possibility of achieving a comparable
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FIGURE 4 | High-resolution experiment on subject S1. (A) CLF (top), σiso
LF (center) and φGM, φWM and φCSF (bottom) reconstructed using the DTI 1 mm protocol.

Panel (B) same as (A) using the DTI 1.5 mm protocol data.

resolution with CTI maps might positively impact the accuracy
of source imaging reconstructions. In fact, whilst previous
literature showed that anisotropy can be built into a head

model (Morales et al., 2019), an approach to extract local
conductivity information on a voxel by voxel basis is still an
open issue. In fact, conventional head models are built using
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FIGURE 5 | PSDs for σHF, 1 mm, σHF, 1.5 mm, σHF, 2 mm, σiso
LF, DTI 1.5 mm and

σiso
LF, DTI 1 mm in subject S1.

fixed conductivity values, often taken from the literature (Michel
et al., 2004) following tissue segmentation into well-defined
tissue compartments. By including anisotropy and voxel-wise
conductivity information, the accuracy of the EEG/MEG
head modeling could increase, hence providing more accurate
source estimates not only in healthy subjects but also for those
individuals with altered structural and electrical brain properties
such as neurological patients.

In CTI imaging, the DTI data plays a crucial role in the
determination of the conductivity tensor. Ideally, the spatial
resolution of σHF and of the DTI data should coincide. However,
it is challenging to acquire DTI data at 1 mm in-plane isotropic
resolution due to the prolonged scan times and increased spatial
distortions. In this study, the SENSE factor of the high-resolution
protocol was increased to match the two acquisitions in terms
of spatial distortions, although this amplified thermal/g-factor
noise (Pruessmann et al., 1999). Moreover, high-resolution DTI
protocols often lead to prolonged TEs. This is particularly
relevant for the acquisitions of CTI maps, where a short TE is
preferable but not achievable since DTI scans with very large
b-values are needed to separate extra and intra-cellular diffusion
components (Clark et al., 2002). All these aspects, combined to
the higher resolution of DTI 1 mm protocol, meant that the
second acquisition had a low SNR.

To assess the impact that the resolution of the DTI data
had on the proposed reconstruction framework, two DTI
datasets at different resolutions were acquired. We found small
differences between the conductivity maps at LF obtained
using DTI data at 1.5 vs. 1 mm in-plane isotropic resolution.
This was assessed in a dual manner. First, we compared
the final reconstructions, both in terms of the capacity of
distinguishing between brain tissues, with a special focus on
GM and WM, and of the conductivity values, which were

found to be similar between methods and in line with previous
work (Jahng et al., 2020). Second, we compared the PSD in
the calculated σiso

LF maps, which showed similar spectral content
properties (Figure 5). We also investigated the impact of
conductivity maps at HF resampled at a lower resolution than
1 mm, and noticed that the spectral content indeed decreases
(see Figures 5, 6B). These aspects, which were marginally
explored in previous literature, makes of utmost importance
the choice of the approach to achieve HF information, which
directly affects the maximum achievable spatial resolution. In
particular, these findings suggest that while the spatial resolution
of the CTI maps is mainly driven by the resolution of the
HF conductivity map, the fit from the DTI data acts as a
conductive dumping operator, which mediates the relationship
between HF and LF, but without introducing substantial spatial
smoothing. Accordingly, the proposed framework, which links
its resolution to the ones of the SE images, seems to be a
powerful alternative to conventional CTI methods that make use
of phase-based MR-EPT.

While previous CTI (Tuch et al., 2001; Sajib et al., 2018;
Lee et al., 2020) studies pioneered the design of the framework
currently employed to map conductivity in vivo at low
frequencies, the pre-processing of the DTI data, which included
at most a rigid registration step (Jahng et al., 2020), has not
been considered. In this work, we showed that an accurate
pre-processing of the DTI data is important to augment the
quality of the conductivity tensor. In particular, a DTI pipeline
should ameliorate the estimated diffusion coefficients, since the
combination of multi-exponential curves in the water diffusivity
model is severely affected by noise (Tuch et al., 2001; Sajib et al.,
2018; Jahng et al., 2020; Lee et al., 2020), and improve the spatial
correspondence between SE and DTI data, since the latter is
distorted. Thus, special attention was paid toward the definition
of a pre-processing procedure, which included denoising, bias
field correction, distortion correction and rigid registration to the
space defined by σHF . The application of the proposed pipeline
resulted in consistent improvements, especially at the brain tissue
interfaces of σiso

LF between GM and WM and between GM and
CSF (Figure 2).

This was combined with an optimized routine to improve
the fitting of the multi-compartment NODDI model, which
consisted of multiple runs of the fitting, depending on the
number of directions used in the DTI data, oriented toward
the definition of MIP images for χe, di and de. These MIP
images resulted in stable estimates for the intracellular and
isotropic volumes, and the extracellular diffusivity, which all
intervene in the definition of LF variables integrated by Equation
1. In contrast, the same quantities reconstructed using the
same model were generally artifacted and/or underestimated
in previous studies (Lee et al., 2020), especially de over
GM and WM regions. In this study, we found a similar
behavior when looking at the estimation for each run
(Figure 3A). However, these artifacts were largely removed
when considering the MIP reconstructions together with the
Delaunay interpolation (Figure 3B). In particular, vic was
close to zero in the CSF areas. Conversely, it was greater
in GM and WM where there is the co-existence of cells
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FIGURE 6 | (A) Conductivity maps in subject S5 for σHF, 1 mm, σHF, 1.5 mm, σHF, 2 mm and σiso
LF, DTI 1.5 mm in the apical regions of the brain. (B) σHF, 1 mm, σHF, 1 mm,

σHF, 2 mm, σiso
LF, DTI 1.5 mm PSDs for subjects S2 to S5.

and extracellular matrix. viso was close to one in the CSF,
where no fibers are present, and had a lower value in GM
and WM. For d∗e, the diffusivity was higher in GM and
lower in WM, which is in line with a more highly fiber-
packed environment characterizing WM as compared to GM.
Furthermore, it was close to zero over the CSF since the diffusivity
is predominantly isotropic.

When looking at the achieved conductivity values, our
findings highlighted reproducible measurements within-
and between scans for each of the considered tissues, which
is expected in healthy subjects, but less in patients. Note
that the weighting introduced by the DTI is stronger in
the GM and WM regions compared to the CSF, because
of their complicated tissue structures (Le Bihan, 2003).

Frontiers in Neuroscience | www.frontiersin.org 11 July 2021 | Volume 15 | Article 694645

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-694645 July 26, 2021 Time: 18:16 # 12

Marino et al. CTI Using Water Mapping

FIGURE 7 | φGM, φWM and φCSF distributions for subjects S2 to S5.

TABLE 1 | Meanφk and stdφk in GM, WM and CSF, at LF (left) and HF (right) in all subjects.

Mean ± stdφGM Mean ± stdφWM Mean ± stdφCSF

σiso
LF σHF σiso

LF σHF σiso
LF σHF

S1 0.55 ± 0.17 S/m 0.63 ± 0.19 S/m 0.30 ± 0.05 S/m 0.36 ± 0.05 S/m 2.16 ± 0.15 S/m 2.19 ± 0.15 S/m

S2 0.53 ± 0.20 S/m 0.61 ± 0.22 S/m 0.29 ± 0.06 S/m 0.36 ± 0.05 S/m 2.15 ± 0.16 S/m 2.19 ± 0.16 S/m

S3 0.54 ± 0.19 S/m 0.62 ± 0.21 S/m 0.30 ± 0.05 S/m 0.36 ± 0.04 S/m 2.16 ± 0.15 S/m 2.20 ± 0.15 S/m

S4 0.57 ± 0.24 S/m 0.66 ± 0.27 S/m 0.30 ± 0.08 S/m 0.37 ± 0.08 S/m 2.12 ± 0.18 S/m 2.18 ± 0.17 S/m

S5 0.55 ± 0.27 S/m 0.64 ± 0.29 S/m 0.31 ± 0.17 S/m 0.39 ± 0.17 S/m 2.17 ± 0.15 S/m 2.20 ± 0.15 S/m

Namely, lower conductivity values are observed for
σiso

LF compared to σHF because of the highly anisotropic
environment. Instead, the conductivity values in the isotropic
CSF did not change significantly between LF and HF
(Lee et al., 2020).

Maps are expected to be sensitive to a variety of pathological
conditions, such as stroke and tumors (Katscher et al., 2013; Shin
et al., 2015; Balidemaj et al., 2016a,b; Jensen-Kondering et al.,

2020). Moreover, they could also be employed to study other
conditions such as neurodegenerative diseases etc.

This study has several limitations. Concerning the HF
conductivity maps, we did not correct for the inhomogeneities
of the transmit B1+ field, which affects the flip angle and so
the acquired signal, especially in the center of the FOV of brain
scans. This might have introduced errors in the calculation of
the water maps, especially in the ventricles (Michel et al., 2017).

Frontiers in Neuroscience | www.frontiersin.org 12 July 2021 | Volume 15 | Article 694645

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-694645 July 26, 2021 Time: 18:16 # 13

Marino et al. CTI Using Water Mapping

In addition, this source of bias is made stronger by the inherent
relationship between water content and conductivity values
reported in Equation 4, which is non-linear with derivative
dσHF
dW ∝ ec3W (Michel et al., 2017). Thus, water estimation

uncertainties in brain regions with high water content such as the
CSF will be subject to a larger propagation of errors, explaining
why in Figures 5, 7 there was a large spreading of the CSF
conductivity values. In this study, we did not explicitly account
for B1+ inhomogeneities. However, it is clear that for an accurate
estimation of the CSF conductivity values, residual sources of bias
such as the B1 transmit field should be taken into account.

Ir from Equation 3 is calculated as a ratio of two separate SE
images. This might be sensitive to motion and other sources of
inconsistency between scans. Thus, a more rigorous approach
would include the measurement of a fast T1 map (Deoni
et al., 2005) as opposed to taking image ratios. The former
could in fact be employed to retrieve a water content map by
means of Equation 2.

In this study, the scan time of the SE and for the DTI
acquisitions was long. Therefore, a slice gap of 1 mm was
employed for their acceleration. As mentioned previously, σHF
is retrieved from the ratio of 2D SE images performed on a slice-
by-slice basis and so the spatial resolution is preserved. However,
the introduction of a non-negative slice gap compromises head

TABLE 2 | Mean and std of the diagonal components of the conductivity tensor in
GM, WM, and CSF at LF in all subjects.

cxx cyy czz

GM S1 0.57 ± 0.19 S/m 0.56 ± 0.18 S/m 0.53 ± 0.18 S/m

S2 0.56 ± 0.22 S/m 0.55 ± 0.22 S/m 0.53 ± 0.22 S/m

S3 0.56 ± 0.20 S/m 0.56 ± 0.20 S/m 0.53 ± 0.21 S/m

S4 0.60 ± 0.26 S/m 0.60 ± 0.26 S/m 0.56 ± 0.26 S/m

S5 0.57 ± 0.27 S/m 0.57 ± 0.28 S/m 0.54 ± 0.28 S/m

WM S1 0.32 ± 0.09 S/m 0.34 ± 0.10 S/m 0.33 ± 0.10 S/m

S2 0.32 ± 0.10 S/m 0.32 ± 0.10 S/m 0.32 ± 0.11 S/m

S3 0.31 ± 0.09 S/m 0.34 ± 0.09 S/m 0.33 ± 0.09 S/m

S4 0.32 ± 0.11 S/m 0.34 ± 0.11 S/m 0.33 ± 0.12 S/m

S5 0.33 ± 0.19 S/m 0.36 ± 0.19 S/m 0.34 ± 0.19 S/m

CSF S1 2.20 ± 0.14 S/m 2.17 ± 0.19 S/m 2.14 ± 0.19 S/m

S2 2.21 ± 0.15 S/m 2.16 ± 0.21 S/m 2.13 ± 0.22 S/m

S3 2.20 ± 0.14 S/m 2.17 ± 0.19 S/m 2.14 ± 0.19 S/m

S4 2.21 ± 0.15 S/m 2.15 ± 0.22 S/m 2.09 ± 0.21 S/m

S5 2.21 ± 0.14 S/m 2.19 ± 0.19 S/m 2.13 ± 0.19 S/m

coverage, which was, at least for the case of the SE data,
halved. Thus, future studies should be oriented toward the
re-optimization of the procedure outlined in Michel et al.
(2017) using a faster acquisition scheme in full 3D. Other
approaches for the acceleration of the DTI acquisition should be
employed as well to ameliorate brain coverage whilst improving
scanning efficiency.

NODDI has been widely employed to estimate neurite density.
However, it is characterized by some simplifying assumptions,
including the description of the orientation of the axons which
does not consider fiber crossing (Schmahmann et al., 2009).
Furthermore, NODDI employs fixed values for the intracellular
and isotropic diffusivities (dic and diso of Equation 6). Whilst
these values are established in the literature, other choices are
possible. For example, the multi-compartment spherical mean
technique (SMT) model (Kaden et al., 2016a,b), which was
recently employed in CTI imaging (Jahng et al., 2020), assesses
intrinsic diffusivity on a voxel by voxel basis. In particular,
this model describes the microstructural environment using two
compartments (as opposed to three compartments as it is for
NODDI), i.e., the intra- and extra-neurite environments (Kaden
et al., 2016a,b). By taking into account these aspects, a voxel-
wise estimate of the intrinsic diffusivities is possible, which could
allow for a potentially more accurate implementation of the CTI
framework. Future experimental work should be oriented toward
the development and validation of techniques for their estimation
(Jahng et al., 2020). This, which may be an important aspect
to consider in healthy subjects, could become a critical factor
when extending the application of the proposed method into the
clinical environment.

The value of the ratio of ion concentrations between
intracellular and extracellular spaces (parameter β, Equation 1)
was assumed to be 0.41 (Sajib et al., 2018). Whilst methods to
experimentally determine β using MRI are still not available,
this value has been measured accurately using other technology,
and specifically by looking at intra- and extracellular Na+, Cl−,
K+, and Ca2+ ion-concentration levels with microelectrodes
(Hansen, 1985; Volkov et al., 1997; Katoch et al., 2018; Sajib et al.,
2018).

Our approach based on water-mapping techniques assumes
that the electrical conductivity at HF is pre-determined by
tissue water-content (Michel et al., 2017). This can be valid
up to a certain extent, when extending the application of our
approach to clinical application, this assumption might not hold,
especially for those pathologies characterized by unbalanced ion

TABLE 3 | CVφGM , CVφWM , CVφCSF and CJV(φGM,φWM) in all subjects at LF (left) and HF (right).

CVφGM CVφWM CVφCSF CJV(φGM,φWM)

σiso
LF (%) σHF (%) σiso

LF (%) σHF (%) σiso
LF (%) σHF (%) σiso

LF (%) σHF (%)

S1 31.52 30.40 18.41 12.61 7.08 6.79 91.48 89.83

S2 37.62 35.34 20.35 13.53 7.65 7.32 109.61 105.54

S3 35.94 34.66 16.52 11.39 6.92 6.67 104.20 100.06

S4 42.48 41.09 25.45 20.93 8.23 7.66 117.30 119.05

S5 48.84 45.42 54.69 45.32 6.88 6.64 188.78 183.59

Frontiers in Neuroscience | www.frontiersin.org 13 July 2021 | Volume 15 | Article 694645

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-694645 July 26, 2021 Time: 18:16 # 14

Marino et al. CTI Using Water Mapping

concentrations such as neurodegenerative disease (Reetz et al.,
2012; Petracca et al., 2016; Huhn et al., 2019). In fact, it is known
that electrical conductivity changes with ion concentrations
and mobility (Gabriel et al., 1996a; Grimnes and Martinsen,
2000; Choi et al., 2020), and the relationship between water
concentration and ion mobility is not straightforward. Thus,
thorough experimental validation using conductivity phantoms
should be performed to test the validity of such assumption
(Choi et al., 2020).

However, there is some initial experimental evidence which
suggests that higher water content within the brain is also
associated with higher conductivity values. In this work
(Kurtzbard et al., 2021), the authors measured electrical
conductivity and permittivity in 50 neonates scanned as part
of The Developing Human Connectome Project (Makropoulos
et al., 2018). This study is relevant since: (i) the infant brain
presents higher water concentration levels than the adult brain
(note that, in this context, the higher water content is also
responsible for the longer NMR relaxation properties of the
infant brain (Ferrazzi et al., 2018), (ii) the authors tested their
technique on a 3T system, and (iii) they employed MR-EPT
(Marques et al., 2015). Although the reported variability across
subjects was relatively high, this study showed how the neonatal
brain conductivity values were, on average, 1.8 times greater
than in the adult brain. MR-EPT is thought to be predominantly
sensitive to changes in ions concentration and mobility (Choi
et al., 2020). However, these initial results suggest that there might
be an explicit dependency between water concentration and
conductivity values, thus partly justifying the assumptions which
were made in this study to overcome the intrinsic limitations
of MR-EPT methods.

The primary objective of this study was to provide a
framework to perform CTI mapping in vivo without MR-EPT
in a robust way. By using the proposed technique, we were
able to achieve reproducible results over a population of five
healthy subjects scanned at rest. However, accuracy of the
conductivity measurement is also important. To validate our
technique, we relied on well-established literature, mostly in
relation to the estimation of σHF (Michel et al., 2017), which
was in turn based on a large body of work (Gabriel et al.,
1996b; Whittall et al., 1997; Neeb et al., 2006; Abbas et al.,
2015), reporting strong value correspondences with the target
tissues. However, there is an inherent large variability in the
field of conductivity mapping; for example, CSF conductivity
values were found to be within the range 1 to 2.51 S

m in a
recent systematic review (McCann et al., 2019). Thus, it is clear
that further validation using phantoms with known conductivity
values and/or numerical simulations are warranted to validate
the proposed technique. Note that, in this context, the proposed
framework is flexible, as Equation 4—which links brain water
content to conductivity values—could be re-optimized each time
definite reference conductivity values are available. Still, there
was close agreement between our results and CTI literature
validated on phantoms and in vivo (Jahng et al., 2020), citing
0.52 S

m and 0.27 S
m for GM and WM tissues. Our results,

which directly derive from established reference conductivity
values (Michel et al., 2017), are compatible with reference

ex vivo studies for which measurements of 0.59, 0.34, and
2.14 S

m were reported in GM, WM, and CSF (Gabriel et al.,
1996b). They are also in line with a large body of literature
concerning non-invasive conductivity mapping (McCann et al.,
2019). Nonetheless, it is stressed that the conductivity values
achieved in this study should not directly be used as reference, as a
thorough validation [see for example the work performed in Choi
et al. (2020)] has not been performed. In this context, future work
with dedicated physical phantoms should be oriented toward
employing different reference values for each target tissue. Thus,
while delivering a framework that provides reproducible and
high-quality CTI maps to overcome several limitations of MR-
EPT has been achieved, we assert that a validation is warranted
in order to test the reliability of the proposed technique and to
benchmark the obtained results.
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