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ABSTRACT: The Src homology 2 (SH2) domain-containing
protein tyrosine phosphatase 2 (SHP2) is a critical signal
transducer downstream of growth factors that promotes the
activation of the RAS-ERK1/2 cascade. In its basal state, SHP2
exists in an autoinhibited closed conformation because of an
intramolecular interaction between its N-SH2 and protein
tyrosine phosphatase (PTP) domains. Binding to pTyr ligands
present on growth factor receptors and adaptor proteins with
its N-SH2 domain localizes SHP2 to its substrates and frees
the active site from allosteric inhibition. Germline mutations in
SHP2 are known to cause both Noonan syndrome (NS) and LEOPARD syndrome (LS), two clinically similar autosomal
dominant developmental disorders. NS-associated SHP2 mutants display elevated phosphatase activity, while LS-associated
SHP2 mutants exhibit reduced catalytic activity. A conundrum in how clinically similar diseases result from mutations to SHP2
that have opposite effects on this enzyme’s catalytic functionality exists. Here we report a comprehensive investigation of the
kinetic, structural, dynamic, and biochemical signaling properties of the wild type as well as all reported LS-associated SHP2
mutants. The results reveal that LS-causing mutations not only affect SHP2 phosphatase activity but also induce a weakening of
the intramolecular interaction between the N-SH2 and PTP domains, leading to mutants that are more readily activated by
competing pTyr ligands. Our data also indicate that the residual phosphatase activity associated with the LS SHP2 mutant is
required for enhanced ERK1/2 activation. Consequently, catalytically impaired SHP2 mutants could display gain-of-function
properties because of their ability to localize to the vicinity of substrates for longer periods of time, thereby affording the
opportunity for prolonged substrate turnover and sustained RAS-ERK1/2 activation.

The proper level of protein tyrosine phosphorylation,
maintained by the coordinated and reciprocal activities of

protein tyrosine kinases (PTKs) and protein tyrosine
phosphatases (PTPs), is important for the regulation of
signaling pathways that control various developmental
processes as well as cell growth, differentiation, metabolism,
motility, and survival.1,2 Not surprisingly, perturbation of the
delicate balance between the actions of PTKs and PTPs often
leads to abnormal tyrosine phosphorylation, which is
responsible for the pathogenesis of many human diseases,
including cancer, diabetes/obesity, and autoimmune disor-
ders.1,3−5 By catalyzing the removal of phosphate from tyrosine,
PTPs are usually perceived as negative regulators of cell
signaling, which is often driven by tyrosine phosphorylation-
mediated events. Interestingly, the Src homology 2 (SH2)
domain containing protein tyrosine phosphatase 2 (SHP2),
encoded by Ptpn11, has been shown to play a positive role in
signal transduction.6−8 Genetic and biochemical studies reveal
that SHP2 acts downstream of growth factor and cytokine
receptors and upstream of RAS, a critical node in many
signaling pathways that underlies growth factor/cytokine-

induced cell proliferation, migration, and survival.9−12 Im-
portantly, SHP2’s phosphatase activity is required for activation
of the RAS-ERK1/2 (extracellular signal-regulated kinase 1 and
2) pathway.6,13

SHP2 consists of two tandem SH2 domains at its N-
terminus, a PTP domain in the middle, and a C-terminal tail.
SHP2 is an allosteric enzyme whose phosphatase activity is
regulated by an elegant “molecular switch” mechanism.14,15 In
its basal state, SHP2 is autoinhibited because of an intra-
molecular interaction between its N-SH2 and PTP domains,
which blocks the entrance of the substrate to the active site.14,16

Upon growth factor or cytokine stimulation, the N-SH2
domain binds tyrosine-phosphorylated sequence motifs in
receptor tyrosine kinases, cytokine receptors, or more
commonly scaffold proteins, which localize SHP2 to the
vicinity of its substrates and simultaneously weaken the N-SH2
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domain−PTP domain interaction, liberating the PTP domain
to catalyze substrate turnover.17,18

The importance of SHP2 to human health is supported by
genetic observations linking SHP2 mutations to several
pathological conditions. Somatic activating mutations in
SHP2 are associated with various types of leukemia19,20 and
solid tumors.21−23 Germline SHP2 mutations cause autosomal
dominant developmental disorders, including 50 and 90% of
documented Noonan syndrome (NS) and LEOPARD (an
acronym for its clinical features of multiple lentigines,
electrocardiographic conduction abnormalities, ocular hyper-
telorism, pulmonic stenosis, abnormalities of genitalia,
retardation of growth, and deafness) syndrome (LS) cases,
respectively.24−27 Other than the presence of multiple
lentigines, which is a hallmark of LS, NS and LS share similar
clinical features such as short stature, craniofacial malforma-
tions, and congenital heart abnormalities.
More than 40 NS-associated SHP2 mutations have been

described, affecting 30 different residues located in or close to
the N-SH2 domain−PTP domain interface.21,22 In general, NS-
associated SHP2 mutants display gain-of-function (GOF)
phenotypes with heightened RAS-ERK1/2 pathway activation,
likely because of elevated phosphatase activity caused by
disruption of the autoinhibitory interaction between the N-SH2
and PTP domains.28−33 By contrast, 11 LS-associated SHP2
mutations that alter seven different residues, all residing in the
PTP domain, have been identified. Unlike NS mutants, the LS-
associated SHP2 mutants are reported to exhibit reduced
phosphatase activity and are deemed loss-of-function (LOF)
variants.32,34,35 An obvious unresolved question is how
mutations that incite opposite effects on SHP2 phosphatase
activity elicit overlapping disease phenotypes. To address this
question, we postulated that disease-causing SHP2 mutations
affect not only SHP2 phosphatase activity but also its molecular
switching mechanism, and thus, detailed comparative analysis
of the structure and function of wild-type and mutant SHP2
enzymes will yield insight into the biochemical basis that
underlies the pathological processes potentiated by the mutant
enzymes. Our initial investigation of the most recurrent LS-
associated SHP2 mutant Y279C revealed that although Y279C
is catalytically impaired and exists in a closed conformation, the
Y279C mutation weakens the interaction between the N-SH2
and PTP domains.36 The weakened interaction between the
two domains in Y279C results in an increased level of binding
between the N-SH2 domain and its pTyr ligands. Con-
sequently, Y279C stays longer with the scaffolding protein
Gab1, thus prolonging substrate turnover, which compensates
for the reduced phosphatase activity, leading to sustained RAS-
ERK1/2 activation. Collectively, the data show that although
the Y279C mutant has a lower catalytic activity, the mutation
also perturbs the “molecular switch” mechanism of SHP2 to
engender a GOF phenotype. However, given the diverse nature
of the reported LS SHP2 mutations, it is essential to determine
if these LS-associated SHP2 mutations similarly contribute to
the pathogenesis of LS in the same manner as the Y279C
mutant. This is an important issue, because the structural
requirement and substrate specificity of LS-associated SHP2
mutants could be different from each other; thus, targeting
SHP2 in LS may require different strategies. Herein, we
describe a detailed structural and mechanistic characterization
of the LS-associated SHP2 mutants (Y279C, A461T, G464A,
T468M, R498L, Q506P, and Q510E) covering all seven known
LS mutation sites.

■ MATERIALS AND METHODS

Cloning, Expression, and Purification of Proteins. The
SHP2 wild-type catalytic domain (CD, residues 224−528), the
full-length lacking the C-terminal tail (FL, residues 1−528),
and the N-SH2 domain (residues 4−103) were cloned into the
pET-21a+ vector using NdeI and XhoI restriction enzymes
(NEB), which generated recombinant proteins with a C-
terminal six-His tag. The SHP2 catalytic domains and full-
length constructs lacking the C-terminal tail containing
individual LS mutations (Y279C, A461T, G464A, T468M,
R498L, Q506P, and Q510E) were generated using the
QuikChange mutagenesis kit (Stratagene). All proteins were
expressed in Escherichia coli BL21(DE3). Proteins used for
kinetic or inhibition assays were purified using Ni-NTA resin
(Qiagen); the purities were >90% as determined by sodium
dodecyl sulfate−polyacrylamide gel electrophoresis (SDS−
PAGE) and Coomassie staining. Proteins used for crystallog-
raphy studies were first purified with Ni-NTA resin, followed by
sequential chromatography with a HiPrep 26 desalting column
(GE Healthcare), a cation exchange column packed with SP
Sepharose (GE Healthcare), and a Superdex 75 gel filtration
column (GE Healthcare). The purities were >95% as
determined by SDS−PAGE and Coomassie staining.

Enzyme Kinetic Analysis of Wild-Type SHP2 and Its LS
Mutants. Initial rate measurements for the enzyme-catalyzed
hydrolysis of p-nitrophenyl phosphate (pNPP) were conducted
at 25 °C in a pH 7.0 assay buffer (50 mM 3,3-dimethylglutarate,
1 mM DTT, 1 mM EDTA, and 150 mM NaCl). The assays
were performed in 96-well plates in a total reaction volume of
200 μL. Substrate concentrations ranging from 0.2Km to 5Km
were used to determine kcat and Km. Reactions were started by
the addition of an appropriate amount of enzyme to a 100 μL
pNPP solution. The reactions were quenched with 50 μL of 5
M sodium hydroxide, and the absorbance at 405 nm was
detected using a SpectraMax Plus 384 microplate spectropho-
tometer (Molecular Devices). The steady-state kinetic param-
eters were determined by fitting the data to the Michaelis−
Menten equation in SigmaPlot.
To determine the kcat/Km for pTyr-containing peptide

substrates, the reaction (0.5 mL) was conducted in a 1 mL
quartz cuvette at 25 °C in pH 7.0 assay buffer (50 mM 3,3-
dimethylglutarate, 1 mM DTT, 1 mM EDTA, and 150 mM
NaCl). The reaction rate was monitored by the increase in
fluorescence of the dephosphorylated peptide product at 305
nm with excitation at 280 nm on a PerkinElmer model LS50B
luminescence spectrometer.37 The reaction was performed at a
substrate concentration much lower than its Km, and the
enzyme concentration was at least 10 times lower than the
substrate concentration. Under this condition, the Michaelis−
Menten equation reduces to the equation v = (kcat/Km)[E][S].
The reaction is first-order with respect to [S], and the observed
apparent first-order rate constant is equal to (kcat/Km)[E],
which can be determined by fitting the reaction time course
data to a first-order rate equation in SigmaPlot. The kcat/Km
value is calculated from the first-order rate constant divided by
a given enzyme concentration.

Assay of the Inhibition of the SHP2 PTP Domain by
the N-SH2 Domain. PTP activity was assayed using pNPP as
a substrate at 25 °C in pH 7.0 assay buffer (50 mM 3,3-
dimethylglutarate, 1 mM DTT, 1 mM EDTA, and 150 mM
NaCl). The assays were performed in 96-well plates in a total
reaction volume of 200 μL. The reaction was initiated by the
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addition of enzyme (wild-type SHP2 or the LS SHP2 mutant
catalytic domain) to a reaction mixture containing pNPP and
the isolated SHP2 N-SH2 domain. For the determination of Ki,
the pNPP concentration was varied at three different
concentrations of the N-SH2 domain. The reaction rate was
measured using a SpectraMax Plus 384 microplate spectropho-
tometer (Molecular Devices). The Ki values were determined
by fitting the data using the EnzymeKinetics module in
SigmaPlot.
Crystallization, Data Collection, and Structure Deter-

mination. All crystals were grown at 20 °C in hanging drops
containing 1.5 μL of a protein solution with 1.5 μL of a
reservoir solution. Proteins were dissolved in a pH 7.8 Tris
buffer containing 20 mM Tris-HCl, 50 mM NaCl, 2 mM DTT,
and 1 mM EDTA. The reservoir solution and protein
concentration were optimized to yield high-quality crystals for
different LS SHP2 mutants, for example, 18% PEG3350 and
300 mM KF for A461T (10 mg/mL), 20% PEG3350 and 300
mM LiCl for G464A (8 mg/mL), 20% PEG3350 and 300 mM
KCOOH for T468M (8 mg/mL), 20% PEG3350 and 200 mM
KF for Q506P (8 mg/mL), and 18% PEG3350 and 200 mM
KF for Q510E (10 mg/mL). The crystals were transferred into
the cryoprotectant buffer, containing the same components in
the reservoir solution except with an increased concentration of
PEG3350 (30%), and were flash-frozen with liquid nitrogen.
Data were collected at beamline 19-BM (for T468M and
A461T) or 19-ID (for G464A, Q506P, and Q510E) at the
Advanced Photon Source (APS) and were processed with
HKL3000.38 The structures were determined by molecular
replacement with Molrep39 using the coordinates of our
previously reported SHP2 wild-type structure [Protein Data
Bank (PDB) entry 4DGP]36 as a search model. The structural
refinements were conducted iteratively using the phenix.refine
program in the PHENIX software suite.40

Hydrogen/Deuterium Exchange Mass Spectrometry.
Stock solutions of wild-type SHP2 and its mutants (residues 1−
528) were prepared in a 1H2O-based buffer (pH 7.8).
Deuterium exchange was initiated by 20-fold dilution of each
enzyme in a similar deuterium 2H2O buffer (pD 7.8). At set
deuterium exchange time points (10 s, 30 s, 1 min, 10 min, 30
min, and 60 min), the reaction was quenched by the addition of
a cold 1H2O-based 100 mM sodium phosphate buffer (pH 2.3)
at equal volume. For peptide-based mass spectrometry analysis,
the quench solution contained pepsin endoproteinase (Sigma)
that would make a pepsin:SHP2 ratio of 1.5:1 (w:w) during
digestion. The quenched sample was digested on ice for 4 min
and then loaded via an autosampler onto an XBridge C18 2.5
μm, 2.1 mm × 50 mm (Waters) column that was submerged in
ice. A Surveyor MS pump (Finnigan) was used to generate the
chromatographic gradients. Peptides were separated over time
using a steep gradient of acetonitrile (10 to 35% over 7.5 min)
and electrosprayed into an LTQ mass spectrometer (Finnigan).
Sequest (Thermo) was used to identify SHP2 peptic peptides.
Peptides were accepted for analysis on the basis of XCorr value
significance and identification in multiple sample runs. All
peptide-based samples were manually prepared and run in
triplicate with a general standard deviation of <0.2 Da per time
point. Unbiased peptide precursor ion peak envelope
centroiding was performed using HX-express.41 Significant
deuterium exchange differences in SHP2 mutants relative to
WT were mapped onto the SHP2 sequence and crystal
structure in a heat map format.

Cell Culture, Immunoblotting, and Immunoprecipita-
tion. HEK293 cells were cultured at 37 °C and 5% CO2 in
Dulbecco’s modified Eagle’s medium (Invitrogen) supple-
mented with 10% fetal bovine serum (HyClone). The WT or
SHP2 mutant (E76K, Y279C, A461T, G464A, T468M, R498L,
Q506P, Q510E, C459S, and Y279C/C459S) cloned in
mammalian expression vector pCN-HA, a modified version of
pcDNA3.1 that generated proteins with an N-terminal HA tag,
was transfected into HEK293 cells using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s instructions.
Twenty-four hours post-transfection, cells were serum-starved
overnight and then either left unstimulated or stimulated with
EGF (5 or 50 ng/mL) or 10 ng/mL HGF for various periods of
time (0, 30, and 60 min). All growth factors were obtained from
Sigma. For immunoblotting, the cell lysates were electro-
phoresed on a 10% polyacrylamide gel and the separated
proteins were transferred to a nitrocellulose membrane and
probed with anti-phospho-ERK1/2 (Cell Signaling), anti-
ERK1/2 (Cell Signaling), anti-Phospho-Paxillin (Tyr118)
(Cell Signaling), anti-Paxilin (BD Transduction Laboratories),
anti-HA (Santa Cruz), and anti-GAPDH (Santa Cruz)
antibodies followed by incubation with horseradish perox-
idase-conjugated secondary antibodies. The blots were
developed by the enhanced chemiluminescence technique
using the SuperSignal West Pico Chemiluminescent substrate
(Pierce). For immunoprecipitation, the cells were lysed on ice
for 30 min in lysis buffer [50 mM Tris-HCl (pH 7.4), 150 mM
NaCl, 1% Triton X-100, 10% glycerol, 10 mM NaF, and 1 mM
NaVO4] supplemented with a complete protease inhibitor
tablet (Roche). Cell lysates were cleared by centrifugation at
15000 rpm for 20 min. The lysate protein concentration was
estimated using a BCA protein assay kit (Pierce). Three
micrograms of HA antibody (Santa Cruz) was added to 1 mg of
cell lysate and incubated at 4 °C for 3 h with protein A/G-
agarose beads (Santa Cruz). After being washed three times
with lysis buffer, the protein complex was boiled with Laemmli
sample buffer and subjected to electrophoresis and immuno-
blotting. Representative results from at least two independent
experiments are shown.

■ RESULTS
LS-Associated SHP2 Mutants Exhibit Reduced Cata-

lytic Activity. On the basis of their locations in the PTP
domain, it has been suggested that LS SHP2 mutations may
harm SHP2 phosphatase activity. Previous studies were limited
to immunoprecipitated enzymes and/or substrates, and activity
measurements were conducted at a single substrate concen-
tration. We set out to determine the kinetic parameters for
wild-type SHP2 and LS SHP2 mutant-catalyzed reactions using
both a small molecule chromogenic substrate pNPP and pTyr-
containing peptides as substrates. To conduct rigorous kinetic
measurements, we expressed and purified the recombinant
SHP2 catalytic domain (CD, residues 224−528) and full-length
construct lacking the C-terminal tail (FL, residues 1−528) for
the wild type and seven LS mutants (Y279C, A461T, G464A,
T468M, R498L, Q506P, and Q510E). Previous studies have
shown that truncation of the C-terminus does not affect the
autoinhibition mechanism.14 Kinetic parameters for the
enzyme-catalyzed reaction were determined at pH 7.0 and 25
°C. Because pNPP is a small aryl phosphate that mimics pTyr,
its hydrolysis is sensitive only to structural perturbations to the
active site. Thus, results with pNPP will reveal the effects of LS
SHP2 mutations on the intrinsic phosphatase activity of SHP2.
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Table 1. Kinetic Parameters of Wild-Type SHP2 and Its Mutants with pNPP as a Substrate

CD (224−528) FL (1−528) fold of autoinhibition

enzyme kcat (s
−1) Km (mM) kcat (s

−1) Km (mM) (CD/FL)kcat (CD/FL)kcat/Km

WT 6.5 ± 0.3 4.3 ± 0.5 0.13 ± 0.02 3.4 ± 0.5 50 40
Y279C 0.56 ± 0.13 17.7 ± 1.3 0.025 ± 0.006 7.0 ± 0.7 22 9
A461T 0.0070 ± 0.0009 6.0 ± 0.6 0.0023 ± 0.0001 2.2 ± 0.1 3 1
G464A 0.071 ± 0.012 3.9 ± 0.2 0.018 ± 0.004 2.6 ± 0.3 4 3
T468M 0.090 ± 0.016 3.1 ± 0.5 0.0034 ± 0.0004 3.0 ± 0.2 26 26
R498L 0.038 ± 0.001 8.4 ± 0.4 0.039 ± 0.001 5.9 ± 0.1 1 1
Q506P 0.64 ± 0.11 4.5 ± 0.4 0.055 ± 0.016 2.4 ± 0.3 12 6
Q510E 0.033 ± 0.006 8.6 ± 0.9 0.017 ± 0.001 2.8 ± 0.1 2 1

Table 2. kcat/Km Values (×10−3 M−1 s−1) of Wild-Type SHP2 and Its Mutants with pTyr Peptides as Substrates and Fold
Autoinhibition Defined by (CD/FL)kcat/Km

enzyme Sprouty1/pY53 Paxillin/pY118 EGFR/pY992 Gab1/pY589

WT/CD 110 ± 0.9 123 ± 1.0 1167 ± 23 60 ± 0.7
WT/FL 5.1 ± 0.1 5.2 ± 0.2 95 ± 1.4 3.0 ± 0.07
fold autoinhibition 22 24 12 20
Y279C/CD 0.2 ± 0.004 0.08 ± 0.001 2.3 ± 0.01 0.1 ± 0.001
Y279C/FL 0.06 ± 0.003 0.04 ± 0.001 0.4 ± 0.003 0.04 ± 0.001
fold autoinhibition 3 2 6 3
T468M/CD 3.8 ± 0.06 4.2 ± 0.07 52 ± 1 1.6 ± 0.02
T468M/FL 0.08 ± 0.003 0.18 ± 0.008 3.53 ± 0.01 0.12 ± 0.002
fold autoinhibition 48 23 15 13

Table 3. Data Collection and Structural Refinement Statisticsa

A461T G464A T468M Q506P Q510E

Data Collection
space group P21212 P21212 P21 P21212 P21212
cell dimensions

a (Å) 54.3 55.5 45.3 54.5 55.3
b (Å) 206.7 204.9 209.3 222.2 219.2
c (Å) 41.9 44.5 56.1 40.9 41.7
α, β, γ (deg) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 95.9, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0

resolution (Å) 2.7 2.5 2.4 2.7 2.2
total no. of observations 68055 103779 142433 75697 119547
no. of unique observations 13063 17946 38926 14319 26886
completeness (%) 94.9 (74.1) 99.7 (99.9) 94.4 (73.1) 98.7 (96.3) 98.2 (92.7)
redundancy 5.2 (3.1) 5.8 (5.6) 3.7 (2.4) 5.3 (5.1) 4.4 (4.0)
⟨I⟩/σ 18.7 (4.2) 14.9 (1.9) 22.6 (1.9) 17.6 (1.7) 13.6 (1.6)
Rmerge (%) 12.2 (30.9) 16.1 (68.2) 8.5 (64.9) 13.8 (70.9) 13.5 (73.3)

Structural Refinement
resolution (Å) 2.7 2.5 2.4 2.7 2.2
no. of reflections 12985 17776 38210 14196 26094
Rwork/Rfree (%) 20.2/27.1 18.7/25.6 19.1/25.9 20.3/26.6 20.8/26.2
no. of atoms

protein 3996 3956 7824 3984 4039
water 55 131 330 55 219

B factor
protein 43.2 41.9 41.8 59.9 38.7
water 34.2 38.2 42.3 47.8 38.5

rmsd
bond lengths (Å) 0.009 0.008 0.008 0.009 0.008
bond angles (deg) 1.186 1.068 1.129 1.182 1.075

Ramachandran plot (%)
favored 91.9 95.6 94.3 93.8 95.3
allowed 7.2 3.3 4.9 5.4 4.5
disallowed 0.8 1.0 0.8 0.8 0.2

aEach data set was collected from a single crystal. Values in parentheses are for the highest-resolution shell.
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As shown in Table 1, the kcat of full-length SHP2 is only 2% of
that of the catalytic domain, which is consistent with the
structural finding that full-length SHP2 is in an autoinhibited,
closed conformation.14,36 The phosphatase activities of the LS
SHP2 mutant catalytic domains are lower than those of the
wild-type SHP2 counterpart, ranging from 10-fold (Q506P) to
930-fold (A461T). Interestingly, with the exception of R498L,
the kcat values of the full-length LS SHP2 mutants are still 2−
26-fold lower than those of their corresponding catalytic
domains. These results suggest that, similar to wild-type SHP2,
these full-length LS SHP2 mutants also exist in a closed,
autoinhibited conformation. Because the full-length and
catalytic domain constructs of R498L exhibit similar activity,
R498L may already exist in the open conformation.
To further investigate the effect of LS SHP2 mutations on

SHP2 activity, we also utilized more physiologically relevant
substrates, i.e., pTyr-containing peptides derived from putative
SHP2 substrate proteins, including EGFR/pY992 (DADE-
pY992LIPQQG),42 Sprouty1/pY53 (GSNEpY53TEGPS),43 Pax-
illin/pY118 (EEHVpY118SFPN),44 and Gab1/pY589 (DSEEN-
pY589VPMNPNL).45 These pTyr-containing peptides are
supposed to preferentially bind with the catalytic site as
substrates, but to minimize potential competition because of
binding of the pTyr peptide to the N-SH2 domain, we
determined the kcat/Km value, a measure of substrate specificity,
under conditions where substrate concentrations were much
lower than Km. The SHP2-catalyzed dephosphorylation of the
pTyr peptides was monitored by the increase in tyrosine
fluorescence at pH 7.0 and 25 °C, and kcat/Km was directly
calculated from the reaction progress curve.37 Table 2 lists the
kcat/Km values for two of the most recurrent LS SHP2 mutants,
Y279C and T468M. Similar to results obtained with pNPP, the
ability of the LS SHP2 mutants to catalyze the hydrolysis of
pTyr-containing peptides is significantly compromised. Also,
the full-length wild-type and LS SHP2 mutant presumably exist
in the autoinhibited state because their kcat/Km values are
considerably lower than those of their corresponding catalytic
domains. Finally, the relative preference for the peptide
substrates exhibited by the LS SHP2 mutants is similar to
that of the wild-type enzyme, indicating that LS SHP2
mutations do not alter SHP2 substrate specificity.
LS SHP2 Mutants Exist in the Closed Conformation,

but with Weakened Intramolecular N-SH2−PTP Inter-

domain Interaction. Given the diverse nature of LS SHP2
mutations, we believe that it is important to obtain three-
dimensional structures for all LS SHP2 mutants to fully
understand the molecular underpinnings responsible for the
disease. Following our previous structural analysis of wild-type
SHP2 and LS SHP2 mutant Y279C,36 we proceeded to
determine the crystal structures of the six other LS SHP2
mutants (A461T, G464A, T468M, R498L, Q506P, and
Q510E). Similar to earlier studies, the SHP2 constructs
(residues 1−528) encompass the two tandem SH2 domains
and the PTP domain. We acquired crystals for all LS SHP2
mutants and obtained diffraction data for A461T, G464A,
T468M, Q506P, and Q510E, but not R498L. The data
collection and structural refinement statistics for the five LS
SHP2 mutants are summarized in Table 3. Except for T468M,
which crystallized in the P21 space group with two molecules
per asymmetric unit, the other four mutants crystallized in the
P21212 space group with one molecule per asymmetric unit,
similar to wild-type SHP2 and the Y279C LS SHP2 mutant.36

To gain structural insight into LS SHP2 mutations, we
superimposed the structure of each mutant onto that of wild-
type SHP2 (Figure 1) and calculated the root-mean-square
deviation (rmsd) of Cα atoms (mutant vs wild type) for the
full-length protein, individual domain, or selected loops in
SHP2 (Table 4). As already reported,14,36 wild-type SHP2 is in
a closed conformation (Figure 1A): the D′E-loop in the N-SH2

Figure 1. Overall structures of wild-type SHP2 and six LS SHP2 mutants. (A) Closed conformation of SHP2 represented by the wild-type crystal
structure. N-SH2, C-SH2, and PTP domains are colored yellow, green, and blue, respectively. The D′E-loop in the N-SH2 domain and five loop
fragments (P-loop, pY-loop, WPD-loop, Q-loop, and E-loop) constituting the active pocket in the PTP domain are highlighted. (B) Structural
superimposition of A461T (yellow) and G464A (green) on wild-type SHP2 (gray). (C) Structural superimposition of Y279C (cyan), T468M
(purple), Q506P (blue), and Q510E (red) on wild-type SHP2 (gray).

Table 4. rmsd Values (mutant vs wild type, in angstroms) of
Cα Atoms Calculated by Superimposing the Mutant
Structure onto the Wild-Type SHP2 Structure

A461T G464A Y279C T468M Q506P Q510E

overall 1.33 1.30 0.42 0.72 0.43 0.57
N-SH2 domain 1.16 0.93 0.34 0.66 0.35 0.91
C-SH2 domain 0.46 0.34 0.29 0.43 0.36 0.35
PTP domain 1.12 0.59 0.34 0.42 0.27 0.34
D′E-loop 0.50 0.68 0.20 0.18 0.17 0.17
P-loop 0.26 0.13 0.16 0.18 0.11 0.18
pY-loop 0.20 0.10 0.12 0.13 0.11 0.10
WPD-loop 0.13 0.09 0.07 0.24 0.26 0.14
Q-loop 0.16 0.29 0.13 0.18 0.38 0.15
E-loop 3.73 1.28 0.29 0.21 0.21 0.27
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domain penetrates into the active site pocket walled by five
loops (known as the P-loop, pY-loop, WPD-loop, Q-loop, and
E-loop) in the PTP domain, physically occluding the active site.
In agreement with the prediction from our kinetic experiments,
LS SHP2 mutants Y279C, A461T, G464A, T468M, Q506P,
and Q510E are indeed found in an autoinhibited, closed
conformation. The rmsds for the full-length structures range
from 0.418 to 1.332 Å among all six mutants, indicating that the
overall structures of the LS SHP2 mutants are similar to that of
the wild-type enzyme (Figure 1B,C). Interestingly, LS SHP2
mutations in the P-loop induce the largest structural
perturbations, especially among residues in the E-loop (Figure
1B), as evidenced by the relatively higher rmsd values for
A461T and G464A (∼1.3 Å). Fairly small rmsd values were
observed for the other four mutants (Y279C, T468M, Q506P,
and Q510E), suggesting that these mutations cause no obvious
structural alterations in the overall structures (Figure 1C).
Although Y279C, A461T, G464A, T468M, Q506P, and

Q510E are still in the closed conformation, closer comparison
of the mutant and wild-type structures reveals that these
mutations destabilize the intramolecular N-SH2−PTP inter-
domain interaction. The Y279C mutation (Figure 2A)
abrogates the interaction between the phenol group and the
side chains of D61 and Y62 in the D′E-loop. The loss of the
phenol also eliminates its van der Waals and polar interactions
with K364 and K366, shifting the terminal amino group of
K364 away from the D′E-loop, which sequentially displaces the
guanidinium of R362 and the imidazole ring of H426 from the
D′E-loop. The end result for Y279C is weakened van der Waals
and polar interactions between the D′E-loop in the N-SH2
domain and the pY-loop, WPD-loop, and E-loop in the PTP
domain. The A461T mutation (Figure 2B) introduces steric
repulsion with Y62 in the D′E-loop and Y279 in the pY-loop
and pushes both residues away from the active site. Displace-
ment of Y279 triggers repositioning of the R278 side chain,

disrupting the R278-bridged H-bond network (i.e., R278 with
the side chain of S365 and backbone oxygens of K366, G332,
and C333) that functions to restrain the E-loop for a well-
defined active pocket in wild-type SHP2. As a result, the E-loop
in A461T moves away from the active site, losing its interaction
with the D′E-loop in the N-SH2 domain. The G464A mutation
(Figure 2C) creates a strong steric clash with the backbone
oxygen of G60, which triggers local conformational changes in
G60 and the adjacent T59. These conformational changes drive
the D′E-loop ∼1 Å from the active site and weaken van der
Waals and polar interactions between T59 and R362, abolishing
the interaction of the E-loop with the D′E-loop. The T468M
mutation (Figure 2D) causes steric repulsion with W423 in the
WPD-loop, pushing the WPD-loop and nearby E-loop slightly
away from the D′E-loop and therefore weakening the N-SH2−
PTP interdomain interaction. In the Q506P mutant (Figure
2E), the loss of the glutamine side chain weakens van der Waals
interaction with nearby D′E-loop residues. More importantly,
the Q506P mutation eliminates two interdomain H-bonds
formed by Q506 with the side chain of N58 and main chain of
A72, thus weakening the N-SH2−PTP interdomain interaction.
The Q510E mutation (Figure 2F) does not induce any
noticeable structural changes, but unlike the amide group in
glutamine, the carboxylate side chain in a glutamic acid cannot
form a hydrogen bond with the backbone oxygen of G60 in the
D′E-loop, leading to a weakening of the N-SH2−PTP
interdomain interaction. Collectively, these structural observa-
tions provide direct evidence that the N-SH2−PTP inter-
domain interaction is destabilized in LS-associated SHP2
mutants. Consequently, LS SHP2 mutants may have an
inherently stronger tendency, compared to that of the wild-
type enzyme, to undergo the transition from a closed,
autoinhibited conformation to an open, activated state.

Molecular Basis for the Catalytic Impairment of the
LS-Associated SHP2 Mutants. In addition to revealing an

Figure 2. LS SHP2 mutation weakens the N-SH2−PTP interdomain interaction. The weakened interactions are represented by steric and/or
electrostatic alterations within mutants (A) Y279C, (B) A461T, (C) G464A, (D) T468M, (E) Q506P, and (F) Q510E. In each panel, wild-type
SHP2 is colored gray and the specific LS mutant green. The mutation site is colored red. Polar interactions that existed in the wild type but
disappeared in the mutant are denoted with yellow dashed lines.
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Figure 3. Structural basis for the impaired phosphatase activity associated with LS SHP2 mutants. (A) Active site pocket of wild-type SHP2 and six
LS mutants. The surface is colored by electrostatic potential. The altered surfaces in the LS mutant are highlighted with a green dashed line, and
areas with decreased positive electrostatic potential are highlighted with red dashed lines. (B) The Q506P mutation abolishes the ability to
coordinate the attacking nucleophilic water in the E-P hydrolysis step. The complex structures of PTP1B·VO4 (PDB entry 3I8O, cyan, which mimics
the transition state of E-P hydrolysis) and the SHP2 Q506P mutant (PDB entry 4OHH, green) were superimposed onto that of wild-type SHP2
(PDB entry 4DGP, gray) to illustrate the abrogated hydrogen bonds (indicated by purple dashed lines with distances labeled). The black (or red for
highlighting the LS mutation) residue labels are for SHP2 and the blue labels for PTP1B. The yellow dashed lines represent the well-defined H-bond
network in the transition state. The representation scheme in panel B is also applied to panels C−F. (C) The Q510E mutation abrogates an H-bond
with structurally conserved water and destabilizes the transition state of E-P formation and E-P hydrolysis. The complex structure of PTP1B·
EGFR(Y992)-peptide·VO4 (PDB entry 3I7Z, cyan, which mimics the transition state of E-P formation) or PTP1B·VO4 (PDB entry 3I8O, cyan) and
that of the SHP2 Q510E mutant (PDB entry 4OHI, green) were superimposed onto that of wild-type SHP2 (PDB entry 4DGP, gray) to illustrate
the abrogated hydrogen bonds (indicated by purple dashed lines with distances labeled). (D) The A461T mutation introduces strong steric
repulsions with the bound pTyr and destabilizes the transition state of E-P formation. The complex structures of PTP1B·EGFR(Y992)-peptide·VO4
(PDB entry 3I7Z, cyan) and the SHP2 A461T mutant (PDB entry 4OHD, green) were superimposed onto that of wild-type SHP2 (PDB entry
4DGP, gray) to illustrate the steric repulsions (highlighted by red dashed lines with distances labeled). (E) The G464A mutation introduces strong
steric repulsion with Q506 and structurally conserved water in the transition state of E-P hydrolysis. The complex structures of PTP1B·VO4 (PDB
entry 3I8O, cyan) and the SHP2 G464A mutant (PDB entry 4OHE, green) were superimposed onto that of wild-type SHP2 (PDB entry 4DGP,
gray) to illustrate the steric repulsion (highlighted by red dashed lines with distances labeled). (F) The T468M mutation introduces strong steric
repulsion with W423 within the closed WPD-loop. The complex structures of PTP1B·EGFR(Y992)-peptide·VO4 (PDB entry 3I7Z, cyan) and the
SHP2 T468M mutant (PDB entry 4OHL, green) were superimposed onto that of wild-type SHP2 (PDB entry 4DGP, gray) to illustrate the steric
repulsion (highlighted by red dashed lines with distances labeled).
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altered “molecular switch” mechanism for the LS-associated
SHP2 mutants, the availability of the mutant structures also
provides an opportunity to examine the molecular basis for the
impaired phosphatase activity associated with the LS SHP2
mutants. The PTP-catalyzed reaction proceeds via a two-step
mechanism involving a covalent intermediate.46 Following
substrate binding, nucleophilic attack by the active site cysteine
(C459 in SHP2) occurs on the substrate phosphorus atom in
the first catalytic step, leading to the formation of a
thiophosphoryl enzyme intermediate (E-P).47,48 E-P formation
is assisted by a conserved aspartic acid (D425 in SHP2) in the
WPD-loop, functioning as a general acid, to neutralize the
buildup of a negative charge on the leaving group.49,50 In the
second catalytic step, E-P hydrolysis by a water molecule is
assisted by D425, which functions as a general base, with
subsequent release of the free enzyme and inorganic
phosphate.51,52 In addition, the two conserved glutamine
residues (Q506 and Q510 in SHP2) in the Q-loop are
important for the precise placement of the water nucleophile
for efficient E-P hydrolysis.53,54 The PTPs further accelerate E-
P formation and hydrolysis by preferentially binding the
pentacoordinated transition states with the guanidinium side
chain of the active site arginine (R465 in SHP2) and the main
chain amides of the P-loop residues (C459SAGIGR465).55−58

Y279 in the pY-loop is involved in π−π stacking interaction
with the benzene ring of pTyr and sets the depth of the PTP
active site pocket.59 Our previous Y279C structure shows how
this mutation alters the molecular surface of the active site,
thereby weakening substrate binding and impairing catalysis.36

Similarly, the current crystal structures also uncover the
molecular basis of the impaired activity for other LS SHP2
mutants. Q506 and Q510 are invariant among the PTPs and
are located in a surface loop (Q-loop) near the active site.
Q506P and Q510E mutations do not alter the shape of the
active site pocket but appear to decrease the positive
electrostatic potential within the active site (Figure 3A).
Previous structural and mutagenesis analyses of the cognate
glutamine residues in Yersinia PTP and PTP1B have shown that
Q506 is important for the optimal positioning of the
nucleophilic water in the hydrolysis of the E-P intermediate,
while Q510 plays an important role for both E-P formation and
breakdown through a water-mediated hydrogen bonding
network with the phosphoryl moiety.53,54,60 Indeed, structural
superimposition of PTP1B·VO4 (PDB entry 3I8O),60 which
mimics the transition state for E-P hydrolysis, and SHP2/
Q506P onto the wide-type SHP2 structure revealed that the
Q506P mutation disrupts the hydrogen bond between the side
chain of Q506 and the apical oxygen in vanadate, which is
equivalent to the oxygen atom of the attacking nucleophilic

water in the E-P hydrolysis step (Figure 3B). Similar structural
comparison of PTP1B·EGFR/pY992-peptide·VO4 (PDB entry
3I7Z),60 which mimics the transition state of E-P formation, or
PTP1B·VO4 with SHP2/Q510E showed that the Q510E
mutation abrogates a hydrogen bond with a conserved
structural water, which interacts with the apical oxygen and
one of the equatorial oxygens in the oxyanion (Figure 3C).
Thus, the Q510E mutant destabilizes the transition states for
both of the chemical steps.
A461 and G464 reside within the “signature motif”

CXAGXGR that defines the PTP family and comprises the
P-loop in PTP structures. As shown in Figure 3A, the active site
pocket in A461T or G464A is significantly altered, being much
broader and less electropositive especially around the catalytic
C459 because of the displacement of the E-loop. Thus, A461T
or G464A may not be able to bind and precisely position pTyr
for efficient catalysis. To improve our understanding of the
impact of these P-loop mutations on SHP2 catalysis, we
superimposed the structures of PTP1B·EGFR/pY992-peptide·
VO4 and SHP2/A461T onto the SHP2 wild-type structure. As
shown in Figure 3D, substitution of A461 with a Thr imposes a
strong steric clash (highlighted by red dashed lines with
distances labeled in red) with the bound pTyr and destabilizes
the transition state for E-P formation, therefore impairing the
activity of the A461T mutant. Superimposition of the structures
of PTP1B·VO4 and SHP2/G464A onto the SHP2 wild-type
structure revealed why G464A has a lower phosphatase activity.
Unlike the situation in the wild-type SHP2 structure, Q506
(Q262 in PTP1B) in SHP2/G464A is unable to make the
necessary conformational change to be in position to
coordinate water-mediated E-P hydrolysis (Figure 3E), because
of an unfavorable obstruction by the substituted Ala at residue
464. As shown in Figure 3A, the T468M mutation introduces
steric repulsion with W423, which drives the WPD-loop ∼2 Å
from active site and creates a slightly broader active site pocket.
More importantly, structural superimposition of PTP1B·
EGFR/pY992-peptide·VO4 and SHP2/T468M onto the wild-
type SHP2 structure showed that substitution of T468 with
Met leads to strong steric hindrance with W423 (W179 in
PTP1B) within the closed WPD-loop, which would prevent
WPD-loop closure and efficient general acid/base catalysis by
D425. Taken together, our structural analyses illuminate the
molecular basis for the reduced catalytic activity that is
characteristic of the LS-associated SHP2 mutants. Although
further experimentation will be required to substantiate these
conclusions, catalytic impairments induced by the LS mutations
appear to range from weakened substrate binding to misalign-
ment of active site residues and weakened transition-state
stabilization (Figure 4).

Figure 4. Schematic diagram showing the impact of LS-associated SHP2 mutations on the SHP2-catalyzed reaction.
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The LS-Associated SHP2 Mutants Have an Increased
Propensity To Adopt the Open Conformation. Our
structural studies described above indicate that although LS-
associated SHP2 mutants are in the closed conformation, the
N-SH2−PTP interdomain interaction is significantly compro-
mised in the mutants. To furnish additional evidence that this
interdomain interaction is weakened in the LS SHP2 mutants,
we measured the ability of the isolated N-SH2 domain to
inhibit the phosphatase activity of the wild-type and LS SHP2
mutant catalytic domains. We previously established that the N-
SH2 domain competitively inhibits SHP2 PTP domain-
catalyzed pNPP hydrolysis.36 The competitive nature is in
line with the structural observation that the N-SH2 domain
interacts with the PTP domain, thus blocking access of the
substrate to the active site. Our prediction was that the
dissociation constants (Ki values) for the N-SH2 domain and
the LS SHP2 mutant PTP domain binary complexes would be
larger than that for the binding of N-SH2 to the wild-type
catalytic domain. As a control, the N-SH2 domain bearing the
GOF E76K mutation displayed no inhibitory activity against
the SHP2 PTP domain even at 200 μM N-SH2/E76K, which is
consistent with the expectation that the full-length E76K
mutant is in a constitutive active and open conformation. With
the exception of A461T, which had an extremely low activity
that prevented accurate measurement of the inhibition
constant, the Ki values for the N-SH2 domain-mediated
inhibition of LS SHP2 mutant PTP domains were determined
and are summarized in Table 5. In support of the prediction

from the steady-state kinetic data (Table 1) that R498L may
already exist in the open conformation, the N-SH2 domain
failed to inhibit the R498L PTP reaction at a concentration of
200 μM. Moreover, the results indicate the LS SHP2 mutant
PTP domains were less inhibited by the N-SH2 domain as
evidenced by the 1.5−98-fold increase in the Ki values
compared to that of the wild-type enzyme (Table 5).
Collectively, the inhibition data confirm the structural
observations that revealed that the interdomain interaction
between the N-SH2 and PTP domains is weakened in the LS-
asociated SHP2 mutants.
On the basis of the results from our structural and kinetic

studies, it appears that, relative to wild-type SHP2, the LS
SHP2 mutants have a stronger propensity to undergo the
transition from a closed, autoinhibited conformation to an
open, activated form. To gather more direct evidence of the
increased “openness” for the LS mutants, we investigated the
overall solution dynamic properties of wild-type SHP2, GOF
mutant E76K, and all seven LS SHP2 mutants using hydrogen/
deuterium exchange mass spectrometry (H/DX-MS). The H/

DX-MS technique allows analysis of protein conformational
dynamics in solution by measuring the exchange of backbone
amide hydrogens with the deuterium bulk solvent.61,62 We
identified 38 peptides for each protein, covering 92% of the
SHP2 sequence (residues 1−528). We determined backbone
amide H/D exchange for each protein, calculated the
differences in deuterium uptake between the mutant and
wild-type SHP2 for each peptide at each time point, and
generated both two-dimensional and three-dimensional “heat
maps” showing the differential H/D exchange experienced by
the mutants and the wild-type enzyme (Figure 5).
The GOF E76K mutant was used as a reference for H/D

exchange magnitude and location experienced in a “true” SHP2
open conformation. Figure 5 shows that in comparison with
wild-type SHP2, a number of peptides in E76K, located in the
interface between the N-SH2 and PTP domains, display
significant increases in their levels of deuterium incorporation.
Within the N-SH2 domain, these peptides reside in the D′E-
loop and adjacent β-strands B−D, D′, E, and F, structural
elements known to participate in binding the PTP domain.
Within the PTP domain, these peptides represent the catalytic
loops at the active site, including the P-loop, pY-loop, E-loop,
and Q-loop. Given the lack of inhibition of the PTP domain by
N-SH2/E76K, the observed increase in the level of deuterium
uptake surrounding the N-SH2 and PTP binding site suggests
that the interdomain binding interface is solvent-exposed,
providing direct evidence that E76K exists in an open and
active conformation. Notably, LS mutant R498L exhibits an H/
D exchange profile very similar to that of the E76K mutant
(Figure 5), indicating that like E76K, R498L is also in the open
conformation. H/D exchange data show that the six other LS-
associated SHP2 mutants also experience increased deuterium
uptake in the interface between the N-SH2 and PTP domains,
albeit to a lesser degree in comparison with the peptides
observed in E76K. The overall extents of H/D exchange
decrease in the following order: R498L > Q510E ≈ Q506P >
G464A > Y279C > A461T ≈ T468M [generally in accordance
with the degree by which the catalytic domain is inhibited by
the N-SH2 domain (Table 5), suggesting that the weakened N-
SH2−PTP interaction in LS SHP2 mutants may be responsible
for the increased dynamics in the N-SH2−PTP interdomain
interface]. The increased deuterium uptake in the N-SH2−PTP
interface in LS SHP2 mutants indicates that this interface is
more dynamic and solvent-exposed, which supports the notion
that LS SHP2 mutants may have an inherently stronger
tendency, compared to the wild-type enzyme, to undergo the
transition from a closed, autoinhibited conformation to an
open, activated state.

LS-Associated SHP2 Mutations Engender GOF Phe-
notypes. Results from our kinetic, structural, and biophysical
experiments suggest that LS mutations destabilize the closed
SHP2 conformation and increase the propensity of the mutants
to adopt the open conformation. It has been suggested that
there is negative cooperativity between N-SH2 domain’s
intramolecular binding with the PTP domain and its
intermolecular association with a pTyr-containing scaffolding
protein.14 Thus, engagement of the N-SH2 domain to a specific
pTyr peptide will weaken its autoinhibitory interaction with the
PTP domain, whereas a weakened intramolecular N-SH2−PTP
interaction may enhance binding of N-SH2 with its pTyr-
containing partners. Given the observed decrease in the
strength of the N-SH2−PTP interaction, LS SHP2 mutants
are expected to show increased affinity for adapter proteins. A

Table 5. Ki Values for the Isolated N-SH2 Domain-Mediated
Inhibition of the PTP Domain of Wild-Type SHP2 and Its
LS Mutants

Ki (μM)

WT 1.3 ± 0.1
Y279C 11.3 ± 0.3
A461T not detectable
G464A 66.0 ± 5.8
T468M 2.0 ± 0.1
R498L no inhibition at 200 μM
Q506P 41.9 ± 1.3
Q510E 128 ± 4
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major SHP2 binding partner is Grb2-associated binder-1
(Gab1),63 which becomes tyrosine-phosphorylated upon
growth factor stimulation. Through its N-SH2 domain binding
to the pTyr sequence motif in Gab1, SHP2 is directed to its
physiological substrate(s) to drive RAS-ERK1/2 pathway
activation.64,65 To demonstrate that the LS SHP2 mutants
indeed display enhanced binding affinity for Gab1, we
investigated the effects of wild-type SHP2, GOF E76K, and
all seven LS SHP2 mutants on epidermal growth factor (EGF)
signaling in human embryonic kidney 293 (HEK293) cells as
previously described.35,36,66 Consistent with the prediction that
the N-SH2 domain of LS SHP2 mutants has a higher affinity
for pTyr ligands, the LS SHP2 mutants as well as the GOF
E76K mutant, which is known to favor the open conformation,
more readily formed complexes with Gab1 upon EGF

stimulation (Figure 6A). Overall, the relative affinity for Gab1
displayed by the LS SHP2 mutants tracks well with the extent
of H/D exchange experienced in the N-SH2−PTP interface
(Figure 5), which is a measure of the openness for SHP2.
Importantly, the enhanced Gab1 binding exhibited by the LS
SHP2 mutants persisted up to 60 min after EGF stimulation,
when no association was notable between wild-type SHP2 and
Gab1. Thus, the LS SHP2 mutants can preferentially bind the
upstream adaptor Gab1 (compared to wild-type SHP2) and
stay longer on the scaffolding protein. We speculated that the
increased residence time on Gab1 could prolong substrate
turnover by the LS SHP2 mutants, which could compensate for
their reduced phosphatase activity. To this end, we assessed the
ability of wild-type and mutant SHP2 enzymes to dephosphor-
ylate Paxillin/pY118, a physiological substrate of SHP2

Figure 5. LS SHP2 mutants have conformational dynamics and propensities for the open conformation higher than those of the wild type. (A) Two-
dimensional conformational dynamics heat map, characterized by differences in deuterium uptake between mutant and wild-type SHP2 on 38
peptides at various time points (0.2, 0.5, 1, 10, 30, and 60 min). (B) Differential hydrogen/deuterium exchange experienced by the LS and E76K
SHP2 mutants, relative to the wild-type enzyme. Differential exchange data at the 10 min time point are mapped on the wild-type SHP2 crystal
structure (PDB entry 4DGP). Peptides in SHP2 mutants are color-coded on the basis of an increased or decreased level of exchange relative to that
of the wild type as described for panel A.
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required for EGF-stimulated ERK1/2 activation.44 Figure 6B
shows that, like the GOF E76K mutant, the LS SHP2 mutants
were more efficient in dephosphorylating Paxillin/pY118.
SHP2/Gab1 binding and SHP2-mediated dephosphorylation

of Paxillin/pY118 are two recognized signaling events shown to
be important for EGF-induced ERK1/2 phosphorylation.44,64

Given the higher affinity for Gab1 and increased level of
Paxillin/pY118 dephosphorylation by the LS SHP2 mutants, LS
SHP2 mutations are expected to engender a GOF effect on
ERK1/2 activation. To determine whether LS SHP2 mutants
are capable of activating the ERK1/2 pathway, we measured
EGF-induced ERK1/2 phosphorylation in HEK293 cells
overexpressing wild-type and mutant SHP2 (Figure 6C).
Compared to that of wild-type SHP2-expressing cells, the
level of ERK1/2 phosphorylation was further elevated and
sustained in cells expressing the GOF E76K mutant as well as
the LS SHP2 mutants. To make sure that the observed GOF

effects exhibited by the LS mutants were not unique to EGF
signaling, we also examined hepatocyte growth factor (HGF)-
induced SHP2−Gab1 binding and subsequent ERK1/2
activation in cells overexpressing wild-type and mutant SHP2.
Similar to EGF signaling, the SHP2−Gab1 interaction is also
essential for HGF-mediated ERK1/2 activation downstream of
the Met receptor.67,68 Not surprisingly, the GOF E76K mutant
and all LS SHP2 mutants exhibit enhanced Gab1 binding
(Figure 6D) and ERK1/2 activation in HEK293 cells, especially
at the later time point of 60 min following HGF stimulation
(Figure 6E). Finally, to address the issue of whether the
residual phosphatase activity associated with the LS SHP2
mutants is required for the GOF phenotype, we generated a
double mutant in which the phosphatase activity of the Y279C
mutant is eliminated by replacing the catalytic Cys459 with Ser
and examined its effect on Gab1 binding and ERK1/2
activation upon either EGF or HGF stimulation. As shown in

Figure 6. LS SHP2 mutations engender GOF effects on the RAS-ERK1/2 signaling pathway. (A) LS SHP2 mutants preferentially associate with and
stay longer with Gab1 under EGF stimulation. (B) LS SHP2 mutants dephosphorylate the physiological substrate paxillin more efficiently. (C) LS
SHP2 mutations enhance EGF-induced ERK1/2 activation. (D) LS SHP2 mutants preferentially associate with and stay longer with Gab1 under
HGF stimulation. (E) LS SHP2 mutations enhance HGF-induced ERK1/2 activation. All results shown in this figure were representative of two to
four independent experiments; the numbers below each panel are means ± the standard deviation, and the statistical significance is indicated (*P <
0.05; **P < 0.01). Quantification and normalization were performed as follows. Band intensity was quantified using ImageJ, and the Gab1/HA-
SHP2 (for panels A and D), pPaxillin(pY118)/total Paxillin (for panel B), and pERK1/2/total ERK1/2 (for panels C and E) ratios were normalized
to the ratio in wild-type SHP2-overexpressing cells.
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Figure 7, although the catalytically dead double mutant Y279C/
C459S still showed preferred and sustained binding with Gab1,
it was unable to activate ERK1/2, indicating that the residual
phosphatase activity associated with the LS SHP2 mutant is
required for enhanced ERK1/2 activation. As a control, the
C459S mutant was also unable to support growth factor-
stimulated ERK1/2 activation. Collectively, the results show
that LS SHP2 mutations engender GOF phenotypes and
enhanced signaling through the ERK1/2 pathway is a general
feature for all LS SHP2 mutants.

■ DISCUSSION
SHP2 is an allosteric enzyme regulated by an intramolecular
switch between its N-SH2 and PTP domains. Unlike most
other PTPs that terminate the action of PTKs, SHP2 promotes
growth factor-mediated RAS-ERK1/2 activation.6−8 Germline
mutations in SHP2 are known to cause 90 and 50% of LS and
NS cases, respectively,69 two of several autosomal-dominant
conditions collectively classified as “RASopathies”, which are
characterized by GOF mutations in components of the RAS-
ERK1/2 pathway.70 NS-associated SHP2 mutations cluster
within the interface between the N-SH2 and PTP domains,
which confer GOF properties to SHP2, presumably by
alleviating the autoinhibitory effect of the N-SH2 domain
upon the PTP active site.28,30−33 Thus, NS-associated SHP2
mutants display increased phosphatase activity and promote
sustained activation of the RAS-ERK1/2 pathway.29,30,71

Similarly, GOF mutations in other components of the RAS-
ERK1/2 pathway, such as RAS, RAF, and SOS1, have been
identified in NS patients lacking SHP2 mutations.72−79

Moreover, GOF mutations in RAS, RAF, or MEK1/2 also
cause phenotypically overlapping Costelo and Cardiofaciocuta-
neous syndromes.80−82 These observations underscore the fact
that aberrant activation of the RAS-ERK1/2 pathway plays a
key role in developing RASopathies.83

In contrast to NS-associated SHP2 mutations, LS-associated
SHP2 mutations alter seven residues in the active site of the
PTP domain, yielding mutant enzymes with reduced
phosphatase activity.24,25,32,34−36 Because of the impaired
catalytic activity, LS-associated SHP2 mutants were initially
suggested to be LOF variants.35 However, from a genetic
perspective, it is worth noting that the LS-associated SHP2
alleles are specific missense mutations. If their sole effect in
transducing their phenotype was to reduce or eliminate SHP2’s
phosphatase activity, the existence of some haploinsufficient
alleles such as nonsense mutations might be anticipated, but
none has been observed.24,25 One report suggested that LS-
associated SHP2 mutants can act as dominant negatives that
inhibit growth factor-evoked ERK1/2 activation in transfection
assays.35 Zebrafish embryos injected with mRNA encoding LS
SHP2 mutations do not show ERK1/2 activation in neural
crest,84 and the Y279C knock-in mouse model shows Akt
hyperactivation, but not ERK1/2 hyperactivation, in the
heart.85 Other studies reveal that ubiquitous expression of

Figure 7. Residual phosphatase activity of LS SHP2 mutants is required for ERK1/2 activation. The catalytically dead Y279C/C459S double mutant
was unable to activate ERK1/2 activation upon either EGF (A) or HGF (B) stimulation. The results shown in this figure are representative of two
independent experiments; the numbers below each panel are means ± the standard deviation, and the statistical significance is indicated (*P < 0.05;
**P < 0.01). Quantification and normalization processes are the same as those described in the legend of Figure 6.
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two of the most recurrent LS-causing SHP2 alleles (Y279C and
T468M) in Drosophila leads to GOF phenotypes that lead to
heightened EGF-mediated RAS-ERK1/2 pathway activation,86

which were similar to those observed with NS-causing SHP2
mutant transgenic flies.31 Importantly, experiments with the
Y279C/R465M transgenic fly suggest that the LS SHP2
mutant’s residual phosphatase activity was required for the
GOF developmental effects.86 Our data with a catalytically dead
double mutant Y279C/C459S provide further evidence that the
residual phosphatase activity associated with the LS SHP2
mutant is required for enhanced ERK1/2 activation (Figure 7).
Consistent with findings in the Drosophila LS model, MEK1
and basal ERK1/2 phosphorylation levels were elevated in
induced pluripotent stem cells from LS patients.87 Importantly,
GOF mutations in RAF176 and BRAF78 are also found in LS
patients, indicating that like all RASopathies, enhanced RAS-
ERK1/2 signaling is responsible for the pathogenesis of LS, as
well.
How do catalytically impaired LS-associated SHP2 mutants

engender GOF phenotypes? To begin to answer this question,
we took a multidisciplinary approach, involving a combination
of enzyme kinetics, site-directed mutagenesis, X-ray crystallog-
raphy, H/D exchange mass spectrometry, and cell biology to
characterize the structural and biochemical properties of LS-
associated SHP2 mutants encompassing all seven known LS
SHP2 mutation sites. Rigorous kinetic analyses with both
pNPP- and pTyr-containing peptide substrates indicate that LS
SHP2 mutations lead to significantly reduced SHP2 phospha-
tase activity. Detailed comparison of the mutant crystal
structures with those of wild-type SHP2 and PTP1B in
complex with a substrate and/or a transition-state mimetic
reveals that the observed catalytic impairments in the LS-
associated SHP2 mutants are caused by a number of
mechanisms, including weakened substrate binding, perturba-
tion of active site residue alignment, and weakened transition-
state stabilization. Importantly, we found that although the LS-
associated SHP2 mutants still exist in the closed autoinhibited
conformation, the intramolecular N-SH2−PTP interdomain
interaction in the mutants is significantly weakened, leading to
mutant enzymes with an inherently higher propensity,
compared to that of the wild-type enzyme, to be activated by
engagement of its N-SH2 domain with pTyr motifs in growth
factor receptors and scaffolding proteins and to adopt an open,
activated state. As a consequence, LS-associated SHP2 mutants
bind upstream activators (e.g., Gab1) preferentially and stay
longer with scaffolding adapters, thus prolonging specific
substrate turnover (e.g., Paxillin), which compensates for the
reduced phosphatase activity and engenders GOF phenotypes
through sustained activation of the RAS-ERK1/2 pathway. It
should also be noted that SHP2 is known to be tyrosine-
phosphorylated on two C-terminal Tyr residues (Tyr542 and
Tyr580), which can apparently activate SHP2 by intramolecular
SH2 binding.88−90 It is thus possible that an increased level of
interaction between the N-SH2 domain and the C-terminal
tyrosine phosphorylation sites may also contribute to LS SHP2
mutant-mediated hyper-ERK1/2 activation. Overall, this study
provides new insight into the molecular basis of LS-associated
SHP2 mutations as well as the biochemical mechanism that
underlies the pathological processes mediated by the LS SHP2
mutants. Our results also serve as a useful framework for
studying other disease-associated SHP2 mutations that may
have an impact on future drug development targeting SHP2.

■ ASSOCIATED CONTENT
Accession Codes
Coordinates and structure factors for LS SHP2 mutants have
been deposited in Protein Data Bank as entries 4OHD for
A461T, 4OHE for G464A, 4OHL for T468M, 4OHH for
Q506P, and 4OHI for Q510E.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: zyzhang@iu.edu.
Author Contributions
Z.-H.Y. and R.-Y.Z. contributed equally to this work.

Funding
This work was supported by National Institutes of Health
Grant RO1 CA69202.
Notes
The authors declare no competing financial interest.

■ ABBREVIATIONS
EGF, epidermal growth factor; ERK, extracellular signal-
regulated kinase; Gab1, Grb2-associated binder-1; GOF, gain-
of-function; H/DX-MS, hydrogen/deuterium exchange mass
spectrometry; HGF, hepatocyte growth factor; LOF, loss-of-
function; LS, LEOPARD syndrome; NS, Noonan syndrome;
pNPP, p-nitrophenyl phosphate; PTK, protein tyrosine kinase;
PTP, protein tyrosine phosphatase; pTyr, phosphotyrosine;
rmsd, root-mean-square deviation; SH2, Src homology 2.

■ REFERENCES
(1) Hunter, T. (2009) Tyrosine phosphorylation: Thirty years and
counting. Curr. Opin. Cell Biol. 21, 140−146.
(2) Tonks, N. K. (2006) Protein tyrosine phosphatases: From genes,
to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833−846.
(3) Zhang, Z.-Y. (2001) Protein tyrosine phosphatases: Prospects for
therapeutics. Curr. Opin. Chem. Biol. 5, 416−423.
(4) Arena, S., Benvenuti, S., and Bardelli, A. (2005) Genetic analysis
of the kinome and phosphatome in cancer. Cell. Mol. Life Sci. 62, 2092−
2099.
(5) Ventura, J. J., and Nebreda, A. R. (2006) Protein kinases and
phosphatases as therapeutic targets in cancer. Clin. Transl. Oncol. 8,
153−160.
(6) Neel, B. G., Gu, H. H., and Pao, L. (2003) The ‘Shp’ing news:
SH2 domain-containing tyrosine phosphatases in cell signaling. Trends
Biochem. Sci. 28, 284−293.
(7) Chan, R. J., and Feng, G. S. (2007) PTPN11 is the first identified
proto-oncogene that encodes a tyrosine phosphatase. Blood 109, 862−
867.
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