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Abstract

Genetic studies have shifted to sequencing-based rare variants discovery after decades of

success in identifying common disease variants by Genome-Wide Association Studies

using Single Nucleotide Polymorphism chips. Sequencing-based studies require large sam-

ple sizes for statistical power and therefore often inadvertently introduce batch effects

because samples are typically collected, processed, and sequenced at multiple centers.

Conventionally, batch effects are first detected and visualized using Principal Components

Analysis and then controlled by including batch covariates in the disease association mod-

els. For sequencing-based genetic studies, because all variants included in the association

analyses have passed sequencing-related quality control measures, this conventional

approach treats every variant as equal and ignores the substantial differences still remaining

in variant qualities and characteristics such as genotype quality scores, alternative allele

fractions (fraction of reads supporting alternative allele at a variant position) and sequencing

depths. In the Alzheimer’s Disease Sequencing Project (ADSP) exome dataset of 9,904

cases and controls, we discovered hidden variant-level differences between sample

batches of three sequencing centers and two exome capture kits. Although sequencing cen-

ters were included as a covariate in our association models, we observed differences at the

variant level in genotype quality and alternative allele fraction between samples processed

by different exome capture kits that significantly impacted both the confidence of variant

detection and the identification of disease-associated variants. Furthermore, we found that

a subset of top disease-risk variants came exclusively from samples processed by one

exome capture kit that was more effective at capturing the alternative alleles compared to

the other kit. Our findings highlight the importance of additional variant-level quality control
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for large sequencing-based genetic studies. More importantly, we demonstrate that auto-

matically filtering out variants with batch differences may lead to false negatives if the batch

discordances come largely from quality differences and if the batch-specific variants have

better quality.

Introduction

Genetic studies have shifted from Single Nucleotide Polymorphism (SNP) chip-based

genome-wide association study (GWAS) of common variants to exome and whole-genome

sequencing-based associations of rare variants. The large samples required for statistical power

in sequencing-based searches for rare disease-associated variants often inadvertently introduce

batch effects and systematic biases. Batch effects refer to sources of variation arising not from

the targeted biological differences between sample classes but from differences between experi-

mental or technological groups of samples [1]. If not adequately addressed in the analysis,

batch effects reduce statistical power and lead to both false-positive and false-negative associa-

tions. Practices in large sequencing studies that commonly introduce batch effects include

dividing samples among multiple sequencing centers [2, 3], collecting or preparing samples

under different protocols [4], and extracting exomes using different target capture kits [4, 5].

For example, the Alzheimer’s Disease Sequencing Project (ADSP) sequenced exomes of more

than 10,000 cases and controls to identify genetic factors associated with Alzheimer’s disease

(AD) [6]. Sequencing of ADSP samples took place at three centers. Center 1 prepared sequenc-

ing libraries using the Illumina Rapid Capture Exome kit, while Center 2 and Center 3 used

the Roche NimbleGen VCRome v2.1 kit.

A standard approach to manage batch effects is to identify and visualize batch effects using

Principal Components Analysis (PCA) of the variant genotypes, and then either to adjust asso-

ciation models using batch covariates or to exclude batch-associated variants from further

analysis [7–11]. However, this approach, which was developed during the SNP chip GWAS

era, may not be sufficient for large genetic studies by sequencing [12]. The qualities and char-

acteristics of variants identified by sequencing vary substantially even when all variants

included in the association analysis have passed quality control thresholds such as those

defined by the Variant Quality Score Recalibration (VQSR) model from the Genome Analysis

Toolkit (GATK) [13]. Some quality-related characteristics differ between samples at the single-

variant level. For example, exome kit capture efficiency may differ between the reference and

alternative alleles, and the template amplification and sequencing chemistry differ between

variants located in GC-rich and AT-rich regions. These variations will lead to differences in

depth of coverage (DP), genotype quality (GQ) and alternative allele fraction (AAF; fraction/

percentage of the sequencing reads aligned to the variant positions that support the alternative

allele), etc. Because the variants that pass VQSR are all treated equally for disease association

analysis, the impact of differences in individual variant-level qualities and characteristics is

often masked.

We studied the ADSP cohort of 9,904 exomes and found that conventional PCA of the

genotypes did not reveal the magnitude of the batch differences between samples sequenced at

three centers and processed by two exome target capture kits. Furthermore, genetic association

analyses that adjusted for center batches did not sufficiently remove hidden batch differences

at the variant level. We found differences between capture kits in both variant GQ and AAF

that significantly impacted the identification of AD-associated risk variants. Our findings
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highlight the importance of additional variant-level quality control to help researchers find

truly meaningful genetic variants that are masked by batch effects.

Results

Description of dataset

The Sequence Read Archive (SRA) files containing the raw sequencing data of 10,993 AD

cases and controls were downloaded from dbGaP (https://www.ncbi.nlm.nih.gov/gap/) and

converted to FASTQ read files using the SRA Toolkit (https://www.ncbi.nlm.nih.gov/books/

NBK158899). Access to this public dataset was approved by dbGaP and the Institutional

Review Boards of Mayo Clinic and the University of Illinois. The Alzheimer’s cases satisfied

the National Institute on Aging and the Alzheimer’s Association criteria [14] for definite, pos-

sible or probable Alzheimer’s disease. These cases included patients with and without APOE
[15] risk alleles. The controls were at least 60 years old, showed no sign of dementia based on

cognitive testing, and scored low on risk assessment [6]. Of the 10,993 samples, 9,904 passed

sample-level quality control (QC) [16] based on the following criteria: variant call rate>95%

per sample for SNPs and >90% for INDELs; sequencing depths >10x for at least 90% of the

variants; APOE genotype matching between cohort meta-data and sequenced genotypic data;

average transition/transversion ratio > 2.75 in the exonic regions; FREEMIX sample contami-

nation estimate < 0.02 [17]; sex check (PLINK F estimate > 0.7 for males and< 0.3 for

females); no first-, second- or third-degree relatedness as defined by the KING-robust algo-

rithm [18]; and removal of duplicate samples. Of the 9,904 samples passing sample-level QC,

Center 1 contributed 4,427 samples; Center 2 contributed 3,260; and Center 3 contributed

2,217. No samples were sequenced by multiple centers. Of the 1,584,609 variants detected in

9,904 ADSP exomes, 166,947 variants passed VQSR and the additional filtering steps detailed

in the methods section.

Population substructure explains sample clusters in PCA

The 9,904 ADSP subjects that passed sample-level QC were homogeneous based on 99.8%

reporting European ancestry [16, 19] and on comparison to 1000 Genomes reference samples

(S1 Fig). However, PCA of the ADSP genotypes using a pruned set of high-quality common

variants (see Methods section) identified multiple sample clusters (Fig 1A) despite the homo-

geneous European ancestry of the study subjects. To determine whether the observed sample

clusters represented population substructure or batch effects, we performed a de novo estimate

using Admixture [20] that identified 9 sub-populations. As shown in Fig 1B, these 9 sub-popu-

lations overlapped with and accounted for the sample clusters identified in PCA. The sample

batches of three different sequencing centers were not clearly visible by PCA, nor were gender

or case/control status (Fig 1C–1E). Therefore, the sample clusters visualized by PCA can be

explained largely by population substructure alone, at first glance. To control for this substruc-

ture, eigenvectors from the first four principal components were included as covariates in the

association analysis. All 9,904 subjects were included in both the PCA and the association

analysis.

Association analysis

Of the 1,584,609 variants detected in 9,904 exomes, 166,947 variants passed the filtering crite-

ria for association analysis detailed in the methods section (S2 Fig). Two association models

were used. Model 1 adjusted for sequencing center and the first four principal components

(PCs) from PCA underlying population substructure. Model 2 adjusted for sequencing center,
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the first 4 PCs, sex and APOE genotype. Neither model included age as a covariate because age

confounds with disease status in this dataset by design. ADSP controls were deliberately

selected to be younger than cases to favor the detection of disease-causal variants that are

absent from older but cognitively normal individuals, and therefore previous ADSP

Fig 1. Principal Component (PC) eigenvector plots using genotypes of a pruned set of 16,187 high-quality common variants for 9,904 ADSP

individuals. Each data point represents a single individual. Clustering of samples for a particular variable signifies genotypic similarity between

individuals for the trait represented by that color. (A) PCs of the genotypes. (B) PCs color coded based on sub-population. (C) PCs color coded based

on center. (D) PCs color coded based on gender. (E) PCs color coded based on AD phenotype. As expected, clustering is apparent only by sub-

population.

https://doi.org/10.1371/journal.pone.0249305.g001
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association analyses have identified no significant variants under models adjusting for age

[19], a finding that we replicated.

Combined, the association models identified 52 SNPs associated with AD with exome-wide

significance, including 8 SNPs reported by the ADSP consortium [19] and 7 SNPs in the

known AD genes APOE and TOMM40 (S3 Fig). In this paper, we focus on 1) the 29 “novel”

SNPs that remained significant after adjustment for APOE and sex and that have not previ-

ously been linked to AD, as well as on 2) the 7 SNPs in APOE and TOMM40 as positive con-

trols (Table 1).

Batch effects between exome capture kits among AD-associated variants

Additional analyses of the 36 SNPs listed in Table 1 revealed that the significance of association

came more from the individuals sequenced at Center 1 using the Illumina exome capture kit

than from those sequenced at Center 2 and Center 3 using the NimbleGen exome capture kit.

Association analyses of center-specific cohorts demonstrated that this center bias occurred in

previously known AD SNPs in APOE and TOMM40 (Fig 2A) as well as in the 29 novel SNPs

(Fig 2B). The significance of AD association of the 29 novel SNPs came exclusively from the

Center 1 cohort processed using the Illumina exome kit (Fig 2B), which may explain why the

ADSP consortium did not report these SNPs.

We next studied these 29 novel SNPs using PCA. The SNP genotypes showed no differences

between sub-populations or genders (Fig 3A and 3B). However, we observed a clear and signif-

icant difference between samples captured by the Illumina kit (Center 1) vs. those captured by

the Roche NimbleGen kit (Center 2 and Center 3) (Fig 3C), consistent with the observation

that these SNPs are only associated with AD in Center 1 samples as shown in Fig 2B. Since our

association models included sequencing center as a covariate, the batch differences visualized

in Fig 3C clearly were due to other factors, probably at the individual-variant level.

Identification of variant-level differences in genotype quality and

alternative allele fraction between two exome capture kits

As the PCA plot of the 29 novel SNPs showed significant batch differences of genotypes

between samples processed by two exome capture kits, we next examined variant-level factors

that could explain why exclusively the Illumina kit-captured exomes yielded this set of highly

significant novel SNPs. Although all analyzed SNPs passed VQSR quality thresholds, we specu-

lated that there remained significant differences in qualities and characteristics at the individ-

ual-variant level between exome kits that might explain the greater significance of association

in samples captured by one exome kit vs. the other. First, we compared several quality mea-

sures of the variants called in cohorts captured by the two kits. For the 166,947 SNPs used in

the association analyses, we studied the distribution of the three most common variant quality

parameters: GQ, DP and AAF (Fig 4). The distributions of mean GQ, DP, and AAF from

166,947 SNPs were very similar between capture kits. For the 29 SNPs of interest, the GQ (Fig

4A) and DP (Fig 4B) were also similar between capture kits. Interestingly, we observed a bi-

modal distribution of AAF values from both capture kits, with the first mode closer to zero

indicating approximately equal percentage of reads supporting reference and alternative alleles

at the variant positions, and a second mode significantly deviated from zero and centered

around log2 value of -6. This second mode represented variants with significantly lower per-

centage of reads supporting the alternative alleles than the reference alleles. More importantly,

the AAFs of the 29 SNPs captured by the Illumina exome kit are mostly located close to the

first mode and have a more balanced ratio of reference to alternative allele-supporting reads,

while the AAFs of the 29 novel SNPs captured by the NimbleGen kit are located closer to the
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second mode. This observation implies that the NimbleGen kit lost most of the alternative

alleles during exome capture, leading to the lack of variant calls in the NimbleGen cohort.

Indeed, in the ADSP control group, the population minor allele frequencies (MAFs) of these

29 SNPs in the Illumina-captured cohort are generally higher compared to those in the

Table 1. Seven SNPs in APOE and TOMM40 (indicated by � of the SNP IDs) and 29 novel SNPs reaching exome-wide significance (p< 3.0 x 10−7, Bonferroni-cor-

rected cutoff of p< 0.05 / # tests): Population minor allele frequency (MAF) in cases and controls, MAF in controls processed by Illumina or NimbleGen exome cap-

ture kit, and MAF in Non-Finish European (NFE) cohort of the ExAC database (http://exac.broadinstitute.org/).

Chr Position Ref Alt p-value

(Model 1)

p-value

(Model 2)

Gene SNP ID ADSP

Cases

MAF

ADSP

Controls

MAF

ADSP Controls

MAF, Illumina

ADSP Controls

MAF, NimbleGen

ExAC

AAF, NFE

19 45411941 T C 2.4E-185 N/A APOE rs429358� 0.2293 0.0701 0.074 0.067 0.1504

19 45396144 C T 4.7E-103 0.7097 TOMM40 rs11556505� 0.2023 0.0879 0.085 0.090 0.0875

19 45395714 T C 2.4E-75 0.1439 TOMM40 rs157581� 0.2766 0.1629 0.165 0.162 0.2326

19 45412079 C T 1.8E-48 N/A APOE rs7412� 0.042 0.0988 0.116 0.087 0.0813

15 75913319 T G 4.3E-45 2.7E-35 SNUPN rs1004285543 0.0825 0.0255 0.063 0.001 NA

17 25973604 A C 2.6E-45 1.4E-34 LGALS9 rs761436847 0.0823 0.0256 0.056 0.006 0.0906

6 36979483 T G 1.7E-39 1.6E-29 FGD2 rs769719224 0.0998 0.0404 0.072 0.019 0.0294

14 99976645 A C 4.1E-36 7.5E-28 CCNK rs745936510 0.0899 0.0348 0.068 0.013 0.0713

13 114188430 C T 4.7E-38 2.2E-27 TMCO3 rs77834374 0.1068 0.0459 0.080 0.024 0.1336

14 99976639 G C 9.4E-36 3.7E-26 CCNK rs778243462 0.0932 0.0372 0.071 0.015 0.0808

17 25973598 A C 4.3E-25 1.1E-21 LGALS9 rs760143837 0.0472 0.014 0.033 0.002 0.0243

14 77706020 A C 9.7E-28 6.3E-21 TMEM63C rs774212969 0.0577 0.019 0.036 0.008 0.009

19 45397229 G A 9.6E-21 0.3137 TOMM40 rs1160983� 0.0173 0.0416 0.045 0.039 0.0718

11 117280516 A C 7.9E-29 2.5E-20 CEP164 rs756182128 0.0748 0.0296 0.050 0.016 0.081

3 42739737 T G 5.7E-25 9.7E-20 HHATL rs763168412 0.0539 0.0182 0.034 0.008 0.0919

3 48451952 A C 3.2E-24 2.7E-19 PLXNB1 rs770786389 0.0562 0.02 0.037 0.009 0.0255

19 45397307 C T 1.5E-18 0.928 TOMM40 rs112849259� 0.0308 0.0107 0.005 0.014 0.0011

12 56622883 A C 4.3E-24 1.2E-17 NABP2 rs757798976 0.0714 0.0301 0.054 0.014 0.0476

2 85662149 A C 4.0E-21 4.3E-16 SH2D6 rs748669078 0.068 0.0309 0.044 0.022 0.0026

19 10946797 G C 6.4E-21 2.5E-15 TMED1 rs767166604 0.0421 0.0128 0.029 0.002 0.0007

14 105932775 G C 5.5E-21 3.1E-15 MTA1 rs782227993 0.0627 0.0259 0.047 0.012 0.0208

6 29429950 A C 1.1E-19 3.6E-15 OR2H1 rs746691570 0.0402 0.0132 0.022 0.007 0.0207

11 117280522 A C 6.5E-21 3.3E-14 CEP164 rs758240656 0.0529 0.0198 0.037 0.009 0.0768

2 85662154 A C 4.9E-18 4.0E-14 SH2D6 rs760146451 0.0617 0.0288 0.040 0.021 0.0018

13 88330245 A C 3.1E-17 1.1E-13 SLITRK5 rs773717935 0.0277 0.0065 0.014 0.002 3.1E-05

19 45409167 C G 9.7E-13 0.3854 APOE rs440446� 0.3332 0.3817 0.361 0.395 0.4346

19 10946802 T C 1.2E-16 3.1E-12 TMED1 rs776909029 0.0366 0.0117 0.028 0.001 0.0009

9 34564740 A C 6.5E-16 3.6E-12 CNTFR rs774039930 0.0516 0.0222 0.039 0.011 0.0008

3 108474687 T G 1.4E-15 5.8E-12 RETNLB rs199707443 0.0328 0.0107 0.025 0.001 0.0493

19 43025485 T G 2.6E-15 7.7E-12 CEACAM1 rs763190977 0.0921 0.0523 0.107 0.016 0.0026

3 31659462 A T 4.8E-17 9.2E-12 STT3B rs74346226 0.0891 0.0514 0.076 0.035 0.131

12 109719316 T G 9.1E-12 2.1E-10 FOXN4 rs760573591 0.0309 0.0115 0.025 0.003 1.5E-05

8 145112936 T C 6.8E-14 5.0E-10 OPLAH rs781948612 0.0331 0.0114 0.026 0.002 0.0364

19 42799299 T C 5.7E-12 1.4E-09 CIC rs745695673 0.019 0.0043 0.011 0.000 0

13 111164389 A C 7.2E-12 1.6E-08 COL4A2 rs199702442 0.0517 0.0274 0.041 0.018 0.0285

22 30951295 T G 2.0E-11 1.8E-08 GAL3ST1 rs762634521 0.0204 0.0056 0.013 0.001 0.028

Model 1 adjusted for sequencing center and the first four PCs underlying population substructure. Model 2 adjusted for sequencing center, the first 4 PCs, sex and

APOE genotype.

https://doi.org/10.1371/journal.pone.0249305.t001
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NimbleGen-captured cohort, and the MAFs from the Illumina-captured cohort more closely

resemble those in the Non-Finish European (NFE) population of the ExAC database (http://

exac.broadinstitute.org/) (Table 1; Fig 5). This observation supports our hypothesis of more

effective capture of the alternative alleles by the Illumina kit.

To further investigate variant quality differences between capture kits beyond the top 29

SNPs, we calculated distributions of log2 ratios of mean GQ, DP, and AAF between capture

kits for all 166,947 variants (S4 Fig). We divided these variants into two groups: (1) the 10% of

variants with the largest differences in GQ, DP, or AAF between two capture kits (5% at each

of the two tails); and (2) the remaining 90% of variants. The PCA plots show that the 10% of

variants with the biggest quality differences clearly contributed to the batch differences

between the two exome capture kits (Fig 6A). Intriguingly, dividing these SNPs into those with

better quality in Illumina-captured samples (right tail of the 5% variants; Fig 6B) and those

with better quality in NimbleGen-captured samples (left tail of the 5% variants; Fig 6C)

Fig 2. Sequencing center specific association p-values of SNPs that reached exome-wide significance (denoted by the dashed horizontal lines) in

the full-dataset analysis. (A) Seven SNPs in TOMM40 and APOE. (B) Twenty-nine novel SNPs.

https://doi.org/10.1371/journal.pone.0249305.g002
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demonstrated that the batch differences came mostly from the latter. We observed no obvious

batch contribution from the 90% of variants with similar GQ, DP, or AAF (Fig 6D).

Discussion

We analyzed 9,904 exomes from ADSP to study the impact of batch effects on variant calling

and association analysis. We focused on the known batches of three different sequencing cen-

ters and two exome capture kits. At first, no batch differences between sequencing centers or

exome capture kits were visible from the PCA plots, and visually we were able to attribute all

sample clusters in PCA to population substructure (Fig 1B). Sequencing center was included

as a covariate in our association analyses; however, exome capture kit was not included in the

association models because it confounds with sequencing center and therefore is not an inde-

pendent variable. Besides the two models described in this paper, we analyzed the data using a

third model which included age as a covariate. This third model identified no AD-associated

variants because age confounds with disease status by design. Our results from Model 3 are

similar to those reported by the ADSP consortium. Our association analyses identified 29

novel SNPs in addition to variants in previously known AD genes including APOE and

TOMM40 as well as variants reported by the ADSP consortium [19]. These 29 SNPs exempli-

fied the impact of batch effects that were later attributed to the differences between the two

exome capture kits. First, the significance of association with AD came exclusively from the

Fig 3. PC eigenvector plots of genotypes at 29 exome-wide significant SNPs. Each data point represents a single individual. Clustering of samples for

a particular variable indicates genotypic similarity between individuals for the trait represented by that color. (A) PCs color coded based on sub-

population. (B) PCs color coded based on gender. (C) PCs color coded based on capture kit. The NimbleGen-captured samples cluster tightly together,

indicating their genotypic similarity that is distinct from the Illumina-captured samples.

https://doi.org/10.1371/journal.pone.0249305.g003
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samples processed by the Illumina exome kit at Center 1, while those processed by the Nimble-

Gen kit at either Center 2 or Center 3 lacked significance (Fig 2B). Second, PCA of these 29

SNPs clearly showed separation of the samples according to capture kit (Fig 3C). The qualities

of the variants between the two captured kits were similar overall at first glance but signifi-

cantly different for a substantial number of variants (Figs 4 and 6). The fact that the majority

of the variants had similar quality measures suggested that batch effects impacted individual

variants rather than all variants.

Further analyses of the 29 SNPs of interest (Fig 4) pinpointed the difference in AAF (Alter-

native Allele Fraction; percent of reads supporting alternative allele) as a source of batch differ-

ences between the Illumina- and NimbleGen- processed cohorts. Although the distributions of

the quality parameters GQ, DP, and AAF among all variants showed no differences between

capture kits, the AAF of the 29 novel SNPs in particular were strikingly higher within the Illu-

mina-processed cohort (Fig 4C), suggesting a batch effect that impacted individual variants

rather than all variants. In addition, we observed a batch difference in GQ among the top 10%

most different variants between the two capture kits (Fig 6A) and among the variants with bet-

ter overall quality in the NimbleGen kit (Fig 6C). It is clear that the NimbleGen kit did not

effectively capture the alternative alleles for these 29 SNPs, which implies that the variant call-

ing of Illumina-captured was more reliable, and that the AD association of these 29 SNPs

unique to the Illumina exome kit is likely real. We speculate that in previous publications the

Fig 4. Density plots of variant quality parameters between two exome capture kits. Mean values were computed across all samples for each variant.

The solid lines show the distributions of all 166,947 variants used in the association analyses, and the scattered dots represent the 29 novel SNPs. (A)

Density plot for mean genotype quality (GQ). (B) Density plot for mean read depth (DP). (C) Density plot for mean alternative allele fraction (AAF).

https://doi.org/10.1371/journal.pone.0249305.g004
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ADSP consortium applied an undisclosed filtering step to exclude variants with discordant sig-

nificance between cohorts processed at different sequencing centers and/or by different exome

capture kits, which would explain why these 29 SNPs have not been reported (e.g. [19]). Addi-

tional investigation of the genes connected to these 29 SNPs supports this speculation. Multiple

genes underlying these 29 SNPs have previously been linked to neural function or pathology,

including Transmembrane P24 Trafficking Protein 1 (TMED1; rs767166604, association

p = 7.22 x 10−15 for Illumina kit cohort; rs776909029, p = 3.25 x 10−11), Plexin B1 (PLXNB1;

rs770786389, p = 7.49 x 10−23), Capicua Transcriptional Repressor (CIC; rs745695673, p = 3.70

x 10−9), Centrosomal Protein 164 (CEP164; rs756182128, p = 5.66 x 10−25; rs758240656,

p = 1.94 x 10−16), and Cyclin K (CCNK; rs745936510, p = 3.98 x 10−30; rs778243462, p = 1.50 x

10−29). TMED1 is reported to interact with Amyloid Precursor Protein (APP) [21], whose

cleavage into amyloid beta generates one of the key components of AD-associated pathological

protein aggregation [22]. PLXNB1 influences amyloid beta load [23], and CIC is a transcrip-

tional repressor whose inactivation promotes gliomagenesis, the formation of glial tumors in

the brain [24]. CEP164 binds to TTBK2, a kinase that phosphorylates tau [25] and contributes

to neurodegeneration in frontotemporal dementia [26]. Finally, copy-number mutations in

Fig 5. Minor Allele Frequency (MAF) of 29 exome-wide significant SNPs in AD control exomes processed by two capture kits and in the ExAC

Non-Finnish European (NFE) population.

https://doi.org/10.1371/journal.pone.0249305.g005
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the transcriptional regulator CCNK have been associated with neurodevelopmental abnormali-

ties [27].

Because not all batch effects are created equal, no universal approach can manage all batch

effects in every study. For large sequencing-based genetic studies, differences from sample

storage/preparation methods, sequencing library construction protocols such as the choice of

exome capture kits, and bioinformatics pipelines all result in batch differences that are poten-

tially associated with data quality differences. The default approach today is to require concor-

dant variant significances from all major batches and to ignore disease-associated variants if

Fig 6. PC eigenvector plots of genotypes at variants lying in different sections of quality-metric ratio distributions. Each data point represents a

single individual, color coded according to capture kit. (A) PCs of variants in either 5% tail. (B) PCs of variants in right 5% tail. (C) PCs of variants in

left 5% tail. (D) Variants in middle 90% of distributions. Variants in the tails, in particular the left 5% tail (better quality in NimbleGen kit), show clear

separation by capture kit in both cases and controls.

https://doi.org/10.1371/journal.pone.0249305.g006
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the signals were observed in one batch only. This practice will lead to potential false negatives.

Instead, the key is to search for the source of batch-specific variant significance by checking

variant-level quality parameters including, but not limited to, variant genotyping quality, map-

ping quality of the reads, sequencing depth, alternative allele fractions, base qualities, and the

concordance of the MAF in the control cohort with public variant databases. As we demon-

strated in our study, if the batch effects can be attributed to quality differences, the batch-asso-

ciated variants should not be automatically discarded. We recommend that variants impacted

by batch effects be included in validation studies using a different dataset or by wet lab func-

tional assays.

Conclusions

In summary, we discovered batch effects at the individual-variant level resulting from differ-

ences in GQ and AAF between different exome capture kits. In particular, we found that the

signal of some variants most significantly associated with AD came exclusively from samples

processed by one exome capture kit that was more effective at capturing the alternative alleles

compared to the other kit. In general, a subset of variants with the biggest disparities in GQ

and AAF values between the two exome capture kits contributed to the remaining batch

effects. Our findings highlight the importance of additional variant-level quality control for

large sequencing-based genetic studies. More importantly, we demonstrated that automatically

filtering out variants with batch differences may lead to false negatives if the batch discor-

dances come largely from quality differences and if the variants from one batch have better

quality scores.

Methods

Ethics approval and consent to participate

All aspects of the study were approved the Institutional Review Boards of both Mayo Clinic

and University of Illinois at Urbana-Champaign. This study was also approved by dbGAP.

Written informed consent was obtained from all participants and surrogates by the ADSP

consortium.

Variant calling

The paired-end sequence reads were aligned to the human reference genome build 37 using

Novoalign (http://www.novocraft.com) (default parameters), which was selected on the basis

of its greater accuracy in read placement relative to other methods [28, 29] and its lack of prior

application to this dataset for association testing (e.g. [19, 30]). The alignment files were then

sorted by read position using Novosort (http://www.novocraft.com), realigned around small

insertions and deletions (INDELs) using Picard (https://broadinstitute.github.io/picard/), and

subjected to base recalibration using the Genome Analysis Toolkit (GATK) version 3.4 [31].

Variant calling followed GATK’s best practices guidelines for germline variants (https://gatk.

broadinstitute.org/hc/en-us): per-sample variant calling on the realigned, recalibrated BAM

files was performed using HaplotypeCaller, and multi-sample joint genotyping of all 9,904

samples was performed using GenotypeGVCFs. Variant calling was conducted only on the

exome regions common between the two exome capture kits (Illumina Rapid Capture Exome

kit and NimbleGen VCRome v2.1 kit). Variants were annotated by SnpEff [32] and ANNO-

VAR [33].
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Ancestry estimation

We implemented a series of filtering steps to select a pruned set of high-quality variants from

the 1,584,609 variants detected across the cohort. Variants were excluded if they (1) failed

VQSR; (2) lay within the highly variable HLA, LCT, 8p and 17q regions; (3) had MAF below

5% or deviation from Hardy-Weinberg Equilibrium below p< 1.0 E-4; or (4) had linkage dis-

equilibrium r2 value above 0.2 within 0.1 megabase sliding windows. In total, 16,187 variants

passed all filters, and 12,100 variants overlapped with variants detected in the 1000 Genomes

samples of known ethnicities. The genotypes of the ADSP samples were combined with those

of the 1000 Genomes samples at these 12,100 loci. PCs of the genotypes were then computed

and plotted using the software plinkQC (https://meyer-lab-cshl.github.io/plinkQC/). The first

four PCs of the ADSP genotypes had eigenvalues above 1 and were retained as covariates in

the association analyses.

Sub-population estimation

The software Admixture [20] was used to estimate sub-population number from the ADSP

data de novo, using the 16,187 variants described above. Sub-population k values between 1

and 20 were tested using default settings. A value of 9 produced the lowest cross-validation

standard error, indicating that 9 sub-populations best fit the data.

Variant-level quality control for association analyses

Several steps were undertaken to minimize the number of false-positive variant calls prior to

running the association models. The Variant Quality Score Recalibration (VQSR) step imple-

mented in GATK uses machine learning algorithms to compute new, well-calibrated quality

scores for each variant based on the annotations of a high-quality subset of the analyzed data.

In accordance with GATK Best Practices for whole-exome data, the variables included in the

VQSR model consisted of QD, MQ, MQRankSum, ReadPosRankSum, FS, SOR and Inbree-

dingCoeff for SNPs; and QD, MQRankSum, ReadPOsRankSum, FS, SOR and Inbreeding-

Coeff for INDELs [31]. A sensitivity threshold of 99.5 was used for SNPs and 99.0 for INDELs.

Detected variants were excluded from association analysis if they failed VQSR, deviated signifi-

cantly (p< 1.0 x 10−6) from Hardy-Weinberg equilibrium (HWE) in the control samples, or

had an alternative allele call supported by fewer than 10 reads across the cohort (S2 Fig).

Association tests, statistical model and variant filtering

After quality control, association testing using disease status (case or control) as the phenotype

was performed on the variants under an additive logistic regression model implemented in

Plink 1.9 [34]. PCs were calculated using Plink. The association tests were conducted on all

9,904 samples together for the full-cohort analysis, as well as on sets of samples stratified by

sequencing center for the center-based association analyses. Variants were considered exome-

wide statistically significant at the Bonferroni-corrected threshold of p< 0.05 / # tests, as in

[19]. Only bi-allelic SNPs with a recalibrated variant quality score (VQSLOD) > 0 were

retained for further analysis.

Supporting information

S1 Fig. Principal Component (PC) eigenvector plot of combined 1000 Genomes and ADSP

genotypes. Each data point represents a single individual. 1000 Genomes reference individuals

are color-coded by ancestry. ADSP samples are shown in black. The position of ADSP samples

relative to the 1000 Genomes reference samples indicates their genotypic similarity, which
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reflects ancestry. Most ADSP samples cluster near European reference samples (e.g. Finland

and Spain).

(DOCX)

S2 Fig. Number of QCed variants used for association analysis, and their overlap among

samples from three sequencing centers. These variants totaled 120,572 from the Center 1

samples; 108,390 from the Center 2 samples; and 98,542 from the Center 3 samples. Approxi-

mately 70% of variants were shared among samples from all three sequencing centers. The

larger number of variants detected in Center 3 samples was likely due to the larger number of

individuals sequenced by Center 1 compared to the other two centers.

(DOCX)

S3 Fig. Log-transformed p-values of all 52 SNPs reaching exome-wide significance under

any association model (largest p-value shown for each SNP). The red vertical line denotes

exome-wide statistical significance (p< 3.0 x 10−7).

(DOCX)

S4 Fig. Distributions of log-adjusted ratios of mean quality metrics for QCed variants

shared between capture kits. Mean values were computed across all samples for each variant.

Solid vertical lines demarcate the boundaries separating the 5% tails from the middle 90% of

the distribution. The scattered dots represent the positions of the top 29 SNPs within the distri-

butions. Almost all top SNPs lie far to the right of the mean AAF ratio distribution, indicating

that these variants are highly discrepant between capture kits.

(DOCX)
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ven G. Younkin, Nilüfer Ertekin-Taner, Rosa Rademakers.

Methodology: Daniel P. Wickland, Jason P. Sinnwell, Matthew E. Hudson, Liudmila Ser-

geevna Mainzer, Joanna M. Biernacka.

Resources: Matthew E. Hudson, Liudmila Sergeevna Mainzer, Yan W. Asmann.

Software: Daniel P. Wickland.

Supervision: Matthew E. Hudson, Liudmila Sergeevna Mainzer, Joanna M. Biernacka, Yan W.

Asmann.

Visualization: Daniel P. Wickland.

Writing – original draft: Daniel P. Wickland.

PLOS ONE Variant-level batch effects in sequencing studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0249305 April 16, 2021 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249305.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249305.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249305.s004
https://doi.org/10.1371/journal.pone.0249305


Writing – review & editing: Daniel P. Wickland, Yan W. Asmann.

References
1. Goh WW, Wang W, Wong L. Why batch effects matter in omics data, and how to avoid them. Trends

Biotechnol. 2017; 35(6):498–507. https://doi.org/10.1016/j.tibtech.2017.02.012 PMID: 28351613

2. Koire A, Katsonis P, Lichtarge O. Repurposing germline exomes of the Cancer Genome Atlas demands

a cautious approach and sample-specific variant filtering. Pacific Symp Biocomput. 2016; 21:207–18.

PMID: 26776187

3. Rasnic R, Brandes N, Zuk O, Linial M. Substantial batch effects in TCGA exome sequences undermine

pan-cancer analysis of germline variants. BMC Cancer. 2019; 19(1):1–10. https://doi.org/10.1186/

s12885-018-5219-3 PMID: 30606139

4. Buckley AR, Standish KA, Bhutani K, Ideker T, Lasken RS, Carter H, et al. Pan-cancer analysis reveals

technical artifacts in TCGA germline variant calls. BMC Genomics. 2017; 18(1):1–15. https://doi.org/10.

1186/s12864-016-3406-7 PMID: 28049423

5. Wang VG, Kim H, Chuang JH. Whole-exome sequencing capture kit biases yield false negative muta-

tion calls in TCGA cohorts. PLoS One. 2018; 13(10):1–14. https://doi.org/10.1371/journal.pone.

0204912 PMID: 30281678

6. Beecham GW, Bis JC, Martin ER, Choi SH, DeStefano AL, Van Duijn CM, et al. Clinical/Scientific

Notes: The Alzheimer’s disease sequencing project: Study design and sample selection. Neurol Genet.

2017; 3(5): https://doi.org/10.1212/NXG.0000000000000194 PMID: 29184913

7. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006; 2

(12):2074–93. https://doi.org/10.1371/journal.pgen.0020190 PMID: 17194218

8. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analy-

sis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38(8):904–9. https://

doi.org/10.1038/ng1847 PMID: 16862161

9. Vansteelandt S, Goetgeluk S, Lutz S, Waldman I, Lyon H, Schadt EE, et al. On the adjustment for

covariates in genetic association analysis: A novel, simple principle to infer direct causal effects. Genet

Epidemiol. 2009; 33:394–405. https://doi.org/10.1002/gepi.20393 PMID: 19219893

10. Zhao H, Mitra N, Kanetsky PA, Nathanson KL, Rebbeck TR. A practical approach to adjusting for popu-

lation stratification in genome-wide association studies: Principal components and propensity scores

(PCAPS). Stat Appl Genet Mol Biol. 2018; 17(6): https://doi.org/10.1515/sagmb-2017-0054 PMID:

30507552

11. Varma M, Paskov KM, Jung JY, Chrisman BS, Stockham NT, Washington PY, et al. Outgroup machine

learning approach identifies single nucleotide variants in noncoding DNA associated with autism spec-

trum disorder. Pacific Symp Biocomput. 2019; 24:260–71. PMID: 30864328

12. Nygaard V, Rødland EA, Hovig E. Methods that remove batch effects while retaining group differences

may lead to exaggerated confidence in downstream analyses. Biostatistics. 2016; 17(1):29–39. https://

doi.org/10.1093/biostatistics/kxv027 PMID: 26272994

13. McKenna A, Hanna M, Banks E, Sivacheko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis

Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.

2010; 20:1297–303. https://doi.org/10.1101/gr.107524.110 PMID: 20644199

14. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of

dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzhei-

mer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement.

2011; 7(3):263–9.

15. Corder E, Saunders A, Strittmatter W, Schmechel D, Gaskell P, Small G, et al. Gene dose of apolipo-

protein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (80-). 1993

Aug; 261:921–3. https://doi.org/10.1126/science.8346443 PMID: 8346443

16. Ren Y, Reddy J, Pottier C, Sarangi V, Tian S, Sinnwell J, et al. Identification of missing variants by com-

bining multiple analytic pipelines. BMC Bioinformatics. 2018; 19: https://doi.org/10.1186/s12859-018-

2151-0 PMID: 29661148

17. Jun G, Flickinger M, Hetrick K, Romm J, Doheny K, Abecasis G, et al. Detecting and estimating contam-

ination of human DNA samples in sequencing and array-based genotype data. Am J Hum Genet. 2012

Nov; 91:839–48. https://doi.org/10.1016/j.ajhg.2012.09.004 PMID: 23103226

18. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in

genome-wide association studies. Bioinformatics. 2010; 26(22):2867–73. https://doi.org/10.1093/

bioinformatics/btq559 PMID: 20926424

PLOS ONE Variant-level batch effects in sequencing studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0249305 April 16, 2021 15 / 16

https://doi.org/10.1016/j.tibtech.2017.02.012
http://www.ncbi.nlm.nih.gov/pubmed/28351613
http://www.ncbi.nlm.nih.gov/pubmed/26776187
https://doi.org/10.1186/s12885-018-5219-3
https://doi.org/10.1186/s12885-018-5219-3
http://www.ncbi.nlm.nih.gov/pubmed/30606139
https://doi.org/10.1186/s12864-016-3406-7
https://doi.org/10.1186/s12864-016-3406-7
http://www.ncbi.nlm.nih.gov/pubmed/28049423
https://doi.org/10.1371/journal.pone.0204912
https://doi.org/10.1371/journal.pone.0204912
http://www.ncbi.nlm.nih.gov/pubmed/30281678
https://doi.org/10.1212/NXG.0000000000000194
http://www.ncbi.nlm.nih.gov/pubmed/29184913
https://doi.org/10.1371/journal.pgen.0020190
http://www.ncbi.nlm.nih.gov/pubmed/17194218
https://doi.org/10.1038/ng1847
https://doi.org/10.1038/ng1847
http://www.ncbi.nlm.nih.gov/pubmed/16862161
https://doi.org/10.1002/gepi.20393
http://www.ncbi.nlm.nih.gov/pubmed/19219893
https://doi.org/10.1515/sagmb-2017-0054
http://www.ncbi.nlm.nih.gov/pubmed/30507552
http://www.ncbi.nlm.nih.gov/pubmed/30864328
https://doi.org/10.1093/biostatistics/kxv027
https://doi.org/10.1093/biostatistics/kxv027
http://www.ncbi.nlm.nih.gov/pubmed/26272994
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1126/science.8346443
http://www.ncbi.nlm.nih.gov/pubmed/8346443
https://doi.org/10.1186/s12859-018-2151-0
https://doi.org/10.1186/s12859-018-2151-0
http://www.ncbi.nlm.nih.gov/pubmed/29661148
https://doi.org/10.1016/j.ajhg.2012.09.004
http://www.ncbi.nlm.nih.gov/pubmed/23103226
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1093/bioinformatics/btq559
http://www.ncbi.nlm.nih.gov/pubmed/20926424
https://doi.org/10.1371/journal.pone.0249305


19. Bis JC, Jian X, Kunkle BW, Chen Y, Hamilton-Nelson KL, Bush WS, et al. Whole exome sequencing

study identifies novel rare and common Alzheimer’s-Associated variants involved in immune response

and transcriptional regulation. Mol Psychiatry. 2018; https://doi.org/10.1038/s41380-018-0112-7 PMID:

30108311

20. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals.

Genome Res. 2009; 19:1655–64. https://doi.org/10.1101/gr.094052.109 PMID: 19648217

21. Del Prete D, Suski JM, Oulès B, Debayle D, Gay AS, Lacas-Gervais S, et al. Localization and process-

ing of the amyloid-β protein precursor in mitochondria-associated membranes. J Alzheimer’s Dis. 2017;

55:1549–70. https://doi.org/10.3233/JAD-160953 PMID: 27911326
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