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ABSTRACT
Profiling cellular phenotypes from microscopic imaging can provide meaningful
biological information resulting from various factors affecting the cells.
One motivating application is drug development: morphological cell features can be
captured from images, from which similarities between different drug compounds
applied at different doses can be quantified. The general approach is to find a
function mapping the images to an embedding space of manageable dimensionality
whose geometry captures relevant features of the input images. An important known
issue for such methods is separating relevant biological signal from nuisance
variation. For example, the embedding vectors tend to be more correlated for cells
that were cultured and imaged during the same week than for those from different
weeks, despite having identical drug compounds applied in both cases. In this
case, the particular batch in which a set of experiments were conducted constitutes
the domain of the data; an ideal set of image embeddings should contain only
the relevant biological information (e.g., drug effects). We develop a general
framework for adjusting the image embeddings in order to “forget” domain-specific
information while preserving relevant biological information. To achieve this, we
minimize a loss function based on distances between marginal distributions (such as
the Wasserstein distance) of embeddings across domains for each replicated
treatment. For the dataset we present results with, the only replicated treatment
happens to be the negative control treatment, for which we do not expect any
treatment-induced cell morphology changes. We find that for our transformed
embeddings (i) the underlying geometric structure is not only preserved but the
embeddings also carry improved biological signal; and (ii) less domain-specific
information is present.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning
Keywords Wasserstein distance, Cellular phenotyping, Batch effect, Embedding, Minimax,
Optimal transport, Domain adaptation

INTRODUCTION
In the framework where our approach is applicable, there are inputs (e.g., images) and a
map F sending the inputs to vectors in a low-dimensional space which summarizes
information about the inputs. F could either be engineered using specific image features,
or learned (e.g., using deep neural networks). We will call these vectors “embeddings” and
the space to which they belong the “embedding space.” Each input may also have
corresponding semantic labels and domains, and for inputs with each label and domain
pair, F produces some distribution of embeddings. Semantically meaningful similarities
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between pairs of inputs can then be assessed by the distance between their corresponding
embeddings, using some chosen distance metric. Ideally, the embedding distribution of a
group of inputs depends only on their label, but often the domain can influence the
embedding distribution as well. We wish to find an additional map to adjust the
embeddings produced by F so that the distribution of adjusted embeddings for a given
label is independent of the domain, while still preserving semantically meaningful
distances between distributions of inputs with different labels.

The map F can be used for phenotypic profiling of cells. In this application, images of
biological cells perturbed by one of several possible biological stimuli (e.g., various drug
compounds at different doses, some of which may have unknown effects) are mapped
to embeddings, which are used to reveal similarities among the applied perturbations.

There are a number of ways to extract embeddings from images of cells. One class
of methods such as that used by Ljosa et al. (2013) depend on extracting specifically
engineered features. In the recent work by Ando, McLean & Berndl (2017), a Deep Metric
Network pre-trained on consumer photographic images (not microscopic images of cells)
described in Wang et al. (2014) was used to generate embedding vectors from cellular
images, and it was shown that these embeddings clustered drug compounds by their
mechanisms of action (MOA) more effectively. See Fig. 1 for exemplary images of different
MOAs.

Experiments of this type are becoming increasingly common (e.g., see Caicedo et al.
(2017)) as labs worldwide invest in high-throughput microscopy, and so we anticipate an
increasing number of datasets of this type will become available. For this reason, there
will be an increasing need for methods to obtain signal from this type of dataset.

Currently, one of the most important issues with using image embeddings to
discriminate the effects of each treatment (i.e., a particular dose of a drug compound, the
“label” in the general problem described above) on morphological cell features is nuisance
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Figure 1 Flowchart describing the procedure to generate image embeddings using a pre-trained
Deep Metric Network and remove nuisance variation from them. The embedding generator, deno-
ted by F, is described in “Embeddings Based on Deep Neural Network”, which maps each 128 by 128
color image into a 192-dimensional embedding vector. The nuisance variation removal by our method is
denoted by WDN (i.e., Wasserstein Distance Network). The 12 images on the right show representative
images of cells treated with drug compounds with one of the 12 known mechanisms of action (MOA),
from the BBBC021 dataset (Ljosa, Sokolnicki & Carpenter, 2012).

Full-size DOI: 10.7717/peerj.8594/fig-1
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factors related to slight uncontrollable variation in each biological experiment. Many cell
imaging experiments are organized into a number of batches of experiments occurring
over time, each containing a number of sample plates, which each contain individual
wells in which thousands of cells are grown and treatments are applied. For this
application, the “domain” is an instance of one of these hierarchical levels, and embeddings
for cells with a given treatment tend to be closer to each other within the same
domain than from different ones. As one example resulting in nuisance variation, the
experimentalist may apply slightly different concentrations or amounts of a drug
compound in two wells in which the same treatment was anticipated. Another example is
the location of a particular well within a plate or the order of the plate within a batch,
which may influence the rate of evaporation, and hence, the appearance of the cells
therein. Finally, “batch” effects may result from differences in experimental conditions
(temperature, humidity) from week to week; they are various instances of this hierarchical
level that we will consider as “domains” in this work.

Many efforts have been made to correct for nuisance variation such as batch effects,
especially for microarray gene expression data. The simplest method is data normalization
such as mean-centering, standardization, and quantile normalization. However, data
normalization is often not sufficient to ensure the correction of batch effects so more
advanced methods have been developed. Alter, Brown & Botstein (2000) proposed a
singular value decomposition based method that filters out the “eigengenes” (and
“eigenarrays”) representing noise or experimental artifacts. Benito et al. (2004) used linear
discrimination methods such as distance weighted discrimination to adjust for batch
biases. Johnson, Li & Rabinovic (2007) proposed parametric and non-parametric empirical
Bayes frameworks (i.e., ComBat) that remove the additive and multiplicative batch
effects. Leek & Storey (2007) introduced Surrogate Variable Analysis to overcome the
problems caused by heterogeneity in expression studies by identifying the effect of the
hidden factors that may be the sources of data heterogeneity. Gagnon-Bartsch & Speed
(2012) proposed the removal of unwanted variation method that restricts the factor
analysis to negative control genes to infer the unwanted variation.

Most of the aforementioned methods are essentially coordinate-wise in the sense that
the batch effect is assumed to affect each dimension (or more specifically each gene for
gene expression data) independently. However, batch effects can be multivariate. This
is especially true for the embeddings derived from cellular images. The embedding
coordinates are often inter-correlated, and hence can be affected by batch effects jointly.
Lee, Dobbin & Ahn (2014) proposed a multivariate batch adjustment method that can
correct for the variance-covariance of data across batches. In particular, they derived an
affine transformation that exactly matches the mean vectors and covariance matrices of
two batches of data by assuming one of the batches as the target batch (or called the golden
batch). The estimation of the transformation was based on a factor model and hard
thresholding.

More recent work has started to remove batch effects using deep learning methods.
Shaham et al. (2017) proposed a method that matches the distributions of data in source
and target batches using a non-linear transformation based on residual networks, where
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the distance between the two distributions is measured by the MMD. This method has two
distinct advantages compared to the previous work: it allows for non-linear removal of
batch effects and matches the entire distribution instead of the first two moments for
the two batches. Matching only the first two moments can be insufficient if the data
distribution is multi-modal or highly non-Gaussian. We discuss this further in the
appendix. For the embeddings of cellular images, this is likely to happen when individual
cells are at different stages of the cell cycle or respond differently to a drug compound and
hence form subpopulations. Another class of methods are based on the autoencoder.
Amodio et al. (2018) learned a latent space of the data using autoencoder, identified
batch effect related dimensions, and aligned the distributions of these dimensions across
batches. Shaham (2018) used a variational autoencoder approach to learn a shared encoder
used to obtain a batch-free encoding of the data, which contains solely biological
signal, and also batch dependent decoders that allow for reconstruction of the data to
ensure the entire true biological signal will not be lost or distorted. We further discuss these
recent methods and how they compare to our method in “Conclusions.”

Caicedo et al. (2018) used a weakly supervised method to generate embeddings using
the idea that the embeddings corresponding to similar treatments should be more similar.
This is conceptually similar to the idea we use in our article, in the sense that certain
embeddings should be closer to other embeddings. However, in this article the method
is used during training, while we apply our method after a set of embeddings has already
been found. Godinez, Hossain & Zhang (2018) used a similar approach with multi-scale
convolutional neural networks, as well.

In this article, we address the issue of nuisance variation in image embeddings by
transforming the embedding space in a domain-specific way in order to minimize the
variation across domains for a given treatment. Our main goal is to introduce a
general flexible framework to address this problem. In this framework, we use a metric
function measuring the distances among pairs of probability distributions to construct
an optimization problem whose solution yields the appropriate transformations for
each domain. In our present implementation, the 1-Wasserstein distance is used as a
demonstration of a specific choice of the metric that can yield substantial improvements.
In particular, the 1-Wasserstein distance makes few assumptions about the probability
distributions of the embedding vectors.

We highlight that other distances may be used in our framework, such as the
Cramer distance or other Wasserstein distances. The Cramer distance may be preferable
since it has unbiased sample gradients (Bellemare et al., 2017). This could reduce the
number of steps required to adjust the Wasserstein distance approximation for each
step of training the embedding transformation. Additionally, we discuss several possible
variations and extensions of our method in “Conclusions.” However, the important
properties of the Wasserstein metric that other alternatives should have are (1) is
well-behaved for back-propagation and (2) takes into account higher-order moments.
We discuss these reasons in more detail in “General Approach.”

Our method can incorporate all replicates of a given treatment on an equal footing,
which can be advantageous over using only the controls when these replicates are available.

Tabak et al. (2020), PeerJ, DOI 10.7717/peerj.8594 4/29

http://dx.doi.org/10.7717/peerj.8594
https://peerj.com/


Further, weights can be added if there is prior information about which distributions
we want to match more strongly. For example, our process could be used on a
per-treatment level (by modifying the weights of pairs selected for a given treatment) or
a per-domain level (by modifying the weights of pairs having one of the two distributions
belonging to a given domain).

Our source code for extracting the dataset and running the analysis is available at
sourcecode.

MATERIALS AND METHODS
Problem description
Denote the embedding vectors xt,d,p for t ∈ T, d ∈ D, and p ∈ It,d, where T and D are the
treatment and domain labels respectively, and It,d is the set of indices for embeddings
belonging to treatment t and domain d. Suppose that xt,d,p are sampled from a probability
distribution νt,d. Our goal is to “forget” the nuisance variation in the embeddings,
which we formalize in the following way. We wish to find maps Ad transforming the
embedding vectors such that the transformed marginal distributions ~nt;d have the property
that for each t ∈ T and di, dj ∈ D, ~nt;di � ~nt;dj (for some suitable distance metric between
distributions). Intuitively, the transformations Ad can be regarded as domain-specific
corrections. This is based on the assumption that the embeddings of all the treatments in
the same batch are affected by the nuisance variation in the same way. The transformations
Ad should be small to avoid distorting the underlying geometry of the embedding
space, since we do not expect nuisance variation to be very large. While optimizing the
transformations Ad, we will at the same time be estimating pairwise distances between
transformed embeddings from different domains with the same treatment (which we
would like to minimize). This will lead to a minimax problem where we minimize over the
transformation parameters and maximize over the distance-estimating parameters.

General approach
The 1-Wasserstein distance (hereafter will be simply referred to as the Wasserstein
distance) between two probability distributions νr and νg on a compact metric space χ with
metric δ is given by

Wðnr; ngÞ ¼ inf
g2Πðnr ; ngÞ

Eðx; yÞ�gdðx; yÞ (1)

Here Π (νr, νg) is the set of all joint distributions γ (x, y) whose marginals are νr and νg.
This can be intuitively interpreted as the minimal cost of a transportation plan between the
probability masses of νr and νg. In our application, the metric space is Rn and δ is the
Euclidean distance.

Ultimately our goal is to transform pairs of empirical distributions of embeddings so
that they become indistinguishable. We use the Wasserstein distance towards that goal
because of two reasons. The first is that when the Wasserstein distance between two
distributions νr and νg is zero, they must be identical up to a set of measure zero. Because of
this, two empirical distributions drawn from νr and νg cannot be distinguished by any
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classifier. The second reason is that during the optimization procedure, using the
Wasserstein distance yields non-vanishing gradients, which are known to occur for metrics
based on the KL-divergence, such as the cross entropy (Arjovsky, Chintala & Bottou, 2017).
This is important from a practical point of view because vanishing gradients may halt
the solving of the resulting minimax problem in our method. Specifically, we will be
maximizing over a set of parameters to obtain estimates for the Wasserstein distance
(instead of using a classifier) while at the same time minimizing over the transformation
parameters. To highlight the vanishing gradient issue, consider the following case: If
we had used a linear classifier in place of the Wasserstein distance, the classifier would
converge very quickly, having vanishing gradients except near a hyperplane separating the
initial empirical distributions, where the gradients become very large.

The usage of the Wasserstein distance can be extended to more than two distributions.
Given two or more probability distributions, their mean can be defined based on the
Wasserstein distance, known as the “Wasserstein barycenter.” Explicitly, the Wasserstein
barycenter of N distributions ν1,…, νN is defined as the distribution m that minimizes

1
N

XN
i¼1

Wðm; niÞ (2)

The Wasserstein barycenter and its computation have been studied in many contexts,
such as optimal transport theory (Cuturi & Doucet, 2014; Anderes, Borgwardt & Miller,
2016). In Tabak & Trigila (2018), the Wasserstein barycenter has been suggested as a
method to remove nuisance variation in high-throughput biological experiments. Two key
ingredients of the Wasserstein barycenter are that (i) the nuisance variation is removed
in the sense that a number of distinct distributions are transformed into a common
distribution, and hence become indistinguishable; and (ii) the distributions are minimally
perturbed by the transformations.

Our method is based on these two requirements, where a separate map is associated
with each domain. For each treatment, the average Wasserstein distance among all pairs of
transformed distributions across domains is included in the loss function. Specifically,
the average Wasserstein distance is formulated as

2
NðN � 1Þ

XN
i;j¼1;i, j

WðAdiðniÞ;AdjðnjÞÞ; (3)

where the coefficient is the normalizing constant, and Adi is the map associated with
domain di. Notice that in this article we considered Adi to be an affine transformation, but
this restriction is not needed in general. When multiple treatments are considered, the
same number of average Wasserstein distances corresponding to the treatments are
included in the loss function. Thus, (i) is achieved by minimizing a loss function
containing pairwise Wasserstein distances. Compared to the ResNet used in Shaham et al.
(2017), we achieve (ii) by early stopping to avoid distorting the distributions and hence
destroying the biological signal. Adding a regularization term that penalizes the difference
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between the transformation and the identity map is also feasible. In “Conclusions”, we
will present another possible formulation that aligns more closely with the idea of the
Wasserstein barycenter. The general idea of our method is illustrated in Fig. 2 by a concrete
example.

The Wasserstein distance does not have a closed form except for a few special cases, and
must be approximated in some way. The Wasserstein distance is closely related to the
maximum mean discrepancy (MMD) approximated in Shaham et al. (2017) using an
empirical estimator based on the kernel method. This method requires selecting a kernel
and relevant parameters. In our application, we do not have a fixed “target” distribution,
so the kernel parameters would have to be updated during training. Instead, we choose
to use a method based on the ideas in Arjovsky, Chintala & Bottou (2017) and Gulrajani
et al. (2017) to train a neural network to estimate the Wasserstein distance. A similar

Domain 1

C1,1 C2,1 C3,1

Combined Domains

A2

Domain 2

C1,2 C4,2 C5,2

Domain 3

C1,3 C2,3 C5,3

A1(C1,1) A2(C1,2) A3(C1,3) A1(C2,1) A3(C2,3)

A2(C5,2) A3(C5,3)A1(C3,1) A2(C4,2)

Pairwise Wasserstein Losses

A1 A3

W(AA1(C1,1), AA2(C1,2)) + 
W(AA2(C1,2), AA3(C1,3)) + 
W(AA3(C1,3), AA1(C1,1))

W(AA1(C2,1), AA3(C2,3))

W(AA2(C5,2), AA3(C5,3))

Treatment 1 Treatment 2

Treatment 3 Treatment 4 Treatment 5

Regularization or 
early stopping

R(A1, A2, A3)

Figure 2 Illustration of our approach. In this case there are three domains (bottom of the plot), each
having embeddings for three different treatments. The set of embeddings for treatment i in domain j are
represented by Ci,j. Each domain has a map Aj transforming all embeddings in domain j to the combined
domain space. Treatments are denoted in shades of magenta while domains are in green. Transformed
embeddings are collected into groups each having the same treatment. Our goal is to match the dis-
tributions within each such group. To achieve this, we wish to minimize the sum of pairwise Wasserstein
distances among those distributions that should be matched. A group that contains embeddings from
only one domain is not included in the sum. The top box shows the pairwise Wasserstein losses, whose
sum is inserted into the loss function. We use an additional neural network to estimate each Wasserstein
distance (not shown) since it is not analytically computable. Moreover, there is either a regularization
term or early stopping to preserve the geometry of the original embeddings. In this figure, it is illustrated
in its most general form as a function of the transformations Aj. However, we have found that in our
setting it was sufficient to use early stopping, which had essentially the same effect.

Full-size DOI: 10.7717/peerj.8594/fig-2
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approach has been proposed in Shen et al. (2017) for domain adaptation. To achieve this,
we first apply the Kantorovich–Rubinstein duality to Eq. (1):

Wðnr; ngÞ ¼ sup
kf kL�1

Ex�nr f ðxÞ½ � � Ex�ng f ðxÞ½ � (4)

Here, νr and νg are two probability distributions. The function f is in the space of Lipschitz
functions with Lipschitz constant 1. We will call f the “Wasserstein function” throughout
this manuscript.

Network architecture
Collectively denote the parameters for the transformations Ad by ΘT. If a particular
treatment t is replicated across two or more domains d1, d2,…,dk, the Wasserstein
distances among the transformed distributions are estimated for all same-treatment
domain pairs. Note that the parameters for estimating the Wasserstein distance for each
t and pair di, dj are separate. Collectively denote all the Wasserstein estimation parameters
by ΘW. We consider the following loss function

LðΘT ;ΘWÞ ¼ 1
jTj

X
t2T

2
jDtjðjDtj � 1Þ

X
di;dj2Dt ;i, j

WðAdiðniÞ;AdjðnjÞÞ þ RðΘTÞ (5)

where

WðAdiðniÞ;AdjðnjÞÞ ¼ sup
kf kL�1

Ex�Adi ðniÞ f ðxÞ½ � � Ex�Adj ðnjÞ f ðxÞ½ �

and the term inside the sup operator is called the critic loss. The function R (ΘT) is a
regularization term for the learned transformations whose purpose is to preserve the
geometry of the original embeddings. For example, R (ΘT) can be proportional to the
distance of the transformations from the identity map. Moreover, Dt denotes the domains
in which treatment t appears, T denotes all the treatments, and |·| represents the cardinality
of a set. In this article, we ignore R entirely and rely on early stopping, as numerical
experiments using regularization have given comparable results. The implementation of
early stopping is illustrated in “Early Stopping by Leave-One-Compound-Out Cross
Validation” by leave-one-compound-out cross validation for our particular dataset to
preserve the biological information in the data.

Each Wasserstein function f should be Lipschitz with Lipschitz constant 1.
For differentiable functions, this is equivalent to the norm of its gradients being bounded
by 1 everywhere. We use an approach based on Gulrajani et al. (2017) to impose a soft
constraint on the gradient norm. More specifically, the hard constraint is replaced by a
penalty, which is a function of the gradient of the Wasserstein function evaluated at some
set of points. The penalty term is weighted by an additional parameter γ. Thus,
W Adi nið Þ;Adj nj

� �� �
can be approximated by

max
ΘW

Wt;di;djðΘT ;ΘWÞ � gt;di;djðΘT ;ΘWÞ� �
; (6)
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where, Wt;di;dj is the sample estimate of the critic loss, that is,

1
jIt;di j

X
p2It;di

ft;di;djðAdiðxt;di;p;ΘTÞ;ΘWÞ � 1
jIt;dj j

X
q2It;dj

ft;di;djðAdjðxt;dj;q;ΘTÞ;ΘWÞ (7)

and gt;di;dj is the sample estimate of the gradient penalty, that is,

1
jJt;di;dj j

X
z2Jt;di ;dj

Ht;di;djðz;ΘWÞ (8)

where,

Ht;di;djðz;ΘWÞ ¼
�
g Gt;di;djðz;ΘWÞ � 1
� �2

if Gt;di;djðz; uWÞ. 1
0 otherwise

(9)

Gt;di;djðz;ΘWÞ ¼ krΘW ft;di;djðz;ΘWÞk2: (10)

Each Wasserstein function ft;di;dj in Eq. (7) depends on the parameters ΘW, while each
transformation Ad depends on the parameters ΘT. For simplicity, we assume that
It;di
�� �� ¼ It;dj

�� ��. This is a reasonable assumption because in practice, the sets It,d are
chosen as minibatches in stochastic gradient descent. Since it is impossible to check the
gradient everywhere, we use the same strategy as Gulrajani et al. (2017): choose the
intermediate points eAdi xt; di; pk ;ΘT

� �þ 1� eð ÞAdj xt; dj; qk ;ΘT
� �

randomly, where ε ∈ U
[0, 1] and pk and qk denote the k-th elements of It;di and It;dj , respectively. The set of
intermediate points are denoted by Jt;di;dj . Intuitively, the reason for sampling along these
paths is that the Wasserstein function f whose gradient must be constrained has the
interpretation of characterizing the optimal transport between the two probability
distributions, and therefore it is most important for the gradient constraint to hold in the
intermediate region between the distributions. This is motivated more formally by
Proposition 1 in Gulrajani et al. (2017), which shows that an optimal transport plan occurs
along straight lines with gradient norm 1 connecting coupled points between the
probability distributions. Unlike Gulrajani et al. (2017), we impose the gradient penalty
only if the gradient norm is greater than 1. Doing so works better in practice for our
application. We find that the value of γ = 10 used in Gulrajani et al. (2017) works well in
our application, and fix it throughout. This is an appropriate choice since it is large enough
so that the approximation error in the Wasserstein function is small, while not causing
numerical difficulties in the optimization routine.

Thus, our objective is to find

Θ̂T ; Θ̂W ¼ argminΘTargmaxΘWLðΘT ;ΘWÞ: (11)

We use the approach of Ganin & Lempitsky (2015) to transform our minimax problem
to a minimization problem by adding a “gradient reversal” between the transformed
embeddings and the approximated Wasserstein distances. The gradient reversal is the
identity in the forward direction, but negates the gradients used for backpropagation.
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Dataset and preprocessing steps
Our analyses are conducted on the image dataset BBBC021 (Caie et al., 2010) available
from the Broad Bioimage Benchmark Collection (Ljosa, Sokolnicki & Carpenter, 2012).
This dataset corresponds to cells prepared on 55 plates across 10 separate batches, and
imaged in three color channels (i.e., stains); for a population of negative control cells,
a compound (DMSO) with no anticipated drug effect was applied, while various other
drug compounds were applied to the remaining cells. We use the same subset of treatments
(a drug compound with a particular dose) evaluated in Ljosa et al. (2013) and Ando,
McLean & Berndl (2017). This subset has 103 treatments from 38 drug compounds, each
belonging to one of 12 known MOA groups. Both of our datasets rely on methods that
isolate cropped images of individual cells, and generate the embeddings on a per-cell
basis. A diagram illustration of the dataset is shown in Fig. 3. It is worth pointing out
that only the negative control (i.e., DMSO) has replicates across batches. For this reason,
the only pairs of distributions we used for finding the domain transformations were
controls.

Figure 3 Illustration of the BBBC021 dataset considered in the article. This dataset corresponds to cells prepared across 10 separate batches, to
which DMSO (negative control drug compound, labeled by 0) and other drug compounds (labeled by numbers starting from 1) were applied. We use
the same subset of treatments (a drug compound with a particular dose) evaluated in Ljosa et al. (2013) and Ando, McLean & Berndl (2017). This
subset has 103 treatments from 38 drug compounds, each belonging to one of 12 known mechanism of action (MOA) groups (shown in the legend
with different colors). Each batch (represented by a rectangle) can contain multiple drug compounds with various doses, each represented by a circle
with its label colored according to its MOA. If a drug compound has multiple doses in the same batch, the same number of circles with the exact same
pattern are plotted. Full-size DOI: 10.7717/peerj.8594/fig-3
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The treatment is a free label coming from the experiment available for matching
treatment replicates across batches (i.e., domains). Multiple drug compounds can share the
same MOA, so it is not straightforward to infer the MOA from a drug compound. Sample
cell images from the 12 MOA groups are shown in Fig. 1.

The main hyperparameter we considered is the stopping time step for training. This
acts as regularization for our model, and prevents biological signal from being lost by
collapsing biologically distinct distributions together. We determine the stopping time
using one of our metrics, determined over an evaluation set. To mimic the real-world
situation of an unknown new compound, the training and evaluation sets are determined
using a leave-one-compound-out setting, discussed further in “Early Stopping by Leave-
One-Compound-Out Cross Validation.”

We apply our method to embeddings that are generated from this dataset in two
different ways: hand-engineered features and features extracted by a pre-trained Deep
Neural Network. Since only DMSO was replicated across wells in this dataset, we were able
to train only using DMSO.

Embeddings based on hand-engineered features
The embeddings are hand-engineered features of length 453 based on specific features for
each cell, generated in Ljosa, Sokolnicki & Carpenter (2012). In the original article, the
authors explored a number of ways to preprocess the embeddings. We take the approach
of factor analysis that gives the best performance. For each coordinate, the 1st percentile
of DMSO-treated cells is set to zero and the 99th percentile is set to 1 for each plate
separately. The same transformations are then applied to all drug compounds on the same
plate. After this, factor analysis is applied to the transformed embeddings to reduce the
dimensionality to 50, to which our nuisance variation correction method is applied.
We will refer to the embeddings generated in this way as Preprocessed, and remark this
procedure is different from that used for the DNN embeddings presented in “Embeddings
Based on Deep Neural Network.”

Embeddings based on deep neural network

We began with the embeddings generated by the pipeline of Ando, McLean & Berndl
(2017), which included computing a flatline image for each plate and channel using the
10th percentile.

We compute the embeddings for each cell image using the method in Ando,
McLean & Berndl (2017), summarized as follows. For a 128 by 128 pixel crop around
each cell for each of the three color channels, a pre-trained Deep Metric Network generates
a 64-dimensional embedding vector. The three vectors corresponding to the three color
channels are concatenated, forming a 192-dimensional embedding for each cell image.
In the principal component analysis (PCA) basis of only negative control embeddings, an
affine transformation is found so that the negative control embeddings have mean zero
and unit variance (PCA whitening). The same transformation is then applied to the
embeddings of all other cells. Note that the TVN method in Ando, McLean & Berndl
(2017) includes an additional transformation named CORAL (i.e., correlation alignment),
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which will be presented and compared to our preprocessing step in “Baselines.” Our
nuisance variation correction method is conducted for the embeddings after PCA
whitening, which we consider as the preprocessing step for the embeddings from the deep
neural network.

Evaluation metrics
Our method is evaluated by three metrics, the first two of which measure how much
biological signal is preserved in the transformed embeddings, and the last one of which
measures how much nuisance variation has been removed.

k-Nearest neighbor mechanism of action assignment
Each drug compound in the BBBC021 dataset has a known MOA. A desirable property of
embedding vectors is that drug compounds with the same MOA should group closely
in the embedding space. This property can be assessed in the following way using the
ground truth MOA label for each treatment.

First, compute the mean mX of the embeddings for each treatment X in each
domain (the negative control is excluded). Find the nearest k neighbors nX, 1, nX, 2,…,nX, k
of mX either (i) not belonging to the same compound (abbreviated as NSC) or (ii) not
belonging to the same compound or batch (i.e., domain) (abbreviated as NSC NSB), and
compute the proportion of them having the same MOA as mX. Our metric is defined as
the average of this quantity across all treatment instances X in all domains. If nuisance
variation is corrected by transforming the embeddings, we may expect this metric to
increase. The reason for excluding same-domain nearest neighbors is to prevent the metric
from being interfered by the in-domain correlations.

The nearest k neighbors are found based on the cosine distance, which has already been
used in existing literature, and in our numerical experiments, we find that it performs
better than the Euclidean distance. Moreover, our k-NN metrics are generalizations of the
1-NN metrics used in Ljosa et al. (2013) and Ando, McLean & Berndl (2017).

Silhouette score on mechanism of action
Cluster validation measures provide another way of characterizing how well drug
compounds with the same MOA group together in the embedding space. In our
application, each “cluster” is a chosen MOA containing a group of treatments (the negative
control is excluded), and each point in a cluster is the mean of embeddings for a particular
treatment (i.e., compound and concentration) and domain.

The Silhouette score is one such measure that compares each point’s distance from
points in its own cluster to its distance from points in other clusters. Compared to the
k-NN metrics as a local metric, Silhouette score is a global metric. It is defined as

sðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ; bðiÞg (12)

where a(i) is the average distance from point i to all other points in its cluster, and b(i)
is the minimum of all average distances from i to all other clusters (i.e., the distance to the
closest neighboring cluster) (Rousseeuw, 1987). The Silhouette score ranges between −1
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and 1, with higher values indicating better clustering results. As we did with the k-NN
metrics, we also use the cosine distance for the Silhouette score.

Domain classification accuracy per treatment
Another metric measures how well domain-specific nuisance information has been
“forgotten” (regardless of the biological signal). To achieve this, for each treatment we train
a classifier to predict for each embedding the batch (domain) from the set of possible
batches (domains) for that treatment. We evaluate both a linear classifier (i.e., logistic
regression) and a random forest with 3-fold cross validation. If nuisance variation is
corrected, the batch (domain) classification accuracy should decrease significantly. Because
only the negative control (i.e., DMSO) has replicates across experimental batches in
our dataset, we train and evaluate these two batch classifiers on this compound only.

Domain classification can also be used for testing the hypothesis that two samples were
drawn from the same distribution (Lopez-Paz & Oquab, 2016). This gives an alternative
interpretation of our batch classification metric.

Cross validation and bootstrapping
Early stopping by leave-one-compound-out cross validation
For the model with either early stopping or a regularization term, the hyperparameters
(i.e., the stopping time step or the regularization weight) can be selected by a cross
validation procedure to avoid overfitting (see Godinez et al. (2017) for an example).
In particular, we apply this procedure to the case of early stopping. Each time, an
individual drug compound is held out, and the stopping time step is determined by
maximizing the average k-NN MOA assignment metric for k = 1,…,4 on the remaining
drug compounds. We can also determine the stopping time step by maximizing the
Silhouette score on the remaining drug compounds.

For the embeddings transformed at the optimal stopping time step, we evaluate the
k-NN MOA assignment metrics for the held-out compound only. The procedure is
repeated for all the compounds, and the k-NN MOA assignment metrics are aggregated
across all the compounds. Intuitively, for each fold of this leave-one-compound-out cross
validation procedure, the held-out compound can be regarded as a new compound
with unknown MOA, and the hyperparameters are optimized over the compounds with
known MOAs.

Estimating standard errors of the metrics by bootstrapping
To assess whether the improvements in the three evaluation metrics are statistically
significant, we estimate the standard errors of the metrics using a nonparametric bootstrap
method. Each time, the bootstrap samples are generated by sampling with replacement
the embeddings in each well, and the metrics are evaluated using the bootstrap samples.
We repeat the procedure for 100 times, and obtain the standard errors (i.e., standard
deviation) of the bootstrap estimates of the metrics.

For the case when using the leave-one-compound-out cross validation discussed in
“Early Stopping by Leave-One-Compound-Out Cross Validation”, the stopping time was
selected separately for each set of compounds with the left-out compound removed.
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This way, we are able to evaluate the performance of our method without leaking
information about the stopping time from the left-out compound.

Model training
For simplicity, the embedding transformations are assumed to be affine transformations
Ad(x) =Mdx + bd, whereMd is a d × dmatrix and bd is a d × 1 vector. They are initialized to
Md = I, bd = 0, since we wish for the learned transformations to be not too far from
the identity map. The intuition is that we can treat nuisance variation as small, random,
drug-like perturbations resulting from unobserved covariates. An affine transformation is
a first-order approximation to a non-linear perturbation in the sense of the Taylor
expansion. It is worth mentioning that we do not expect this assumption to hold in general
cases, where nonlinear transformations would be more appropriate.

To approximate each of the Wasserstein functions ft;di;dj in Eq. (7), we use a
network consisting of a fully connected layer with Softplus activations followed by a
scalar-valued fully connected layer. The Softplus activation is chosen because the
Wasserstein distance estimation it produces is less noisy than other kinds of activations
and it avoids the issue of all neurons being deactivated (which can occur for example, when
using ReLU activations).

The dimension of the first fully connected layer is set to 2. Optimization is done using
stochastic gradient descent. For simplicity, the minibatch size for each treatment per
iteration step is the same and fixed at 100 throughout. Optimization for both classes of
parameters ΘT and ΘW is done using two separate RMSProp optimizers. Prior to training
ΘT, we use a “pre-training” period of 100,000 time steps to obtain a good initial
approximation for the Wasserstein distances. After this, we alternate between training ΘT

for 50 time steps and adjusting ΘW for a single time step.

Baselines
We compare our approach to the Preprocessed embeddings for the hand-engineered
embeddings and the embeddings transformed by PCA whitening for the DNN
embeddings (which we consider to be a preprocessing step), as well as the embeddings
transformed by CORAL (Sun, Feng & Saenko, 2016; Ando, McLean & Berndl, 2017)
for both types of embeddings following their respective preprocessing steps. Notice
we applied our WDN method on the data preprocessed in the same way.

Specifically, by PCA whitening in this article, we mean that the combined controls were
scaled to have zero mean and unity variance along each PCA axis, and for the treatments,
the same scaling was applied (see “Embeddings Based on Deep Neural Network”).

CORAL applies a domain-specific affine transformation to the embeddings represented
as the rows of a matrix Xd from domain d in the following way. On the negative controls
only, the covariance matrix across all domains C as well as the covariance Cd in each
domain d are computed. Then, all embedding coordinates in domain d are aligned by
matching the covariance matrices. It is done by computing the aligned embeddings
Xaligned
d ¼ XdR

�1=2
d R1=2. Here Rd = Cd + ηI and R = C + ηI are regularized covariance
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matrices. Without loss of generality, we specify C = I. The regularization weight η is set
to 1, which is the same as that in Ando, McLean & Berndl (2017).

RESULTS
Figure 4 shows the k-NN MOA assignment accuracy as a function of training time
steps for NSC and NSC NSB with k = 1, 2, 3 and 4 using our approach. Knowing when to
stop training is a nontrivial problem. We observe that for the DNN embeddings, there is an
improvement in all the k-NN metrics to some point, for both filtering based on NSC
(Fig. 4B) and NSC NSB (Fig. 4D). When continuing to train, these metrics eventually
decrease. Meanwhile, the analogous curves using the hand-engineered embeddings
(Figs. 4A and 4C) do not improve (is stable at the beginning and then decreases).

Figure 5 shows the distribution of the bootstrap k-NN MOA assignment metrics for
NSC and NSC NSB with k = 1, 2, 3 and 4. We observe that for the DNN embeddings,
WDN is at least comparable to CORAL or even sometimes better, and both are
generally better than PCA whitening, in preserving MOA-relevant biological information.
For the hand-engineered embeddings, however, all perform roughly the same. We also
observe that for the DNN embeddings, WDN using the stopping time step based on
the Silhouette score outperforms that based on the average k-NN metric. This can be
attributed to the Silhouette score being continuous as a function of its inputs, as well as
being a global metric. Tables 1 and 2 summarize the NSC and NSC NSB k-NN metrics for
the hand-engineered embeddings, respectively, while Tables 3 and 4 summarize the

Figure 4 Comparison of the k-NNMOA assignment metrics (%) for NSC (i.e., not-same-compound) and NSC NSB (i.e., not-same-compound-
or-batch) with k = 1, 2, 3 and 4 over training time steps for the two types of embeddings using our approach (i.e., WDN). The hand-engineered
embeddings are shown in (A) and (C), and the DNN embeddings are shown in (B) and (D). For the DNN embeddings, there is a significant
improvement at some time step over the training. This suggests that the biological signal can be improved if the number of training steps is selected
appropriately. For the hand-engineered embeddings, there is little improvement in the metrics. Full-size DOI: 10.7717/peerj.8594/fig-4
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same metrics for the DNN embeddings. The numbers in parentheses represents the
standard deviation of the bootstrap estimates.

The biological signal contained in the embeddings can be also captured by the metric
the Silhouette score described in “Silhouette Score on Mechanism of Action.” Figure 6
shows the bootstrap Silhouette scores as a function of training time steps for the
hand-engineered and DNN embeddings. For the DNN embeddings, the Silhouette score
of WDN significantly increases at the beginning (even above CORAL) and eventually
decreases. This suggests that WDN better improves the biological signal than the other
methods when the stopping time step is appropriately selected, and over-correction
(i.e., being trained for too many time steps) can instead destroy the biological signal.
For the hand-engineered embeddings, the Silhouette score only slightly increases at the
beginning, reflecting a minor batch effect correction. Tables 5 and 6 compare the bootstrap
Silhouette scores at the time step where it is maximized for the hand-engineered and

Figure 5 Distribution of the bootstrap k-NN MOA assignment metrics (%) for NSC (i.e., not-same-compound) and NSC NSB (i.e., not-same-
compound-or-batch) with k = 1, 2, 3 and 4 for different methods. The hand-engineered embeddings are shown in (A) and (C), and the DNN
embeddings are shown in (B) and (D). We compare PCA whitening (or Preprocessed for the hand-engineered embeddings) with CORAL, andWDN
using two different stopping time steps—based on the average k-NN metric and the Silhouette score. The distribution is shown as a violin plot with
three horizontal lines as the 1st, 2nd and 3rd quartiles. For the DNN embeddings, our approach (i.e., WDN) is at least comparable to CORAL or even
sometimes better, and both are generally better than PCA whitening, in preserving MOA-relevant biological information. For the hand-engineered
embeddings, all perform roughly the same. Using the Silhouette scores instead of k-NN to find the stopping time slightly improved these metrics,
which is due to the stopping times becoming more stable using the Silhouette metric. Full-size DOI: 10.7717/peerj.8594/fig-5
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deep-learned features, respectively. For the hand-engineered embeddings, the Silhouette
scores are comparable among the methods, while for the DNN embeddings, the Silhouette
score of WDN is significantly better than those of the other methods.

Other than preserving or enhancing the biological signal, we would like to minimize the
ability of using embeddings to distinguish which batch a sample comes from given a

Table 1 NSC k-NN MOA assignment metrics (%) for hand-engineered embeddings. For all methods
(Preprocessed, CORAL and WDN), we show the bootstrap results. For WDN, we also show the results
using two different stopping time steps—based on the average k-NN metric and the Silhouette score.
The bootstrap results are represented by the mean and standard deviation (shown in parentheses) across
the bootstrap estimates.

Method Type 1-NN 2-NN 3-NN 4-NN

Preprocessed Bootstrap 91.3 (0.8) 86.2 (0.6) 80.7 (0.6) 77.0 (0.6)

CORAL Bootstrap 90.4 (0.9) 86.2 (0.7) 80.2 (0.7) 77.4 (0.6)

WDN Max Silhouette 92.2 86.4 80.9 76.6

Max average k-NN 92.2 86.4 80.9 77.4

Bootstrap, max k-NN 91.1 (0.8) 86.0 (0.6) 80.4 (0.8) 76.8 (0.7)

Bootstrap, max silhouette 91.1 (1.0) 86.0 (0.6) 79.8 (0.7) 76.4 (0.6)

Table 2 NSC NSB k-NN MOA assignment metrics (%) for hand-engineered embeddings. For all
methods (Preprocessed, CORAL and WDN), we show the bootstrap results. For WDN, we also show the
results using two different stopping time steps—based on the average k-NN metric and the Silhouette
score. The bootstrap results are represented by the mean and standard deviation (shown in parentheses)
across the bootstrap estimates.

Method Type 1-NN 2-NN 3-NN 4-NN

Preprocessed Bootstrap 73.6 (1.6) 72.9 (1.3) 69.4 (1.1) 67.5 (0.9)

CORAL Bootstrap 73.7 (1.7) 72.5 (1.2) 68.2 (0.8) 67.8 (0.8)

WDN Max Silhouette 73.9 72.8 69.8 67.3

Max average k-NN 73.9 73.3 69.4 67.9

Bootstrap, max k-NN 73.6 (1.7) 72.7 (1.3) 69.0 (1.2) 67.3 (1.0)

Bootstrap, max Silhouette 73.5 (1.6) 72.3 (1.2) 68.2 (0.9) 67.0 (0.8)

Table 3 NSC k-NN MOA assignment metrics (%) for DNN embeddings. For all methods (PCA
whitening, CORAL and WDN), we show the bootstrap results. For WDN, we also show the results using
two different stopping time steps—based on the average k-NN metric and the Silhouette score.
The bootstrap results are represented by the mean and standard deviation (shown in parentheses) across
the bootstrap estimates.

Method Type 1-NN 2-NN 3-NN 4-NN

PCA whitening Bootstrap 94.7 (1.0) 92.1 (0.6) 89.1 (0.6) 87.4 (0.5)

CORAL Bootstrap 96.8 (0.5) 94.5 (0.5) 91.1 (0.6) 89.0 (0.5)

WDN Max Silhouette 97.1 95.1 92.6 90.2

Max average k-NN 97.1 95.1 92.6 90.2

Bootstrap, max k-NN 96.4 (0.8) 94.2 (0.8) 91.5 (0.7) 89.7 (0.6)

Bootstrap, max Silhouette 96.5 (0.7) 94.3 (0.7) 91.8 (0.7) 89.8 (0.6)
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Table 4 NSC NSB k-NN MOA assignment metrics (%) for DNN embeddings. For all methods (PCA
whitening, CORAL and WDN), we show the bootstrap results. For WDN, we also show the results using
two different stopping time steps—based on the average k-NN metric and the Silhouette score.
The bootstrap results are represented by the mean and standard deviation (shown in parentheses) across
the bootstrap estimates.

Method Type 1-NN 2-NN 3-NN 4-NN

PCA whitening Bootstrap 90.2 (1.1) 88.2 (0.9) 84.0 (0.6) 83.4 (0.6)

CORAL Bootstrap 92.5 (1.2) 89.4 (0.8) 84.9 (0.6) 84.5 (0.5)

WDN Max Silhouette 93.5 91.7 85.8 84.8

Max average k-NN 93.5 91.7 85.8 84.8

Bootstrap, max k-NN 92.2 (1.2) 90.3 (1.0) 85.2 (0.7) 84.5 (0.6)

Bootstrap, max Silhouette 92.6 (0.9) 90.8 (0.8) 85.8 (0.7) 84.8 (0.5)

Figure 6 Bootstrap Silhouette scores on MOA over training time steps for different methods. Results
for the hand-engineered embeddings are shown in (A) and the DNN embeddings in (B). We compare the
methods PCA whitening (or Preprocessed for the hand-engineered embeddings), CORAL and WDN.
Silhouette scores for non-WDN methods are independent of the training time steps. The solid line is the
mean of the bootstrap Silhouette scores, and the lower and upper bounds (dashed lines for PCA
whitening/Preprocessed and CORAL, and error bars for WDN) are mean minus or plus one standard
deviation, respectively. The hand-engineered embeddings are shown in (A), and the DNN embeddings
are shown in (B). For the DNN embeddings, the Silhouette score of WDN significantly increases at the
beginning (even above CORAL) and eventually decreases, suggesting MOA-relevant information can be
maximized with selection of the model at a particular time step.

Full-size DOI: 10.7717/peerj.8594/fig-6
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treatment. For this reason, we use the metric the batch classification accuracy described in
“Silhouette Score on Mechanism of Action.” Figure 7 shows the bootstrap batch
classification accuracy using logistic regression and random forest for negative controls as
a function of training time steps for the hand-engineered and DNN embeddings. We also
include the baseline batch classification accuracy, which is calculated by assigning each
embedding coordinate to a Gaussian random variableNð0; 1Þ independently. In this case,
there is no batch information whatsoever, so this represents an effective minimum
batch classification accuracy level we should expect. For WDN, all the classification
accuracy metrics decrease over training time steps, and eventually become closer to the
baseline. Tables 5 and 6 compare the bootstrap batch classification accuracy at the time
step where the Silhouette score is maximized. We observe that the batch classification
accuracy for WDN is significantly lower than those for PCA whitening (or Preprocessed
for the hand-engineered embeddings) and CORAL. All of these suggest the effectiveness of
our method in removing the batch effect.

Figures 8 and 9 compare the first and last eight principal components of embeddings
for negative controls across batches among the three methods PCA whitening (or
Preprocessed for the hand-engineered embeddings), CORAL and WDN. Each color
corresponds to a batch, and there are ten batches in total. We observe that for the DNN
embeddings (Fig. 8, the batch effect is more severe than that for the hand-engineered
embeddings (Fig. 9)). This allows us to compare the effect of the different methods side by
side in a concrete way. Specifically, we see that for CORAL the greatest batch effect appears

Table 5 Silhouette scores and batch classification accuracy for hand-engineered embeddings.
We compare the methods Preprocessed, CORAL and WDN. The Silhouette score is evaluated over
the entire dataset (excluding the negative control), and the batch classification accuracy is evaluated over
the negative control, both at the time step where the Silhouette score is maximized. The bootstrap results
are represented by the mean and standard deviation (denoted by σ(·)) across the bootstrap estimates.

WDN σ (WDN) CORAL σ (CORAL) Preproc. σ (Preproc.)

Silhouette score 0.438 0.440 0.436

Bootstrap Silhouette score 0.429 0.003 0.433 0.003 0.429 0.003

Bootstrap logistic regression 30.0% 0.8% 33.3% 0.9% 33.9% 0.9%

Bootstrap random forest 27.3% 0.2% 27.2% 0.2% 29.5% 0.8%

Table 6 Silhouette scores and batch classification accuracy for DNN embeddings. We compare the
methods PCA whitening, CORAL and WDN. The Silhouette score is evaluated over the entire dataset
(excluding the negative control), and the batch classification accuracy is evaluated over the negative
control, both at the time step where the Silhouette score is maximized. The bootstrap results are
represented by the mean and standard deviation (denoted by σ(·)) across the bootstrap estimates.

WDN σ (WDN) CORAL σ (CORAL) PCA σ (PCA)

Silhouette score 0.514 0.510 0.504

Bootstrap Silhouette score 0.505 0.002 0.502 0.002 0.496 0.002

Bootstrap logistic regression 43.2% 0.6% 66.4% 0.7% 63.6% 1.0%

Bootstrap random forest 34.6% 1.1% 48.6% 0.6% 45.9% 0.2%
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in the first few principal components, while for WDN it appears in the last few
components. It is possible that for CORAL the nuisance variation between different
batches leads to axes of large variance in the combined dataset used to align each individual
batch. This would explain why the most batch effect is seen in the first few components.
Intuitively, WDN applies an affine transformation that tries forcing batches to align.
This would result in moving the batches closer and “shrinkage” along the axes of greatest
variation, which is reflected in the batch effect being forced to the smallest principal
components.

While viewing the principal components can be revealing in terms of the concrete
behavior of each of the transformations we considered, it may not give a complete picture
in terms of how much batch effect is removed. This is reflected in Fig. 10, which shows
the proportion of variance explained by each PC component for each method given the
two types of embeddings we used. This profile is fairly flat, meaning that there may be
meaningful information in both higher and lower principal components. For this reason,

Figure 7 Bootstrap batch (i.e., domain) classification accuracy using logistic regression and random forest for negative controls over training
time steps for different methods. Logistic regression results are shown in (A) and (B) and random forests in (C) and (D). The hand-engineered
embeddings are shown in (A) and (C), and the DNN embeddings are shown in (B) and (D). We compare PCA whitening (or Preprocessed for the
hand-engineered embeddings), CORAL and WDN. Batch classification accuracy for non-WDN methods are independent of the training time steps.
The solid line is the mean of the bootstrap batch classification accuracy, and the lower and upper bounds (dashed lines for PCA whitening/Pre-
processed and CORAL, and error bars for WDN) are mean minus or plus one standard deviation, respectively. We also include the baseline batch
classification accuracy, which is calculated by assigning each embedding coordinate to a Gaussian random variable Nð0; 1Þ independently. In this
case, there is no batch information whatsoever, so this represents an effective minimum batch classification accuracy level we should expect.
The hand-engineered embeddings are shown in (A) and (C), and the DNN embeddings are shown in (B) and (D). All the classification accuracy
metrics for WDN decrease over training time steps, and eventually become closer to chance (i.e., baseline), suggesting WDN successfully removes
domain-relevant (i.e., batch) information. Full-size DOI: 10.7717/peerj.8594/fig-7
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Figure 8 Principal component comparison for DNN embeddings.We show the first and last eight PC
components for PCA whitening, CORAL and WDN (A–VV). We see for CORAL there is greater batch
variation in the first few components, and for WDN in the last few. For CORAL, it may be that the
nuisance variation among different batches results in increased covariance along particular axes in the
combined dataset, and the embeddings of individual batches become aligned along these directions.
For WDN, this represents “shrinkage” in the directions of greatest batch variation, transferring the
nuisance variation to the smaller principal components. Full-size DOI: 10.7717/peerj.8594/fig-8
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Figure 9 Principal component comparison for hand engineered embeddings (A–VV). These
embeddings did not show as much nuisance variation as the DNN embeddings. However, we see similar
behavior for CORAL and WDN (see Fig. 8). Full-size DOI: 10.7717/peerj.8594/fig-9
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to study how much batch effect is removed we also rely on our batch removal metrics as
measured by batch classifiers (see Fig. 7).

DISCUSSION
The framework of our approach is general and extensible. Our method can also utilize
information from replicates of multiple treatments across different domains. However, the
BBBC021 dataset used does not have treatment replicates across batches, so we have to
rely on aligning based on the negative controls only. This means we implicitly assume that
the transformations learned from the negative controls can be applied to all the other
treatments. We expect our method to be more powerful in the context of experiments
where many replicates are present, so that they can all be aligned simultaneously.
We expect the transformations learned for such experiments to have better generalizability
since it would use available knowledge from a greater portion of the embedding space.
Still, we have found for the DNN embeddings that WDN is able to remove the ability
to distinguish the batch of origin while preserving or improving biological signal.

Although methods using neural networks tend to be more flexible than traditional
methods, they tend to be more difficult to train, in part due to hyperparameter tuning.
In the case of our method, we design a minimax problem that once optimized will remove
the nuisance variation. However, we must use either early stopping or some form of
regularization to prevent collapsing the embeddings together. Although Shaham (2018)
does not have the exact same problem in the variational autoencoder setting, they instead
need to either use a regularization parameter, or another hyperparameter to balance
parts of the loss function associated with the removal of the batch effect and the
preservation of the biological signal. Meanwhile, Amodio et al. (2018) defined an explicit
map in the latent space, which fixes the percentiles of the distributions to match. While
this resolves the hyperparameter ambiguity, it also reduces the flexibility of the method
and has to depend on certain assumptions of the latent space for the method to work.

Figure 10 Ratio of variance explained by each PC component. The DNN embeddings are shown in (A) and the hand-engineered embeddings are
shown in (B). For both DNN embeddings and hand-engineered embeddings, the curve of the portion of variance explained by the principal
components is fairly flat. For this reason, in Figs. 8 and 9 we show the distributions resulting from each method for a number of principal com-
ponents from both head and tail. Full-size DOI: 10.7717/peerj.8594/fig-10
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We also remark that additional comparison of recent results is available in Table 2
of Caicedo et al. (2018). Our metrics are somewhat different, so the results are not
directly comparable to ours, but one of the higher-performing methods listed there is the
result from Ando, McLean & Berndl (2017) to which we have provided a direct comparison
in this manuscript.

CONCLUSIONS
We have shown how a neural network can be used to transform embedding vectors to
“forget” specifically chosen domain information as indicated by our proposed domain
classification accuracy metric. The transformed embeddings still preserve the underlying
geometry of the space and maintain or even improve the k-NN MOA assignment
metrics and the Silhouette score. Our approach uses the Wasserstein distance and can
in principle handle fairly general distributions of embeddings (as long as the neural
network used to approximate the Wasserstein function is general enough).

We discuss potential future directions below, as well as other limiting issues. One
possible extension is to modify the form of the loss function by the following, which would
more closely resemble finding the Wasserstein barycenter:

XN
i;j¼1

Wðmi;AdjðnjÞÞ (13)

The difference between this and our presented method is that instead of comparing
the pairwise transformed distributions, we compare the transformed distributions to
the original distributions. One distinct advantage of this approach is that it avoids the
“shrinking to a point” problem, and therefore does not require early stopping or a
regularization term to converge to a meaningful solution. However, we have not found
better performance for the new form of the loss function (Eq. (13)) for the BBBC021
dataset.

The Wasserstein functions were approximated by quite simple nonlinear functions,
and it is possible that better results would be obtained using more sophisticated functions
to capture the Wasserstein distance and its gradients more accurately. Similarly,
The transformations Ad could be generalized from affine to a more general class of
nonlinear functions. As in Shaham et al. (2017), we expect ResNet would be natural
candidates for these transformations.

We may fine-tune the Deep Metric Network used to generate the embeddings instead of
training a separate network on top of its outputs (i.e., embeddings). Another issue is how
to weigh the various Wasserstein distances against each other. This might improve the
results if there are many more points from some distributions than others (which happens
quite often in real applications). Another extension may involve applying our method
hierarchically to the various domains of the experiment. For example, we could apply
our method on the plate level instead of the batch level only.

Since the k-NN MOA assignment metrics and the Silhouette score are based on the
cosine distance, it is possible that better results could be obtained by modifying the metric

Tabak et al. (2020), PeerJ, DOI 10.7717/peerj.8594 24/29

http://dx.doi.org/10.7717/peerj.8594
https://peerj.com/


used to compute the Wasserstein distance accordingly, for example, finding an optimal
transportation plan only in non-radial directions.

It is also possible to try applying WDN without the MOA given, which we only use to
estimate the stopping time. To this end, one strategy might be estimating the clustering
of various treatments instead of relying on given MOA data. However, for this strategy
to work, we would also need a way to estimate the number of clusters K. This could
cause additional potential issues: If K is estimated before enough batch effect is removed,
we may find more clusters than expected when two related treatments appear artificially
far because of the batch effect. On the other hand, if we try to estimate K at a late
training step, it is possible that too much of the biological signal would be removed
resulting in the appearance of too few clusters.

APPENDIX: WASSERSTEIN VS. MEAN-COVARIANCE
MATCHING
In a toy example, we look at howminimizing a regularized pairwise 1-Wasserstein distance
compares with minimizing a mean-covariance metric. The purpose of this exercise is to
demonstrate situations in which higher moments are important for the purposes of
matching distributions, and to illustrate benefits of using metrics like the 1-Wasserstein
distance.

When matching the mean and covariance, there is generally a free parameter between
how important the mean vs. the covariance are. However, in the analysis below we will be
concerned with an example in which both can be well-matched, although we will see
that there is another sense in which the distributions could be matched better. For this
reason we do not weight the mean or variance in the loss function of this method.

In this toy example, we confine the matching to use an affine transformation for each
distribution. Each of the two distributions is a Gaussian mixture, with two Gaussians of
variance 1 (each will be referred to as its sub-populations). The two Gaussians have a
different number of points, N1 = 4,000 and N2 = 6,000. We initialize the two distributions
so that the Gaussian with N1 points of the first distribution is closer to the Gaussian
with N2 points of the second distribution, and vise versa. The two distributions also have a
different offset between their sub-populations (6 and 8). We show our chosen distributions
in Fig. 11A.

Optimizing how much the two distributions match involves multiple tradeoffs.
(1) We do not want the transformations to be too strong, collapsing both distributions.
For this reason, we introduce a regularization term. In our main work, we use early
stopping, which plays a similar role. (2) The two distributions should align as well as
possible. Towards this goal, there are multiple intuitive tradeoffs as well. We would like
each sub-population to match the location of the corresponding sub-population in the
other distribution, but also we would like to avoid a distortion between the shapes of
the resulting sub-populations. In this example these are two competing goals, since
shrinking the distribution with a wider gap between the two sub-populations will
necessarily distort their shape.
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The two optimization strategies we consider produce visually different outcomes. Since
the optimal regularization for the two strategies may be on a different scale, we adjusted the
regularization for each strategy and examined the results.

When the regularization is made small (≤0.1), the Wasserstein experiment flips
the two sub-populations for one of the distributions. This is reasonable since the
sub-populations initially close to each other in the two distributions have imbalanced sizes.
However, we will restrict our analysis to the regime when this flip does not happen.
Meanwhile, with even very small regularization (0.00005) the mean-covariance matching
experiment does not flip the two populations, and the results look much the same as
with strong regularization (0.5). In the case of very small regularization, we find this
experiment matches the means and variances very closely (O(1e−5), without altering the
overall scale). Interestingly, the mean-covariance matching experiment does eventually flip
the distributions at regularization somewhere between 0.000004778 and 0.000004779.

Figure 11 Toy example comparing matching strategies. The initial two distributions to match are shown in (A), and the results from the two
matching strategies are shown in (B) for mean-covariance matching and (C) and Wasserstein distance minimization.

Full-size DOI: 10.7717/peerj.8594/fig-11
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When regularization is strong (>0.3), neither distributions flip horizontally. In both
experiments, the larger sub-populations move towards the center compared to the
smaller sub-populations. However, in the Wasserstein experiment there is visually greater
overlap between the resulting distributions. The reason in this difference is that the
Wasserstein method is able to account for high-order moments, especially including the
skew introduced because of the difference in the sub-population size. When trying this
experiment with equally-sized sub-populations, the results of the two experiments are
much more similar.

To compare the matching quality, we consider how well each sub-population has been
matched individually for the two methods. To account for the overall scale changing,
we use the metric.

D1;2 ¼ km1 � m2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1 þ s2

2

p (14)

where mi and σi are the mean and standard deviation of sub-population i.
The mean-covariance matching produces scores of 1.0 and 0.91, and the Wasserstein

minimization 0.41, 0.36 for the two corresponding sub-populations, agreeing with the
visual results.
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