
1 3J. Indian Inst. Sci. | VOL 101:3 | 303–327 July 2021 | journal.iisc.ernet.in

Agent‑Based Computational Epidemiological 
Modeling

1 Introduction
With an increasingly connected world, the poten-
tial for large scale virus outbreaks, including 
epidemics and pandemics, grows. Example out-
breaks include severe acute respiratory syndrome 
(SARS) in 2003, which claimed 800 lives47,126; 
the 2015 Ebola outbreak (8833 killed to date)45; 
and Asian and Hong Kong influenza, each pro-
ducing death tolls in the millions126, which are 
some of the worst outbreaks in recent history79. 
Over the last 40 years in the U. S., seasonal influ-
enza has caused between 3000 and 49000 deaths 
annually46. Of course, the current COVID-19 
pandemic is changing the world health state too 
rapidly to give “current” statistics.

While deaths and serious illness are immedi-
ate impacts of disease outbreaks, there are oth-
ers. For example, the effects of virus outbreaks on 
economic costs have been studied15, illustrating 
that interventions can significantly reduce these 
costs. Secondly, shorter-term conditions can lead 
to longer-term trends. The so-called poverty trap 
is the phenomenon wherein poor economic con-
ditions and disease prevalence can lock a society 
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into persistent states of poor health and wealth43. 
A third example is the effect of disease on gov-
ernment instability and upheaval.93 provide a 
regression analysis showing that civil wars may be 
precipitated or exacerbated by disease outbreaks, 
because they decrease social health and welfare. 
Finally, persistent disease threat can also lead to 
different type of crimes120. There are several social 
issues coming to the fore through the 2019-ini-
tiated COVID-19 outbreak. These include 
closing businesses31, educational impacts117, dis-
proportionate burden of racial minorities (e.g., 
in the United States) and by the poor44,63, general 
heightened anxiety levels53,125, and domestic vio-
lence80,124. Hence, there are many reasons to study 
epidemics and disease outbreaks.

Epidemiologists and the health sciences com-
munity use various tools to anticipate outbreaks 
and help them react to those in progress, as 
well as perform research to understand disease 
dynamics and the factors that influence their 
spread (e.g.,16). Software simulation tools are 
used for these purposes and many studies have 
been conducted (e.g.,26,40,49,57,59,72,73,114,133).
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Simulation may use ordinary differential 
equation (ODE) approaches that, for exam-
ple, focus on groups (compartments) of people 
and compute the aggregated numbers of indi-
viduals that are in each state (e.g., infected, not 
infected) as a function of time. These equations 
essentially describe how many people move from 
one state to another based on rate equations that 
involve the current number of people in each 
compartment. They can also be used to compute 
characteristics of populations such as the basic 
reproductive number. See75 for a detailed treat-
ment and42,54,57,68,114,115 for particular applica-
tions and overviews.

Agent-based models (ABM)56,65,67,112 repre-
sent another class of simulation wherein each 
human of a population is modeled as a distinct 
entity or agent that is attributed with traits and 
behaviors. These agents interact, thereby gen-
erating opportunities for contagion transmis-
sion among them. Agent interactions on a local 
scale produce population-level outcomes, such 
as numbers of cases, regions of high outbreak 
intensity, subpopulations with greater or lesser 
numbers of outbreaks, and pathways of virus 
transmission, among other characteristics. While 
ODE (aggregated) and ABM (disaggregated) 
methods each have their strengths, one strength 
of ABM is the fine-grained opportunities it offers 
to modify agent traits, behaviors, interactions, 
and disease parameters and assess their effects on 
outcomes15. Interventions and sensitivity analy-
ses are two example classes of studies that make 
use of these refinements. Works on use of agent-
based modeling for epidemic simulation incl
ude3,59,73,76,86,89,100,133.

With this background, we turn to the focus of 
this work in the next section. This paper addresses 
many disciplines that comprise epidemiological 
study (in addition to the epidemiological mod-
eling approaches mentioned above). All such dis-
ciplines are not covered. Those that are covered 
are large and wide-ranging. Several references are 
provided for each discipline; they should be taken 
as representative, not exhaustive. The topics cov-
ered are integrated to give a unified perspective.

We note that while the theme of this paper is 
computational epidemiology, most of the topics 
are applicable to other types of human behavior.

2 �An Integrated Modeling Methodology: 
Scope and Motivation

Our focus is an ABM environment for compu-
tational epidemiology. Agent-based modeling of 
the spread of viruses or diseases is often given 

the most attention because it is most closely 
associated with the ultimate results. However, 
there are many technical contributions to these 
final results. Our goals are the construction 
and use of tools and methods that ultimately 
produce time-resolved state transitions of 
each agent in a population, and a quantitative 
understanding of the factors that produce these 
results. These tools and their results may then 
be used by policy analysts and makers41. We 
describe several components of this methodol-
ogy: (i)  theoretical foundations; (ii)  popula-
tion generation procedures and data; (iii) social 
network construction from these populations; 
(iv)  large-scale stylized network generators; 
and (v)  simulation software that models virus 
transmission.

There is ample motivation for these indi-
vidual components, and for their combination 
and integration. Figure  1 provides an overview 
of the components and their interactions. We 
use a formalism called graph dynamical systems 
(GDS) to study the transmission of diseases and 
other phenomena. This not only guides simu-
lation software implementations, but also pro-
vides a framework to reason about such systems 
and applications. Examples are provided below. 
Diseases and other contagions propagate within 
populations and hence the generation of repre-
sentative synthetic populations (also called digi-
tal twins), down to the individual level, is a key 
technology. There are many approaches for gener-
ating agent-level populations. Social contact net-
works, and other types of interaction networks, 
can be produced from these populations. Large 
scale stylized networks with particular prop-
erties, such as scale-free and exponential decay 
degree distributions, clustering coefficient distri-
butions, assortativity, and community structure, 
are useful in that dynamics on them can serve as 
null model results. Moreover, network proper-
ties—through different network instances—can 
be systematically varied in stylized networks as 
another dimension to sensitivity and parametric 
studies; this is very difficult to do with synthetic 
populations. These results can then be compared 
against those from population-based networks. 
Disease (contagion) dynamics are computed on 
these networks using various simulation tools.

The goals of these efforts are to: (i)  under-
stand baseline population behavior, (ii)  quantify 
the effects on results of small changes in inputs 
(sensitivity studies) and of larger changes in 
inputs (parametric studies), (iii)  determine the 
effects of different interventions, (iv)  explain 
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behaviors and establish causality, and (v) under-
stand results in terms of policy implications.

It is useful to recall that the sizes of networks 
are routinely on the order of 10s or 100s of mil-
lions, or even billions, of agents (nodes) and 100s 
of millions or billions of edges. Hence, for many 
of these investigations, parallel processing is 
required to compute quantities efficiently.

3 �Technical Challenges
There are many challenges in developing ABM 
systems. First, we seek a theoretical approach to 
describe disease dynamics and for this we use 
graph dynamical systems105. Second, to construct 
populations, data are required from multiple 
sources. These data are by their nature incom-
plete, often at different levels of granularity, and 
may be contradictory. Data fusion under these 
conditions is challenging. Third, big data chal-
lenges exist for generating populations that may 
involve 10s of millions of agents or more, and 
100s of millions or billions of interactions38. 
In the same way, simulating dynamics on these 

networks requires parallel computations to drive 
down execution time and to enable runtime stor-
age of large populations. Hence, efficient simu-
lation is another challenge. A major part of a 
dynamics evaluation is sensitivity studies: how 
changes in input parameters affect the results. 
These require many simulation runs, increasing 
the need for fast simulation of large populations.

4 �Modeling Environment
We describe four of the main elements of our 
modeling environment.

4.1 � Graph Dynamical Systems
First we provide a theoretical overview of GDS, 
and then we make the ideas concrete through 
some examples. Then, we briefly touch on analy-
sis problems and dynamical systems characteriza-
tions that are solved using GDS.

4.1.1 �Theoretical Foundations
We use a discrete dynamical systems formulation 
known as graph dynamical systems (GDS)4,97,105 

Figure 1:  Major components of the agent-based modeling system for computational epidemiology. These 
boxes are the topics in Sect. 4 below. Feedback loops are not shown. For example, based on the results 
of system behavior, the population construction methods may be changed, stylized networks with differ‑
ent properties may be generated, or parameters of the dynamics model may be changed.
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to model epidemiological processes. A GDS 
S(G(V ,E), F ,K ,W ) describes the system and its 
dynamics. Here, G is a (dependency) graph with 
vertex set  V and edge set  E. We use undirected 
dependency graphs in this work, but the con-
cepts extend naturally to directed graphs. Each 
agent v ∈ V  is assigned a state xv ∈ K  , where  K 
is the vertex state set. The (system) state  x is 
given by x = (x1, x2, . . . , xn) where n is the num-
ber of agents in the system; i.e., n = |V | . A GDS 
will have |K |n (system) states. Let n[v] be the 
sequence of vertex IDs for  v itself and for all of 
its distance-1 neighbors (i.e., the vertices adjacent 
to v), ordered in increasing numerical order. This 
sequence of vertices is identified from the con-
nectivity of  G. We denote the states of  v and of 
all of its distance-1 neighbors as x[v], such that 
x[v] = (xn[v](1), xn[v](2), . . . , xn[v](dv+1)) , where 
d(v) is the degree of v.

A vertex function fv is assigned to each 
agent v that describes the state transitions for it. 
The vertex functions for all n agents in the system 
comprise the sequence F = (fv)

n
v=1 . For each fv , 

the argument is x[v], such that the next state of v, 
denoted x′v , is given by x′ = fv(x[v]).

Parameter W describes the order in which the 
vertex functions execute. We will cover two of the 
most common update schemes: synchronous 
and sequential.

A synchronous GDS map F : Kn → Kn is 
defined by

That is, all vertex functions execute simultane-
ously. This is also called a parallel GDS map 
or a synchronous dynamical system. The sys-
tem state at time t + 1 , x(t + 1) , is given by 
x(t + 1) = F(x(t)).

A sequential GDS map Fπ uses a permuta-
tion π = (π1,π2, . . . ,πn) from the set SX of all 
permutations of the vertices in  V, where each 
πi ∈ V  . We introduce the X-local function 
Fv : K

n −→ Kn , for a vertex v, given by

That is, only the vertex function for v is executed, 
with the states of all other vertices remain-
ing unchanged. The sequential GDS map 
Fπ : Kn −→ Kn , is then the composition of the 
X-local functions; i.e.,

(1)F = (f1(x[1]), f2(x[2]), . . . , fn(x[n])) .

(2)

Fv(x1, . . . , xn)

= (x1, . . . , xv−1, fv(x[v]), xv+1, . . . , xn) .

(3)Fπ = Fπn ◦ Fπn−1 ◦ . . . ◦ Fπ2 ◦ Fπ1 .

This is also referred to as a sequential dynamical 
system. The system state at time t + 1 , x(t + 1) , is 
given by x(t + 1) = Fπ (x(t)).

A forward trajectory is the sequence of (sys-
tem) states (x(0), x(1), x(2), . . . , x(tf )) through 
which the GDS evolves from an initial state 
x0 = x(0) to a final state x(tf ) , corresponding 
to a specified end time tf  . Thus, x(1) = F(x(0)) , 
x(2) = F(x(1)) = F

2(x(0)) , and so on, until 
x(tf ) = F(x(tf − 1)) = F

tf (x(0)) is computed. 
Consequently, time t ∈ [0, tf ] . A forward tra-
jectory is sometimes referred to as a diffusion 
instance. If, for a deterministic system map F
—one in which there is precisely one value of 
x(t + 1) = F(x(t)) for each x(t)—we have that 
x(t + 1) = x(t) , for some time  t, then the GDS 
has reached a fixed point. That is, when a fixed 
point is reached at time  t∗ , x(t) = x(t∗) for 
all t ≥ t∗ ; the system state does not change. Fur-
ther, if there exists a smallest integer q such that 
x(t + q) = x(t) , and no q∗ < q exists such that 
x(t + q∗) = x(t) for some  t, then the long-term 
dynamics is a repeating sequence or cycle of states 
(x(t), x(t + 1), . . . , x(t + q − 1)) called a limit 
cycle with cycle length  q. When q = 1 , the limit 
cycle is a fixed point.

A GDS may be deterministic or stochastic. We 
say that x(t + 1) is the successor of x(t) and that 
x(t) is the predecessor of x(t + 1) . In a determin-
istic system, a state  x may have many (or zero) 
predecessors, but only one successor (which may 
be itself). In a stochastic system, a state may have 
any number of predecessors and will have at least 
one successor, up to |K |n predecessors and succes-
sors. All of these states may or may not be visited 
in one forward trajectory of deterministic and 
stochastic GDSs.

Typically, for computations on large popula-
tions, the synchronous update mechanism is used 
to take advantage of parallel processing capabili-
ties of simulation software that incorporates par-
allel execution of vertex functions.

Figure  2:  State transition diagrams for the sus‑
ceptible-infected-recovered (SIR) model. The 
state set K = {S, I, R} . Vertex functions quantify the 
conditions under which a vertex changes state.
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4.1.2 �Example: SIR Model With Explicit 
Dependency Graph

The state transition diagram for the susceptible-
infectious-recovered (SIR) model is provided in 
Fig. 2. Vertex functions (fv)nv=1 quantify the con-
ditions under which the two state transitions 
S −→ I  and I −→ R take place. For the sake of 
simplicity in this example, we let p ∈ [0, 1] be a 
probability of infection that holds for all agents 
(in many cases, p may be a function of simula-
tion variables, such as the duration of contact 
between an infectious agent and a susceptible 
one). We let tdI be the duration (i.e., number of 
time steps) that a vertex spends in the infectious 
(I) state; again, we take this as uniform across all 
agents, but in practice can vary among agents. 
Let tiv be the time at which vertex v transitions 
to state  I. A description of the vertex function 
follows, in which a vertex v transitions from xv 
to x′v:

Vertex function fv for node v

1.	 If xv = R , then x′v = R , irrespective of the 
states of v’s neighbors.

2.	 If xv = I and tiv was the time at which this 
agent v was infected, then if the current time 
t = tiv + tdI , then x′v = R . Otherwise, v does 
not change state; i.e., x′v = xv.

3.	 If xv = S , then for each neighbor u of v that 
is in state I, v transitions to state I with prob-
ability  p. If v does not change state, then 
x′v = xv.

In particular for Condition 3, only one neighbor 
of v, in state I, is needed to cause v to change to 
state I. This is an example of a stochastic GDS, 

because, owing to the probability p, there is not 
a unique x(t + 1) given x(t).

Figure  3 provides a simple example that 
illustrates the dynamics of an SIR-based GDS. 
Each vertex is an agent, so the graph is a per-
son-to-person contact or interaction graph. 
Each vertex function is the SIR function given 
immediately above. Let tdI = 2 . The states at 
four times are shown: x(0), x(1), x(2), and x(3). 
Initially, only vertex 1 is infected; all other ver-
tices are in state  S. At time t = 1 , a random 
number r1 < p is generated for vertex  2, based 
on its edge with vertex  1, resulting in  2 transi-
tioning to state  I. For vertex  3 and its edge to 
vertex  1, r2 > p and hence  3 does not change 
state. Vertex  4 has no neighbor in state  I and 
thus remains in state S. At time t = 2 , vertex 3 
changes to state  I because, based on vertex 3’s 
edge with vertex 1, the generated random num-
ber r3 < p . Vertex 4 does not change state. Ver-
tex  1 transitions to state  R at the end of time 
t = 2 . Other state changes occur similarly. In 
this example, the dependency graph is explicit. 
In the next example, it is implicit.

4.1.3 �Example: SIR Model With Implicit 
Dependency Graph

In the previous example, we used an explicit 
agent-to-agent social network for the dependency 
graph. In this example, we use a different type of 
graph, shown in Fig.  4. It is a bipartite people-
locations graph (PLG), where one bipartition is 
the set of vertices representing people and the 
other bipartition is the set of vertices representing 
locations59. The edge labels are the times of the 

Figure 3:  Illustrative example of a 4-time step forward trajectory for a synchronous GDS where each ver‑
tex function is an SIR model. The dependency graph has 4 vertices and 4 edges. The infectious duration 
for each vertex (agent) is tdI = 2 , and the probability of infection is p for each vertex. The vertices (agents) 
are labeled in the graph at the left, corresponding to the initial state x(0). The state corresponding to 
each time, displayed below the time, is given as x(t) = (x1, x2, x3, x4) . This particular sequence of states is 
dependent on the random numbers ri , 1 ≤ i ≤ 5 , and their relation to p.
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day at which the person is located at the specified 
location.

A person-to-person contact graph is produced 
in the following way: an edge between two people 
is generated if they appear at the same location, 
at the same time. We say that they are co-located. 
For example, consider persons 1 and 2 in Fig. 4. 
They are co-located at location B between 2 and 
3 pm, and at location D from 4:30 to 5 pm. This 
results in one edge in the person-person graph in 
Fig. 3. Persons 1 and 3 also form an edge from the 
interaction at location D, because they overlap 
from 3:30 to 4 pm. Proceeding with this construc-
tion, we recover the dependency graph of Fig. 3.

In this example, the SIR model is the same 
as that in Sect.  4.1.2, and since we use the same 
synchronous update scheme and assume that 
the random numbers are the same as those in 
Sect.  4.1.2, we produce the same forward trajec-
tory as above in Fig. 3.

There are variants of this approach. For exam-
ple, the probability p of interaction can be a func-
tion of the contact duration between two people. 
In both examples, edges can be time-varying. For 
the first example, the edges can have labels denot-
ing their interaction times, in a fashion similar to 
that in Fig. 4. In the second example, the activity 
pattern of an agent may change. An activity pat-
tern is the set of locations that a person visits, 
along with the times of the visits.

4.1.4 �Analysis Problems and  System 
Characterizations

Besides providing a framework for constructing 
simulation software, GDS also provides a frame-
work for investigation of analysis problems and 
dynamical systems characterization. Analysis 
problems of interest here are those regarding sys-
tem dynamics of the types described in this sec-
tion. The following are some examples: 

1.	 Reachability problems. Given a state x, can 
the state x′ be reached in one time step? 
More generally: given a state x, can state x′ 
be reached in at most t time steps?

2.	 Predecessor existence problems. Given a 
state x, is there a state x′ such that the sys-
tem transitions from  x′ to  x in one time 
step? More generally: given a state x, is there 
a state  x′ such that a GDS transitions from 
state x′ to x in at most t time steps?

3.	 Fixed point existence problems. Given a 
GDS, does it have fixed points? A counting 
version is: How many fixed points does a 
system have?

These types of problems and their answers are 
important for practical reasons. For example, if a 
given state x of a system has been observed, one 
may want to know whether a particularly harmful 
state  x′ can arise; this is an example of a reach-
ability problem. We refer the reader to numerous 
works on these and other related analysis prob-
lems. See17–21,21,22,24,25,28,82,116,122.

The GDS framework also provides a founda-
tion for characterizing dynamical systems. Use-
ful texts include69,105. An example of a system 
characterization is the following: progressive 
Boolean threshold systems, heavily used in the 
social sciences48,71,119 and that are similar to mod-
els popularized in78, are shown to generate only 
fixed points as limit cycles85. Works with other 
characterizations include2,69,83,84,105,121,127. These 
types of results, along with those from analysis 

Figure  4:  Illustrative example of a person-loca‑
tion bipartite graph, where people (1 through 4) 
are the elements of the left partite set and loca‑
tions (A through G) are the elements of the right 
partite set. The edges are labeled with time. 
When two people are co-located, they form a per‑
son-person edge in a social network such as that 
in Fig. 3. Since these interactions give rise to the 
same person-person edges as in Fig. 3, and the 
same SIR model vertex functions are used, this 
network produces the same forward trajectory as 
that in in Fig. 3.
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problems, are useful not only for understanding 
system dynamics, but also for modeling and sim-
ulation verification and validation.

4.2 � Synthetic Population Generation
A synthetic population is a (data) representation 
of a group of individuals. The notion of group 
varies widely, from the members of a single fam-
ily to all of the people of a nation. The wide range 
in sizes of such populations is a signal of their 
increasing development and use. Synthetic popu-
lations are also called “digital twins.” The individ-
uals in a synthetic population are often endowed 
with (demographic) traits, such as age, gender, 
home location and housing. They are often given 
activity patterns where individuals go to particu-
lar locations and particular times of days. There 
is often additional data associated with synthetic 
individuals; particular data (assigned to synthetic 
individuals) depends on the requirements and 
use of the population. Figure  5 is a conceptual 
view of a synthetic population and movements 
of individuals as they perform daily activities; the 
two types of networks described above; and an 
attributed individual.

Typically, these populations are not one-to-
one with actual populations. In other words, con-
sider a real person who lives in a real city in the 
United States, on a particular street, with a fam-
ily. That person is not (typically) represented in 
a synthetic population. Rather, distributions of 
characteristics of a synthetic population match 
those of the actual population. For example, age 
and gender distributions of people within a U.S. 
state, and distributions of household sizes are 
matched within a synthetic population. Because 
of the stochastic nature of the synthetic popula-
tion construction process, one synthetic popula-
tion is typically one instance or realization of a 
family of instances. Work has been done to assess 
the variability of synthetic population instances, 
e.g.,61.

4.2.1 �Synthetic Populations and  Their Building 
Blocks

The synthetic population generation process is 
comprised of the following steps13,39.

Constructing synthetic individuals and households. 
Individuals and households (collections of indi-
viduals) are created. Individuals are endowed 
with characteristics such as age, gender, marital 
status. A representation of each household is cre-
ated from census data by collecting individuals 

and assigning attributes such as household 
income and size.

Determining activities of individuals. Each 
synthetic person in a household is assigned a set 
of activities to perform during a day, along with 
the times when the activities begin and end, as 
given by activity or time-use survey data.

Determining locations for activities. An 
appropriate real location is chosen for each activ-
ity of every synthetic person based on a gravity 
model (i.e., locations closer to home locations 
are more likely to be selected, but longer distance 
locations are also selected, just with lesser proba-
bility) and data sources such as land use patterns, 
tax data, or commercial location data. Locations 
often have sublocations (e.g., sublocations may be 
rooms within a building), so that a location may 
be a (location, sublocation) pair.

Generating social contact networks. Two dif-
ferent representations of human interaction net-
works are provided. See the discussions for Figs. 3 
and 4.

Below we describe each of the four steps above 
in more detail, for populations generated for 
regions of the U.S.

4.2.2 �Constructing Synthetic Individuals 
and Households

A baseline population is constituted from 
two data sources: American Community Sur-
vey (ACS) and Public Use Microdata Sample 
(PUMS). The ACS data are used to create an indi-
vidualized set of agents with assigned character-
istics; see37 for details. The PUMS data are used 
to construct individuals that have, in distribution, 
the same traits as those of members of an actual 
population.

The ACS provides data for public use that 
are resolved to the block group level, which is 
a geographical region containing between 600 
and 3000 people. For each block group, tables of 
distributions of many demographic character-
istics—such as age, gender, and household size—
are provided. These are marginal distributions. To 
create a synthetic population for the block group, 
a joint distribution is constructed from the given 
marginal distributions. This distribution is sam-
pled the required number of times (one for each 
member of the target population).

The ACS also provides a 5 percent representa-
tive sample for each region, known as a PUMS, 
which is generated from a larger region called a 
Public Use Microdata Area (PUMA); the latter 
contains at least 100,000 people. A PUMS record 
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is essentially a complete census record. The 
PUMS information is incorporated into the infer-
ence of the joint distribution from the marginal 
distributions using a statistical procedure called 
iterative proportional fitting (IPF)51,55. IPF is an 
approach for combining the information from 
the marginal distributions and the sample data. 
It has been shown to preserve important prop-
erties and correlations of the data; see77,94. The 
joint distribution for each block group is sampled 
to select households (with individuals) from the 
PUMS data, and these households are added to 
the synthetic population for that block group.

4.2.3 �Determining Activities of Individuals
Data from the National Household Travel Sur-
vey (NHTS) are used to assign a daily activity 
sequence to each individual in a synthetic popu-
lation. The NHTS contains detailed information 
on individual’s movements and activities over 
the course of a normative day118.

The activity patterns for different members 
of a household are typically dependent on each 
other. For instance, if there is a child under 
twelve years of age in the household, then an 
adult will likely be present in the home with the 
child whenever the child is at home.

NHTS surveys households, not individuals. 
Consequently, activity sequences are assigned by 
household, for each household, thereby preserv-
ing within-household activity correlations. This 
method is known as the Fitted-Values Method 
or FVM95. Essentially, a survey household is 
selected that is similar to the synthetic house-
hold using the asymmetric Hausdorff distance; 
a person within the survey household is selected 
that is most similar to each synthetic person; 
and that survey person’s activities are assigned 
to the synthetic individual, for each household 
member.

4.2.4 �Determining Locations for Activities
Since each activity must be located, there are 
procedures for assigning (i)  home locations and 
(ii) locations for other activities.

Home locations are assigned with the fol-
lowing procedure. U. S. Census data provide 
geographic boundary data (shapefiles) for each 
block group. The Census and ACS provide 
housing unit distributions (number of build-
ings with that contain different numbers of 
housing units), again for each block groups. 
HERE contains road networks, including geo-
graphic information. The portions of road net-
works that lay within the boundary of a block 
group are determined. Residential locations 
within a block group are assigned along these 
roadways with, e.g., single family homes more 
likely to be assigned to smaller (less traveled) 
streets. Households are assigned to these home 
locations.

Locations for other activities for individuals 
are assigned using a gravity model (see, e.g.,81,123 
for works on gravity models). The idea is that 
the probabilities of assigning particular locations 
for the next activity in a synthetic individual’s 
time-order list of activities are proportional to 
the capacities of buildings and inversely propor-
tional to the distances from the current location 
to the candidate next locations. The base location 
is a person’s home location. From the determined 
current location of the most recent activity, it 
is more likely that a closer location of greater 
human capacity is chosen for the next activity’s 
location. For schools, National Center for Educa-
tion Statistics (NCES)109,110 information is used; 
for business and other activity locations, D&B 
data are used. See35,59,70 for additional informa-
tion on location assignments. The above location 
assignments are constrained by capacities that are 
assigned to each building, or rooms (i.e., subloca-
tions) within buildings. Consequently, a location 
may be a (location, sublocation) pair.

4.2.5 �Generating Social Contact Networks
Each person has been assigned a (location, sub-
location) pair for each activity during the day. 
Each activity has a start and end time. Thus, all 
information for the network representation in 
Sect. 4.1.3 is known, and a person-location graph 
analogous to that in Fig.  3 can be generated for 
a synthetic population. To generate a person-
person contact social network, a graph edge is 
formed between two synthetic individuals (i.e., 
two nodes in the network) if they are located at 

Table 1:  Characteristics of selected U.S. city 
populations, in millions13.

City
Number 
of agents

Number 
of locations

Number 
of edges

Los Angeles 16.2 M 3.2M 917M

New York City 17.9 M 4.3M 961M

Seattle 3.2 M 0.78M 177M
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the same (location, sublocation) with overlapping 
visit times during the day. Sect.  4.1.2 describes 
such as person-person network. Aspects of con-
tact network evaluation can be found at59,60,128,129. 
Illustrative examples of populations and their 
contact networks are provided in Table 1. It is evi-
dent that populations with billions of edges (e.g., 
for states and countries) are readily attainable.

4.2.6 �Other Population Generation Approaches
In concluding this section, we note that there 
are several other approaches for generat-
ing and evaluating synthetic populations, and 
there are many applications. See for exam-
ples10,30,64,74,91,96,102,104,106–108,130,131,135. Reviews 
can be found at29,50,113.

4.3 � Stylized Network Construction
Constructing explicit contact networks on the 
involved individuals allows us to study disease 
dynamics in more detail than possible with some 
other methods (e.g., compartmentalized mod-
els). A contact network is a graph G(V ,E) , where 
V is the set of persons (each person is a vertex) 
and E is the set of contacts or edges; each edge 
(u, v) ∈ E indicates the existence of the contact 
between two persons u and v. Use of a social con-
tact network, in which a link represents physical 
contact between two people, can provide greater 
understanding of the disease dynamics. However, 
such studies require explicit networks, in which 
contacts (edges) exist explicitly. Although the 
data for these networks is difficult to get because 
of privacy and security concerns, conceptually 
these networks are well-defined. A study of epi-
demics (e.g., influenza, which spreads by physi-
cal contact) requires social contact networks, in 
which an edge represents an actual physical con-
tact between two people at some location during 
the day. Procedures for generating these networks 
were discussed in Sect. 4.2.

In this section, we discuss several procedures 
for generating large stylized networks. As men-
tioned earlier, these networks are useful for sev-
eral reasons. First, because (selected) properties 
of these networks can be controlled, the effects 
of network structure on disease dynamics (see 
Sect. 4.4) can be quantified. Second, even within 
a class of graphs, variations in parameter set-
tings for their construction can also be evaluated 
to determine their effects on disease dynamics. 
Third, results of virus spreading on these net-
works can be used as null model results that can 

be compared with those generated with the net-
works of the preceding section.

Often, contact networks are approximated 
by various random network models such as the 
Erdös–Rényi model58, preferential attachment 
model9,11, Chung-Lu model103, etc. The Erdös–
Rényi model is the most widely-used and well-
studied model due to its simplicity. Its simplicity 
has allowed us to perform rigorous theoretical 
analysis on this model over the last several dec-
ades. However, the Erdös–Rényi model gener-
ates random networks that have binomial degree 
distributions, which are not common in the 
real world. The preferential attachment model 
produces networks with power-law degree dis-
tributions. Many real-world networks follow 
power-law degree distributions, but many do 
not. Chung-Lu is a more general model that can 
produce a network from any given degree distri-
bution. However, a degree distribution must be 
input to the Chung-Lu model whereas Erdös–
Rényi and preferential models are controlled 
using just a few scalar parameters. In this section, 
we discuss some details of these models.

The study of complex systems has signifi-
cantly increased the interest in various random 
graph models7,33,66. As some of the complex net-
works grow, it has become necessary to corre-
spondingly generate massive random networks 
efficiently. As discussed in92, the structure of 
larger networks is fundamentally different from 
small networks, even if both are generated using 
the same model, and many patterns emerge only 
in massive graphs. Demand for large random net-
works necessitates the use of efficient algorithms, 
in terms of both running time and memory con-
sumption, for their generation. Therefore, in 
addition to the description of these models, we 
also discuss some efficient sequential and paral-
lel algorithms for generating random networks 
using the models.

Although various random graph models are 
being used and studied over the last several dec-
ades, even efficient sequential algorithms for 
generating such graphs were nonexistent until 
recently. Batagelj and Brandes33 justifiably said 
“To our surprise we have found that the algo-
rithms used for these generators in software such 
as BRITE, GT-ITM, JUNG, or LEDA are rather 
inefficient. ...superlinear algorithms are some-
times tolerable in the analysis of networks with 
tens of thousands of nodes, but they are clearly 
unacceptable for generating large numbers of 
such graphs.” As a step towards meeting this goal, 
efficient sequential algorithms have recently been 
developed to generate certain classes of random 
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graphs: Erdös–Rényi33, small world33, Preferen-
tial Attachment33,111, and Chung-Lu103. Although 
these efficient sequential algorithms are able to 
generate networks with millions of nodes quickly, 
generating networks with billions of nodes can 
take substantially longer. Further, a large memory 
requirement often makes generation of such large 
networks using these sequential algorithms infea-
sible. Thus, parallel algorithms that scale to large 
numbers of processors and provide good speed 
up become a necessity.

The design of parallel distributed memory 
algorithms poses two main challenges in the 
context of generating random graphs. First, the 
dependencies among the edges, especially in the 
preferential-attachment model, impede inde-
pendent operations of the processors. Second, 
different processors can create duplicate edges, 
which must be avoided. Dealing with both of 
these problems requires complex synchroniza-
tion and communication among the processors, 
and thus gaining satisfactory speedup by paral-
lelization becomes a challenging problem. Even 
for the Erdös–Rényi model where the existence of 
edges are independent of each other, paralleliza-
tion of a non-naive efficient algorithm, such as 
the algorithm by Batagelj and Brandes33, is a non-
trivial problem. A parallelization of Batagelj and 
Brandes’s algorithm was recently proposed in111.

4.3.1 �Erdos–Renyi Networks
The Erdös–Rényi model58 is well-studied and one 
of the first random graph models. The model is as 
follow. We are given two parameters: an integer n 
and a real number p in [0, 1]. The model gener-
ates a random graph with n = |V | vertices such 
that for every pair of vertices u, v ∈ V  , edge (u, v) 
is included in the graph independently at random 
with probability p. Since there are 

(n
2

)

 possible 
pairs of nodes, the expected number of edges is 
1
2n(n− 1)p and the expected degree of each ver-
tex is (n− 1)p . It is easy to see that the degree dis-
tribution is binomial.

A naive algorithm is: for each pair of verti-
ces u and v, pick edge (u, v) independently with 
probability p by tossing a biased coin. Since there 
are Θ(n2) pairs of vertices, this algorithm takes 
Θ(n2) time. An efficient algorithm is given in33 

that takes O(m) time, where m is the number 
of edges in the generated graph. The runtime is 
improved by avoiding tossing coins for the edges 
that are not selected. Consider a sequence of all 
possible edges, that is, all possible pairs of verti-
ces as shown in Fig. 6. If we select each edge with 
probability p independently, a streak of edges are 
skipped between two selected edges (solid back 
circles in the figure). Instead of discarding those 
edges one by one, their algorithm determines 
the number of edges to be skipped by generat-
ing a single random number using the following 
geometric distribution. Let δ be a random vari-
able denoting the number of edge to be skipped. 
Then δ edges are skipped and the following edge 
is selected to be added to the graph. This process 
is repeated until there is no remaining potential 
edges. The number edges to be skipped is called 
the skip length, which is computed as follows. We 
have

i.e., δ is a geometric random variable. A geometric 
random number can be generated as follow.

 	– r ← a uniform random number in [0, 1)
	– δ ←

⌊ log (1−r)
log (1−p)

⌋

For additional details see33. Since each edge in 
the generated graph requires one random num-
ber and constant time, the algorithm takes O(m) 
time, which is optimal.

A parallelization of the above sequential 
algorithm is given in111. In the sequential algo-
rithm the edges are selected one after another as 
the algorithm walks through the sequence of the 
potential edges (as shown in Fig.  6) using the 
skip lengths. Notice that determining a selected 
edge is dependent on the previous selected edges. 
Thus the process seems to be sequential in nature 
and pose a difficulty in parallelization. To deal 
with this difficulty, instead of generating an edge 
instantly after computing a skip length, all skip 
lengths are computed and stored by the proces-
sors, and then edges are created from these skip 
lengths. Another difficulty is that the algorithm 
does not know how many edges, and conse-
quently how many skip lengths, need to generated 

Pr{δ = k} = (1− p)kp

Figure 6:  A sequence of all possible potential edges. Each circle represents a potential edge. The white 
circles are the skipped edges, and the solid black circles are the selected edges in an Erdös–Rényi 
graph.
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in advance. The algorithm begins with an esti-
mated number of skip lengths B. the expected 
number of edges 12n(n− 1)p can serve as an esti-
mation for B. Each of the P processors generates 
B/P skip lengths and stores them in an array S. 
Then a parallel prefix sum operation on the array 
S is performed by the processors to generate the 
actual edges. Let T be the sum of the skip lengths. 
If T < 1

2n(n− 1) (i.e., B is an under estimation), 
generate some additional skip lengths. If there are 
some extra skip lengths, they are discard. See111 
for details.

4.3.2 �Preferential Attachment Networks
The preferential attachment model generates 
random evolving scale-free networks using a 
preferential attachment mechanism: a new node 
is added to the network and connected to some 
existing nodes that are chosen preferentially 
based on some properties of the nodes. In the 
most common applications, preference is given to 
nodes with larger degrees: a node is chosen with 
probability proportional to its degree. Below we 
discuss this degree-based preferential attach-
ment (PA) model. A random network generated 
with a PA model has a power-law degree distri-
bution11. In a power-law degree distribution, the 
probability that a node has degree d is given by 
Pr{d} ∼ d−γ , where γ is a positive constant.

Let n be the number of nodes in the network 
we want to generate. In this model, nodes are 
added one by one. In phase t, 0 ≤ t < n , a new 
node t is added to the network and connected to 
x randomly chosen existing nodes. In this discus-
sion, we use x = 1 . The methods described below 
can easily be generalized for any x ≥ 1 (see6). Let 
Ft be the node selected in phase t, i.e., edge (t, Ft) 
is added to the network. Let Pt(i) be the probabil-
ity that node t is connected to node i < t ; that is, 
Pt(i) = Pr{Ft = i} = di

∑

j dj
 , where dj represents 

the degree of node j. A naive implementation of 
this method can be inefficient. Batagelj and 
Brandes33 give an efficient algorithm with run-
ning time O(m). This algorithm maintains a list 
of nodes such that each node i appears in this list 
exactly di times. The list can easily be updated 
dynamically by simply appending u and v to the 
list whenever a new edge (u,  v) is added to the 
network. Now to find Ft , a node is chosen from 
the list uniformly at random. Since each node i 
occurs exactly di times in the list, we have 
Pr{Ft = i} = di

∑

j dj
.

Another algorithm, called copy model, pro-
posed in87 also leads to preferential attachment 
and power law degree distribution. The algorithm 
works as follows. In each phase t,

Step 1: first a random node k ∈ [1, t − 1] is 
chosen with uniform probability.
Step 2: then Ft is determined as follows: 

In the copy model when p = 1
2 , we have 

Pr{Ft = i} = di
∑

j dj

6,8. Thus, the copy model is 

more general. Further, it is easy to see the running 
time of the copy model is O(m), and it leads to 
more efficient parallel algorithms.

A parallel algorithm based on the copy model 
is given in6,8. The dependencies among the edges 
pose a major challenge in parallelizing prefer-
ential attachment algorithms. Apparently any 
algorithm for preferential attachment seems to 
be highly sequential in nature: phase t cannot be 
executed until all previous phases are completed. 
However, a careful observation reveals that Ft can 
be partially, or sometime completely, determined 
even before completing the previous phases. 
Notice that Step 1 above in the copy model can be 
executed for all node t simultaneously and inde-
pendently. In Step 2, if Ft = k , we are done with 
the computation of Ft . If Ft = Fk , we may need 
to wait and coordinate with other processors as 
described below. Assuming there are P processors, 
the set of nodes V is divided into P disjoint sub-
sets V1,V2, . . . ,VP ; that is, Vi ⊂ V  , such that for 
any i and j, Vi ∩ Vj = ∅ and 

⋃

i Vi = V  . Processor 
Pi is responsible for computing and storing Ft for 
all t ∈ Vi . The load balancing and performance of 
the algorithm crucially depend on how V is par-
titioned. See6 for a detailed study on load balanc-
ing and partitioning of V. Let t ∈ Vi . Now, if Ft is 
chosen to be Fk , to determine Ft , we need to wait 
until Fk is known. If k ∈ Vj with i  = j , processor i 
sends a message to processor j to find Fk . If Fk is 
unknown, Pj keeps this message in a queue until 
Fk is known. Once Fk is known, Pj sends back a 
message with Fk to Pi.

Now notice that while processor Pi waits for 
processor Pj until Fk is known, it is possible that 
to determine Fk , processor Pj is waiting for some 
other processor and so on. These events may lead 
to a waiting chain or dependency chain (see 
Fig.  7). If the lengths of the dependency chains 
are large, it can cause some processors wait for a 
long time, leading to poor performance of the 

Ft =k with prob. p

=Fk with prob. (1− p)
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parallel algorithm. Fortunately, the length of a 
dependency chain is small, and the performance 
of the algorithm is hardly affected by such wait-
ing steps. In6,8, it is shown that the maximum 
length of a dependency chain is at most O(log n) 
with high probability. Moreover, while O(log n) is 
the maximum length, most of the chains have 
much smaller length. It is easy to see that for a 
constant p, the average length of a dependency 
chain is also constant, which is at most 1p . For an 

arbitrary p, the average length is still bounded by 
log n . Thus, while for some nodes a processor 
may need to wait for O(log n) steps, the processor 
hardly remains idle as it has other nodes on which 
it can work.

4.3.3 �Chung‑Lu Networks
The Chung–Lu model52 generates a ran-
dom network from a given sequence of 
expected degrees. We are given a sequence of 
weights (representing expected degrees of the 
nodes), the model generates a random net-
work such that the expected degree of a node 
is equal to the corresponding weight in the 
given sequence. Let the given sequence of the 
weights be (W0,W1, . . .Wn−1) , where Wv rep-
resents the expected degree of node v for all 
v ∈ V = {0, 1, . . . , n− 1} , the set of nodes. 
Assuming W 2

v <
∑

k∈V Wk for all v ∈ V  , the 
model works as follows. For every pair of nodes 
u, v ∈ V  , edge (u,  v) is added to the network 
with probability

Now we have the expected degree for each v,

pu,v =
WuWv

S
, where S =

∑

k∈V

Wk .

Notice that above model can produce self loops. 
However, the self loops can easily be avoided by 
a simple modification of the model. One way to 
avoid the self loops is to simply discard any self 
loops created103. In such a case,

For large graphs, where the number of nodes 
n is very large, the expected degree E[dv] con-
verges to Wv for each node v. It is also possible 
to adjust the probability pu,v such that even 
after discarding the self loops, E[dv] is exactly 
equal to Wv.

A naive algorithm for the Chung–Lu model 
is for each pair of nodes u, v ∈ V  , create edge 
(u,  v) with probability pu,v =

WuWv
S  indepen-

dently (independent of the other edges). Like 
the Erdös–Rényi model, this naive algorithm 
requires O(n2) time to generate a network with 
n nodes since there are 12n(n− 1) possible pairs 
of nodes. The difference between Erdös–Rényi 
model and Chung–Lu model is that in the 
Erdös–Rényi model all edges are created with 
same probability whereas in the Chung–Lu 
model different edges have different probabili-
ties. An efficient O(n+m) time algorithm is 
given in103. This algorithm is based on a tech-
nique similar to the edge skipping technique 
used in33 for the Erdös–Rényi model. Let the 
sequence of weights be sorted in non-increasing 
order. First consider the following algorithm. 
For each node u, pick each edge from the 
sequence of edges 
(u,u+ 1), (u,u+ 2), (u,u+ 3), . . . , in this order, 
with probability p = pu,u+1 =

WuWu+1

S  until an 
edge (u, v) is picked. Let q = pu,v =

WuWv
S  . Now 

include edge (u, v) in the generated network G 

E[dv] =
∑

u

pu,v =
∑

u∈V

WuWv

S

=
Wv

S

∑

u∈V

Wu = Wv .

E[dv] =
∑

u∈V ,u�=v

WuWv

S
= Wv −

W 2
v

S
.

Figure 7:  A preferential attachment network with 5 nodes generated using the copy model. Solid lines 
show final decided edges, and dashed lines denote waiting of processors for node attachment to be 
resolved—the undecided edges. For node t = 3 , k is chosen to be 2, F3 is chosen to be k = 2 , and thus 
edge (3, 1) is decided immediately. Similarly, edge (1, 0) is also decided immediately. For node t = 4 , k 
is 2 and F4 is set to be F2 . That is, F4 is dependent on F2 . Similarly, F2 is dependent on F1 . Finally, we have 
F4 = F2 = F1 = 0.
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with probability qp . Then repeat the above pro-

cess again beginning with edge (u, v + 1) and 
probability pu,v . Notice that for any u, v ∈ V  , 
edge (u,  v) is included in G with probability 
p ·

q
p = q = pu,v . That is, this algorithm gener-

ates random networks following the Chung–Lu 
model. Since in the first step of this algorithm, 
the edges are picked with equal probability p, 
the edge skipping technique discussed in 
Sect.  4.3.1 can also be used for this algorithm 
leading to an O(m+ n) time algorithm, which is 
presented in103. A pseudocode for this algorithm 
using the edge skipping technique is shown in 
Algorithm 1.

In Algorithm 1, as we always have u < v and 
no edge (u,  v) can be selected more than once, 
this algorithm does not create any self-loop or 
parallel edges.

Based on this sequential algorithm, an effi-
cient distributed-memory parallel algorithm is 
given in5 that takes O(m+n

P + P) time with high 
probability, where P is the number of parallel 
processors. Let there be P independent processors 
with distributed memory system and the proces-
sors communicate with each other via exchang-
ing messages. Computation of the probabilities 
pu,v are dependent on Wu and Wv . Assume that 
every processor has a copy of the sorted (in non-
increasing order) sequence of the weights in its 
own memory. Efficient parallelization of Algo-
rithm 1 requires

 	– Computing the sum 
S =

∑n−1

k=0
Wk

 in parallel. 

Sequential computation of S takes O(n) time 

whereas S can be computed in parallel in 
O( nP + log P) time.

	– Dividing the task of selecting and generating 
edges into independent subtasks.

	– Balancing computation load among the pro-
cessors. Load balancing is the most challeng-
ing issue in this parallel algorithm.

To compute the sum S in parallel, the weights W 
are divided equally among P processors such that 
every processor is responsible for nP weights. Each 
of the P processors adds its weights locally in nP 
time. Then these local sums from all processors 
can be aggregated (say, for example, using an MPI 
reduce function) in O(log P) time. Therefore, 
computing sum S takes O(n/P + log P) time. As 

the edges can be generated independently, the 
iterations of the for loop in Algorithm  1 can be 
executed by multiple processors independently 
and simultaneously. For the details of this algo-
rithm along with a good and efficient load bal-
ancing method, see5.

4.4 � Epidemiological Simulation
The GDS formalism of Sect.  4.1 is useful for 
developing simulation systems90. In this section, 
we look in depth at a simulation system based on 
the conceptual view of interactions as presented 
in Sect. 4.1.3. Other tools are cited in Sect. 1.

The EpiSimdemics model 26,41,132 is used to 
explore the impact of agent behavior and pub-
lic policy mitigation strategies on the spread of 
contagion over extremely large interaction net-
works. The interaction network is represented 
by a labeled bipartite graph, where nodes con-
sist of people and locations, referred to as a 
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person-location graph. If a person visits a loca-
tion, there is an edge between them, labeled 
by the type of activity and the time of the visit. 
The interaction graph is not static, but changes 
over time in response to changes in a person’s 
health state (e.g., stay home when sick), pub-
lic policy (e.g., school closure), or behavior 
changes (e.g., reduce unnecessary activities dur-
ing an outbreak). This new network, in turn, 
affects a person’s health (e.g., reducing contact 
with potentially infectious individuals outside 
the home, or increasing contact with potentially 
infected children inside the home). Including 
this co-evolution is important for correctly mod-
eling the spread of disease27. The person-location 
graph is converted to a person-person graph, 
where nodes represent people and edges repre-
sent contact between people, labeled by the dura-
tion of contact. This graph is regenerated each 
timestep as the person-location graph changes.

Between-host contagion transmission and 
within-host contagion progression can be viewed 
as two connected but independently computed 
processes. Between-host transmission triggers the 
start of within-host progression by causing an 
uninfected individual to transition to an infected 
state. The disease progress of the infected individ-
ual is then fully determined by the local (vertex) 
function governing the within-host progression. 
The within-host disease progression is mod-
eled as a Probabilistic Timed Transition Systems 
(PTTS), an extension of finite state machines 
with two additional features: the state transitions 
are probabilistic and timed. The system also sup-
ports multiple interacting PTTSs for modeling of 
multiple co-circulating diseases, enhanced socio-
logical modeling in the agents, and the addition 
of more complex interventions, such as contact 
tracing and antiviral stockpiles.

The PTTS and the interaction network are 
co-evolving, as the progression of each one 

potentially affects the other. In simple terms, who 
you meet determines whether you fall sick, and 
the progression of a disease may change who you 
meet (e.g., you stay home because you are sick). 
The co-evolution can be much more complex, as 
an individual’s schedule may change depending 
on information exchanged with others, the health 
state of people they contact even if no infection 
takes place (e.g., more people than usual are sick 
at work), or even expected contacts that do not 
happen (e.g., coworkers who are absent from 
work). All of this may also be affected by an indi-
vidual’s demographics (e.g., a person’s income 
affects their decision to stay home from work).

4.4.1 �The Disease Model
The disease propagation (inter-host) and disease 
progression (intra-host) models were developed 
in the National Institutes of Health Models of 
Infectious Disease Agent Study (MIDAS) project. 
A disease progression model is shown in Fig. 8.

When a susceptible individual and an infec-
tious individual are colocated, the propagation 
of disease from the infected individual to the sus-
ceptible individual is modeled by

where pi→j is the probability of infectious indi-
vidual i infecting susceptible individual j, τ is the 
duration of exposure, ri is the infectivity of i, sj 
is the susceptibility of j, and ρ is the transmis-
sibility, a disease-specific property defined as 
the probability of a single completely suscepti-
ble person being infected by a single completely 
infectious person during one minute of expo-
sure23. Generally, ρ is calibrated to produce a 
desired attack rate (fraction of total population 
infected) in the absence of any interventions. 
A person’s infectivity and susceptibility default 
to 1, but can be increased or decreased due to 

(4)pi→j = 1− (1− risjρ)
τ

Figure 8:  PTTS for the H5N1 disease model. Ovals represent disease states, while lines represent the 
transition between states, labeled with the transition probabilities. The line type represents the treatment 
applied to an individual. The states contain a label and the dwell time within the state, and the infectivity if 
different from one.
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individual characteristics or behavioral changes. 
For instance, a child with less developed personal 
hygiene habits may be more infectious than typi-
cal (i.e., have a infectivity greater than 1), while 
an imuno-compromised individual may have an 
increased susceptibility. A person who wears a 
face mask in public may have reduced infectivity 
and/or susceptibility.

4.4.2 �Intervention and Behavior Modification
A scenario specifies the behavior of individu-
als (e.g., stay home when sick), as well as public 
policy (e.g., school closure when a specific pro-
portion of the students is sick). There are two 
fundamental changes that can be made that will 
affect the spread of a contagion in a social net-
work. All behavior and public policy interven-
tions are implemented through these changes. 
First, the probability of transmission of a conta-
gion can be changed by changing the infectivity 
or susceptibility of one or more individuals. For 
example, getting vaccinated reduces an individu-
al’s susceptibility whereas wearing a mask while 
sick reduces an individual’s infectivity. Taking 
antiviral medication, such as TamiFlu (oseltami-
vir), reduces the likelihood of becoming infected 
and reduces both the infectivity and length of 
the infectious period once an infection has taken 

place. Second, edges can be added, removed, or 
altered in the social network, resulting in differ-
ent individuals coming into contact for differ-
ent amounts of time. Individual behaviors and 
public policy interventions in EpiSimdemics, 
collectively referred to as the scenario, expose 
these two changes in a way that is flexible, easy to 
understand for the modeler, and computationally 
efficient.

The scenario is a series of triggers and actions 
written in a domain specific language. While 
conceptually simple, this language has proven 
to be quite powerful in describing a large range 
of interventions and public policies. A trigger is 
a conditional statement that is applied to each 
individual separately. If a trigger evaluates to 
true, one or more specified actions are executed. 
These actions can modify an individual by chang-
ing its attributes or schedule type, explicitly 
changing the PTTS and modifying scenario vari-
ables. Scenario variables can be written (assigned, 
incremented, and decremented) and read in the 
scenario file. The value read is always the value 
at the end of the previous simulation day. Any 
writes to a scenario variable are accumulated 
locally, and synchronized among processors at the 
end of each simulated day.

(a) (b)

(d)(c)

Figure 9:  An example social contact network: (a) the bipartite graph representation showing people visit‑
ing locations; (b) the temporal and spatial projection of the network; (c) the person-person graph show‑
ing interactions between temporally and spatially co-located people; (d) potential disease transmission 
between an infectious person 2, and susceptible people 1 and 3.
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4.4.3 �Social Network Representation
We provide four views into the simulation sys-
tem, in terms of populations in Fig.  9. The two 
networks were addressed previously, but we now 
include attributes of graph elements that are 
particular to simulation, and how a simulation 
uses each type of network to compute contagion 
dynamics. In EpiSimdemics, the social network 
is represented by a labeled bipartite graph per 
Fig.  9a, as discussed previously. Labels attached 
to persons correspond to his/her demographic 
attributes such as age or income. The labels 
attached to locations specify the location’s attrib-
utes such as its geographic coordinates, the types 
of activity performed there, maximum capacity, 
etc. It is important to note that there can be mul-
tiple edges between a person and a location which 
record different visits. Internally, within the Epi-
Simdemics code, this network is converted into 
the equivalent person-person graph per Fig.  9c, 
as discussed earlier, within each (location, sublo-
cation) pair. This form of the contact network is 
much more conducive for calculating interactions 
between people, but much less sparse, contain-
ing approximately 10 times more edges than the 
person-location graph. Figure 9b shows the peo-
ple that are colocated in space and time. Assum-
ing that person 2 is infected and either in the 
latent state (infectious, but not yet symptomatic) 
or infectious (contagious and symptomatic), 
Fig. 9d shows a potential transmission. The social 
contact graph is not static, but changes over time 
in response to changes in a person’s health state 
(e.g., stay home when sick), public policy (e.g., 
school closure), or behavior changes (e.g., reduce 
unnecessary activities during an outbreak). This 
new network, in turn, affects a person’s health 
(e.g., reducing contact with potentially infectious 
individuals outside the home, or increasing con-
tact with potentially infected children inside the 
home). Including this co-evolution is important 
for correctly modeling the spread of disease27.

The EpiSimdemics model can be simulated 
with a simple discrete event simulation (DES) 
algorithm in which the system only changes its 
state upon the occurrence of an event. As shown 
in Fig. 9d, there are two types of events in the sys-
tem: Arrive Events (person p arrives at location l 
at time tarrive ) and Depart Events (person p leaves 
location l at time tdepart).

To ensure correctness, the algorithm has to 
adhere to the following causality constraint: If an 
individual i leaves location LA at time tdepart and 
arrives at location LB at time tarrive , his/her health 
state when arriving at LB (denoted by si(tarrive) ) 
has to be decided prior to calculating the states 

of other individuals at LB after time tarrive . This 
causality constraint leads to temporal and spa-
tial dependencies among nodes in the simulated 
system.

For simplicity of exposition, travel between 
locations is shown as instantaneous. In the actual 
system, there is a delay between leaving one loca-
tion and arriving at the next location, based on an 
approximation of the travel time between loca-
tions. This delay can be calculated with varying 
degrees of accuracy12.

There are three important semantic points of 
the contagion diffusion problem that lead to the 
EpiSimdemics algorithm. 

1.	 Individuals can only affect other individuals 
through interactions that occur when they 
are co-located in space and time.

2.	 An individual’s health state changes, once 
infected, can be precomputed.

3.	 There is a minimum latent period, Dmin . 
This is the amount of time that must pass 
between a person becoming infected, and a 
person being able to infect others. For most 
infectious diseases, there is a suitable latent 
period that is determined by the biology of 
the infection. For influenza, this period is at 
least 24 hours.

The above observations led to a semantics-ori-
ented problem decomposition. The existence of 
a latent period for newly infected individuals in 
the disease model provides a basis for relaxing the 
global clock. If the time period to be simulated 
is divided into n iterations, and if the length of a 
single simulation iteration is less than Dmin , then 
all locations can be concurrently considered and 
interactions between individuals at these loca-
tions can be simulated in parallel.

The processing is separated into iterations 
that represent, for influenza, simulated days. It 
is important to note that state changes are not 
limited to time step boundaries. For example, if 
an individual is infected at 10:47 on day 10, and 
becomes infectious 36 hours later, they can start 
infecting others at 22:47 on day 11. Each iteration 
has the basic following four steps. 

1.	 Each individual determines the locations 
that they are going to visit, based on a nor-
mative schedule, public policy, and indi-
vidual behavior and health state. The per-
son sends a message to each visited location 
with the details of the visit (time, duration 
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and health state during the visit). This can 
be computed in parallel for each person.

2.	 Each location computes the pairwise inter-
actions that occur between occupants of 
that location. Each interaction may or may 
not result in an infection, depending on a 
stochastic model. For the epidemiological 
model, disease propagation is modeled by 
Equation 4.

	 A message is then sent to each infected per-
son with the details of the infection (time of 
infection, infector and location). Again, each 
location can perform this computation in 
parallel, once it has received information for 
all of the individuals that will visit the loca-
tion during the iteration.

3.	 Each person who is infected updates its 
health state by transitioning to an infected 
state. In the event that a person iis infected 
in multiple locations, the earliest infection is 
chosen.

4.	 Any global simulation states (i.e., total peo-
ple infected) are updated.

For each iteration, there are two synchronizations 
required: between steps 1 and 2, and between 
steps 2 and 3. In addition, step 4 requires a reduc-
tion operation. These computational steps are 
further broken down in Fig. 10.

4.4.4 �Performance
EpiSimdemics has been carefully designed to bal-
ance generality, efficiency, and scalability. It has 
been used to simulate the United States popula-
tion (on the order of 300 million people) on both 
moderate sized university clusters of 1000 cores 
and NCSA’s BlueWaters system of 352,000 cores. 
The latter system was able to simulate the spread 
for 120 simulated days in less than 12 seconds133, 
as shown in Fig. 11.

5 �Policy Implications
One of the most important practical results of 
epidemic simulations is to inform policy plan-
ning. A listing of selected studies is provide in 
Table  2. A few of these studies are described 
below. We note that simulation is not the only 
way to generate results to inform policy. For 
example, such results can be generated with 
compartmental models101 and game theoretic 
approaches34, which are not covered here.

Reference73 describes a multi-institutional 
study, exercising three different ABMs, to deter-
mine the most effective strategies for mitigating 
influenza spread in a 9 million agent system, sim-
ilar to a population like Chicago. They found that 
a combination of school closures and targeted 
antiviral prophylaxis by individuals gave good 
results in decreasing the number of infected peo-
ple. Additional work41 indicates that these results 
are robust across a different population.

In taking the73 study one step further,15 
looked not only at outbreak size, but also the 
costs of outbreaks to determine which interven-
tion strategies were most cost-effective. These 
costs include lost productivity by corpora-
tions, as well as lost income by households. So, 
for example, while staying at home (i.e., social 
distancing) may be useful in halting transmis-
sion, it also has the cost of reducing income 
among some socio-economic classes. Of the 
strategies investigated, the one that reduces the 
size of the outbreak and total costs is a combi-
nation of behavior modification of individuals 
(i.e., eliminating non-essential travel and taking 
antivirals) and government action (i.e., closing 
schools). In this case, the number of infected 
individuals decreases by 87% and the total cost 
drops by 82%. These findings indicate that the 
strategies that are best for decreasing outbreak 
size are also good for reducing their economic 
impact. Furthermore, it is noted in99 that paid 
sick leave is also cost-effective because it reduces 

Sequence of operations
a: person computes visits
b: person sends visits
c: location receives visits
d: location computes visits
e: location sends outcomes
f: person receives outcomes
g: person combines outcomes

Figure 10:  The computational structure of the sequential EpiSimdemics algorithm.
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the spread of sick workers who would otherwise 
come to work. Paid sick leave is also studied 
elsewhere (e.g.,88).

6 �Summary
In this paper, we motivated epidemic simulation 
and itemized challenges in developing capabili-
ties to perform these simulations. We focused 
primarily on describing fundamental elements 
of epidemic simulation: (i)  theoretical founda-
tions for simulation software, (ii) synthetic pop-
ulation (digital twin) development, (iii)  social 
networks generated from synthetic populations, 
(iv) large-scale stylized network generation, and 
(v)  simulation. We provided several examples 
of how epidemic simulation can support policy 
planning.

Publisher’s Note
Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and insti-
tutional affiliations.

Acknowledgements
We thank the reviewers for their detailed com-
ments for improving the paper. This work is par-
tially supported by NSF Grants CMMI-1916670 

(CRISP 2.0), ACI-1443054 (DIBBS), IIS-1633028 
(BIG DATA), IIS-1931628 (BIG DATA), CMMI-
1745207 (EAGER), OAC-1916805 (CINES), and 
CCF-1918656 (Expeditions).

Received: 2 December 2020   Accepted: 2 June 2021

Published online: 5 October 2021

References
	 1.	 Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto 

JD, Longini Ira MJ, Dyee C, Halloran ME (2009) Epi-

demiological benefits of more-effective tuberculosis 

vaccines, drugs, and diagnostics. Proc Natl Acad Sci 

106:13980–13985

	 2.	 Adiga A, Kuhlman CJ, Mortveit HS, Wu S (2015) 

Effect of graph structure on the limit sets of threshold 

dynamical systems. In: Proc. Cellular Automata and 

Discrete Complex Systems - 21st IFIP WG 1.5 Inter-

national Workshop, AUTOMATA 2015, Turku, Fin-

land, June 8-10, 2015., pp 59–70

	 3.	 Adiga A, Chu S, Eubank S, Kuhlman CJ, Lewis B, Mar-

athe A, Nordberg E, Swarup S, Vullikanti A, Wilson 

ML (2018) Disparities in spread and control of influ-

enza in slums of Delhi: Findings from an agent-based 

modeling study. BMJ Open 2:2

	 4.	 Adiga A, Kuhlman CJ, Marathe MV, Mortveit HS, 

Ravi SS, Vullikanti A (2019) Graphical dynamical sys-

tems and their applications to bio-social systems. Int J 

Adv Eng Sci Appl Math 11:153–171

Table 2:  Selected studies pertaining to epidemic simulations to support policy planning. The great major‑
ity of these investigate intervention strategies to reduce disease outbreaks.

Number Type of study Description References

1 Epidemiological Determine which intervention strategies are most effective in 
reducing outbreak size

73

2 Economic Determine which intervention strategies are most cost-effective; 
i.e., the reduction in outbreak size per unit expenditure

15

3 Epidemiological Different intervention triggers by demographic class 14

4 Epidemic tracking Simulations run during a large outbreak by policy planners for situ-
ational awareness

36

5 Epidemiological Demonstrates, for stylized networks, that homogeneous vaccina-
tion strategies can be counterproductive and that strategies 
should depend on social network local conditions

134

6 Epidemiological Comparisons of vaccination strategies based on local versus 
regional conditions

98

7 Epidemiological Evaluation of drugs and vaccines that are under development 1

8 Epidemiological Influenza-based interventions for school-age children 32

9 Economic Paid sick leave and its effect on outbreak size 88

10 Epidemiological Influenza outbreak and various containment strategies 62

11 Epidemiological and social Influenza outbreaks in (slums of) Delhi, India 100

12 Epidemiological and social Interventions for influenza in (slums of) Delhi, India 3



323

Agent-Based Computational Epidemiological Modeling

1 3J. Indian Inst. Sci. | VOL 101:3 | 303–327 July 2021 | journal.iisc.ernet.in

	 5.	 Alam M, Khan M (2017) Parallel algorithms for 

generating random networks with given degree 

sequences. Int J Parallel Prog 45:109–127

	 6.	 Alam M, Khan M, Marathe MV (2013) Distributed-

memory parallel algorithms for generating massive 

scale-free networks using preferential attachment 

model. In: Proceedings of the Intl. Conf. for High 

Performance Computing, Networking, Storage and 

Analysis (SuperComputing)

	 7.	 Alam M, Khan M, Vullikanti A, Marathe M (2016) An 

efficient and scalable algorithmic method for gener-

ating large-scale random graphs. In: SC ’16: Proceed-

ings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, 

pp 372–383, https://​doi.​org/​10.​1109/​SC.​2016.​31

	 8.	 Alam M, Khan M, Perumalla KS, Marathe M (2020) 

Generating massive scale-free networks: Novel par-

allel algorithms using the preferential attachment 

model. ACM Transactions on Parallel Computing 

7(2)

	 9.	 Albert R, Jeong H, Barabási AL (2000) Error and attack 

tolerance of complex networks. Nature 406(6794):378–

382. https://​doi.​org/​10.​1038/​35019​019

	 10.	 Arentze T, Timmermans H, Hofman F (2014) Creat-

ing synthetic household populations: problem and 

approach. J Transport Res Board 2:85–91

	 11.	 Barabási AL, Albert R (1999) Emergence of scal-

ing in random networks. Science (New York, NY) 

286(5439):509–512 http://​view.​ncbi.​nlm.​nih.​gov/​pub-

med/​10521​342

	 12.	 Barrett C, Beckman R, Berkbigler K, Bisset K, Bush B, 

Campbell K, Eubank S, Henson K, Hurford J, Kubicek 

D, Marathe M, Romero P, Smith J, Smith L, Speckman 

P, Stretz P, Thayer G, Eeckhout E, Williams MD (2001) 

TRANSIMS: Transportation analysis simulation system. 

Tech. Rep. LA-UR-00-1725. An earlier version appears 

as a 7 part technical report series LA-UR-99-1658 

and LA-UR-99-2574 to LA-UR-99-2580, Los Alamos 

National Laboratory Unclassified Report

	 13.	 Barrett C, Beckman R, Khan M, Kumar VSA, Marathe 

M, Stretz P, Dutta T, Lewis B (2009) Generation and 

analysis of large synthetic social contact networks. In: 

Winter Simulation Conference (WSC)

	 14.	 Barrett C, Bisset K, Leidig J, Marathe A, Marathe MV 

(2010) An integrated modeling environment to study 

the coevolution of networks, individual behavior and 

epidemics. AI Mag 31:75–87

	 15.	 Barrett C, Bisset K, Leidig J, Marathe A, Marathe M 

(2011) Economic and social impact of influenza miti-

gation strategies by demographic class. Epidemics 

3:19–31

	 16.	 Barrett C, Eubank S, Marathe A, Marathe M, Pan Z, 

Swarup S (2011) Information integration to support 

policy informatics. Innov J 2:1–19

	 17.	 Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosen-

krantz DJ, Stearns RE (2001) Analysis problems for 

sequential dynamical systems and communicating state 

machines. In: MFCS, pp 159–172

	 18.	 Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosenk-

rantz DJ, Stearns RE, Tosic PT (2001) Gardens of Eden 

and fixed points in sequential dynamical systems. In: 

DM-CCG, pp 95–110

	 19.	 Barrett CL, Hunt HB III, Marathe MV, Ravi SS, Rosen-

krantz DJ, Stearns RE (2003) On special classes of 

sequential dynamical systems. Ann Comb 7:381–408

	 20.	 Barrett CL, Hunt III HB, Marathe MV, Ravi SS, Rosen-

krantz DJ, Stearns RE (2003) Predecessor and permu-

tation existence problems for sequential dynamical sys-

tems. In: DMCS, pp 69–80

	 21.	 Barrett CL, Hunt HB III, Marathe MV, Ravi SS, Rosen-

krantz DJ, Stearns RE (2003) Reachability problems for 

sequential dynamical systems with threshold functions. 

Theoret Comput Sci 295:41–64

	 22.	 Barrett CL, Hunt HB III, Marathe MV, Ravi SS, Rosenk-

rantz DJ, Stearns RE (2006) Complexity of reachability 

problems for finite discrete dynamical systems. J Com-

put Syst Sci 72(8):1317–1345

	 23.	 Barrett CL, Bisset K, Eubank S, Marathe MV, Kumar VA, 

Mortveit H (2007) Modeling and Simulation of Biolog-

ical Networks, AMS, chap Modeling and Simulation of 

Large Biological. An Interaction Based Approach, Infor-

mation and Socio-Technical Systems, pp 101–147

	 24.	 Barrett CL, Hunt HB III, Marathe MV, Ravi SS, Rosen-

krantz DJ, Stearns RE, Thakur M (2007) Predecessor 

existence problems for finite discrete dynamical sys-

tems. Theoret Comput Sci 386(1–2):3–37

	 25.	 Barrett CL, III HBH, Marathe MV, Ravi SS, Rosenk-

rantz DJ, Stearns RE, Thakur M (2007) Computational 

aspects of analyzing social network dynamics. In: IJCAI 

2007, Prc. 20th International Joint Conference on Arti-

ficial Intelligence, Hyderabad, India, January 6-12, 2007, 

pp 2268–2273

	 26.	 Barrett CL, Bisset KR, Eubank SG, Feng X, Marathe MV 

(2008) Episimdemics: an efficient algorithm for simu-

lating the spread of infectious disease over large realistic 

social networks. In: Proceedings of the 2008 ACM/IEEE 

conference on Supercomputing, IEEE Press, Piscataway, 

NJ, USA, SC ’08, pp 37:1–37:12, http://​dl.​acm.​org/​citat​

ion.​cfm?​id=​14133​70.​14134​08

	 27.	 Barrett CL, Eubank S, Marathe MV (2008) An interac-

tion based approach to computational epidemics. In: 

AAAI’ 08: Proceedings of the Annual Conference of 

AAAI, AAAI Press, Chicago USA

	 28.	 Barrett CL, Hunt HB III, Marathe MV, Ravi SS, Rosen-

krantz DJ, Stearns RE (2011) Modeling and analyz-

ing social network dynamics using stochastic discrete 

graphical dynamical systems. Theoret Comput Sci 

412(30):3932–3946

	 29.	 Barthelemy J, Cornelis E (2012) Synthetic populations: 

review of the different approaches

https://doi.org/10.1109/SC.2016.31
https://doi.org/10.1038/35019019
http://view.ncbi.nlm.nih.gov/pubmed/10521342
http://view.ncbi.nlm.nih.gov/pubmed/10521342
http://dl.acm.org/citation.cfm?id=1413370.1413408
http://dl.acm.org/citation.cfm?id=1413370.1413408


324

K. R. Bissett et al.

1 3 J. Indian Inst. Sci.| VOL 101:3 | 303–327 July 2021 | journal.iisc.ernet.in

	 30.	 Barthelemy J, Toint PL (2011) Synthetic popula-

tion generation without a sample. Inf Transport Sci 

47:266–279

	 31.	 Bartik AW, Bertrand M, Cullen Z, Glaeser EL, Luca 

M, Stanton C (2020) The impact of covid-19 on small 

business outcomes and expectations. Proc Natl Acad Sci 

117(30):17656–17666

	 32.	 Basta NE, Chao DL, Halloran ME, Matrajt L, Longini 

Ira MJ (2009) Strategies for pandemic and seasonal 

influenza vaccination of schoolchildren in the united 

states. Am J Epidemiol 170:679–686

	 33.	 Batagelj V, Brandes U (2005) Efficient generation 

of large random networks. Phys Rev E 71(3):36113. 

https://​doi.​org/​10.​1103/​PhysR​evE.​71.​036113

	 34.	 Bauch CT, Earn DJD (2004) Vaccination and the theory 

of games. Proc Natl Acad Sci 101(36):13391–13394

	 35.	 Beckman R, Channakeshava K, Huang F, Kim J, Mar-

athe A, Marathe M, Pei G, Saha S, Vullikanti AKS (2013) 

Integrated multi-network modeling environment for 

spectrum management. IEEE J Sel Areas Commun 

31(6):1158–1168

	 36.	 Beckman R, Bisset KR, Chen J, Lewis B, Marathe M, 

Stretz P (2014) Isis: A networked-epidemiology based 

pervasive web app for infectious disease pandemic 

planning and response. In: Proceedings of the 20th 

ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, ACM, New York, NY, USA, 

KDD ’14, pp 1847–1856, https://​doi.​org/​10.​1145/​26233​

30.​26233​75

	 37.	 Beckman RJ, Baggerly KA, McKay MD (1996) Creating 

synthetic base-line populations. Transport Res A Policy 

Pract 30:415–429

	 38.	 Bhatele A, Yeom JS, Jain N, Kuhlman C, Livant Y, Bis-

set K, Kale LV, Marathe M (2017) Massively paral-

lel simulations of spread of infectious diseases over 

realistic social networks. In: ACM/IEEE International 

Symposium on Cluster, Cloud, and Grid Computing 

(CCGRID), pp 689–694

	 39.	 Bisset K, Marathe M (2009) A cyber-environment to 

support pandemic planning and response. DOE Sci-

DAC Magazine 36–47

	 40.	 Bisset KR, Chen J, Feng X, Kumar VSA, Marathe MV 

(2009) EpiFast: a fast algorithm for large scale realis-

tic epidemic simulations on distributed memory sys-

tems. In: Proceedings of the 23rd International Con-

ference on Supercomputing, pp 430–439

	 41.	 Bisset KR, Feng X, Marathe M (2009) Modeling inter-

action between individuals, social networks and pub-

lic policy to support public health epidemiology. In: 

Winter Simulation Conference (WSC)

	 42.	 Bjornstad ON, Shea K, Krzywinski M, Altman N 

(2020) Modeling infectious epidemics. Nat Methods 

17:453–456

	 43.	 Bonds MH, Keenan DC, Rohani P, Sachs JD (2009) 

Poverty trap formed by the ecology of infectious dis-

ease. Proc R Soc B 277:1185–1192

	 44.	 von Braun J, Zamagni S, Sorondo MS (2020) The 

moment to see the poor. Science 368:214

	 45.	 Centers for Disease Control and Prevention (2015) 

Ebola (ebola virus disease). http://​www.​cdc.​gov/​vhf/​

ebola/​outbr​eaks/​2014-​west-​africa/, http://​www.​cdc.​

gov/​vhf/​ebola/​outbr​eaks/​2014-​west-​africa/ (Visited 

30 January 2015)

	 46.	 Centers for Disease Control and Prevention (2015) 

Influenza (flu). http://​www.​cdc.​gov/​flu/​about/​qa/​

disea​se.​htm, visited 30 January 2015

	 47.	 Centers for Disease Control and Prevention (2015) 

Severe acute respiratory syndrome (sars). http://​www.​

cdc.​gov/​sars/​about/​fs-​SARS.​html, http://​www.​cdc.​

gov/​sars/​about/​fs-​SARS.​html (Visited 24 February 

2015)

	 48.	 Centola D, Macy M (2007) Complex contagions and 

the weakness of long ties1. Am J Sociol 113(3):702–734

	 49.	 Chao DL, Halloran ME, Obenchain VJ Jr, IML, 

(2010) FluTE, a publicly available stochastic influ-

enza epidemic simulation model. PLoS Comput Biol 

6:e1000656

	 50.	 Chapuis K, Taillandier P (2019) A brief review of syn-

thetic population generation practices in agent-based 

social simulation. In: Social Simulation for Policy; 

SP2S: Synthetic population in social simulation

	 51.	 Choupani AA, Mamdoohi AR (2016) Population syn-

thesis using iterative proportional fitting (ipf): A review 

and future research. Transportation Research Procedia 

223–233

	 52.	 Chung F, Lu L (2002) Connected components in ran-

dom graphs with given expected degree sequences. Ann 

Comb 6(2):125–145. https://​doi.​org/​10.​1007/​PL000​

12580

	 53.	 Courtney D, Watson P, Battaglia M, Mulsant BH, Szat-

mari P (2020) Covid-19 impacts on child and youth 

anxiety and depression: Challenges and opportunities. 

Can J Psychiatry 65(10):688–691

	 54.	 Cutts FT, Dansereau E, Ferrari MJ, Hanson M, McCa-

rthy KA, Metcalf CJE, Takahashi S, Tatem AJ, Thakkar 

N, Truelove S, Utazi E, Wesolowski A, Winter AK (2020) 

Using models to shape measles control and elimina-

tion strategies in low- and middle-income countries: A 

review of recent applications. Vaccine 38:979–992

	 55.	 Deming WE, Stephan FF (1940) On a least squares 

adjustment of a sampled frequency table when the 

expected marginal tables are known. Ann Math Stats 

11(4):427–444

	 56.	 Epstein J (2007) Generative Social Science: Studies in 

Agent-Based Computational Modeling. Princeton Uni-

versity Press

	 57.	 Epstein JM, Parker J, Cummings D, Hammond RA 

(2008) Coupled contagion dynamics of fear and dis-

ease: mathematical and computational explorations. 

PLoS ONE 3:3955

https://doi.org/10.1103/PhysRevE.71.036113
https://doi.org/10.1145/2623330.2623375
https://doi.org/10.1145/2623330.2623375
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/
http://www.cdc.gov/flu/about/qa/disease.htm
http://www.cdc.gov/flu/about/qa/disease.htm
http://www.cdc.gov/sars/about/fs-SARS.html
http://www.cdc.gov/sars/about/fs-SARS.html
http://www.cdc.gov/sars/about/fs-SARS.html
http://www.cdc.gov/sars/about/fs-SARS.html
https://doi.org/10.1007/PL00012580
https://doi.org/10.1007/PL00012580


325

Agent-Based Computational Epidemiological Modeling

1 3J. Indian Inst. Sci. | VOL 101:3 | 303–327 July 2021 | journal.iisc.ernet.in

	 58.	 Erdös P, Rényi A (1960) On the evolution of random 

graphs. In: Publications of the Mathematical Institute 

of the Hungarian Academy of Sciences, pp 17–61

	 59.	 Eubank S, Guclu H, Kumar VSA, Marathe M, Srini-

vasan V, Toroczkai Z, Wan N (2004) Modelling disease 

outbreaks in realistic urban social networks. Nature 

429:180–184

	 60.	 Eubank S, Kumar VSA, Marathe M, Srinivasan A, Wang 

N (2006) Structure of social contact networks and their 

impact on epidemics. AMS-MIMACS Special Volume 

on Epidemiology

	 61.	 Eubank S, Barrett C, Beckman R, Bisset K, Durbeck L, 

Kuhlman CJ, Lewis B, Marathe A, Marathe M, Stretz P 

(2010) Detail in network models of epidemiology: are 

we there yet? J Biol Dyn 4:446–455

	 62.	 Ferguson NM, Cummings DAT, Fraser C, Cajka JC, 

Cooley PC, Burke DS (2006) Strategies for mitigating 

an influenza pandemic. Nat Lett 442:448–452

	 63.	 Fortuna LR, Tolou-Shams M, Porche MW (2020) Ineq-

uity and the disproportionate impact of covid-19 on 

communities of color in the united states: The need 

for a trauma-informed social justice response. Psychol 

Trauma 12(5):443–445

	 64.	 Frick M, Axhausen KW (2004) Generating synthetic 

populations using ipf and monte carlo techniques: 

Some new results. In: 4th Swiss Transport Research 

Conference (STRC)

	 65.	 Fujimoto RM (2000) Parallel and distributed simula-

tion systems. Wiley-Interscience

	 66.	 Funke D, Lamm S, Sanders P, Schulz C, Strash D, von 

Looz M (2018) Communication-free massively distrib-

uted graph generation. In: 2018 IEEE International Par-

allel and Distributed Processing Symposium (IPDPS), 

pp 336–347, https://​doi.​org/​10.​1109/​IPDPS.​2018.​00043

	 67.	 Gilbert N (2007) Agent-based models. Sage Publishing

	 68.	 Giordano G, Blanchini F, Bruno R, Colaneri P, Filippo 

AD, Matteo AD, Colaneri M (2020) Modelling the 

covid-19 epidemic and implementation of population-

wide interventions in italy. Nat Med 26:855–860

	 69.	 Goles E, Martinez S (1990) Neural and automata net-

works. Kluwer Academic Publishers

	 70.	 González MC, Hidalgo CA, Barabási AL (2008) Under-

standing human mobility patterns. Nature 453:779–782

	 71.	 Granovetter M (1978) Threshold models of collective 

behavior. Am J Sociol 83(6):1420–1443

	 72.	 Grefenstette JJ, Brown ST, Rosenfeld R, Depasse J, 

Stone NT, Cooley PC, Wheaton WD, Fyshe A, Gal-

loway DD, Sriram A, Guclu H, Abraham T, Burke DS 

(2013) Fred (a framework for reconstructing epi-

demic dynamics): An open-source software system for 

modeling infectious diseases and control strategies 

using census-based populations. BMC Public Health 

13:2

	 73.	 Halloran ME, Ferguson NM, Eubank S, Longini IM, 

Cummings DAT, Lewis B, Xu S, Fraser C, Vullikanti A, 

Germann TC, Wagener D, Beckman R, Kadau K, Barrett 

C, Macken CA, Burke DS, Cooley P (2008) Modeling 

targeted layered containment of an influenza pan-

demic in the united states. Proc Natl Acad Sci (PNAS) 

105:4639–4644

	 74.	 Harland K, Heppenstall A, Smith D, Birkin M (2012) 

Creating realistic synthetic populations at varying spa-

tial scales: A comparative critique of population synthe-

sis techniques. J Artif Soc Soc Simul 15:2

	 75.	 Hethcote HW (2000) The mathematics of infectious 

diseases. Soc Ind Appl Math 42:599–653

	 76.	 Hoertel N, Blachier M, Blanco C, Olfson M, Massetti 

M, Limosin MSRF, Leleu H (2020) A stochastic agent-

based model of the sars-cov-2 epidemic in france. Nat 

Med 26:1417–1421

	 77.	 Ireland CT, Kullback S (1968) Contingency tables with 

given marginals. Biometrika 55(1):179–188

	 78.	 Kempe D, Kleinberg JM, Tardos É (2003) Maximizing 

the spread of influence through a social network. In: 

Getoor L, Senator TE, Domingos P, Faloutsos C (eds) 

KDD, ACM, pp 137–146, https://​doi.​org/​10.​1145/​

956750.​956769

	 79.	 Kilbourne ED (2006) Influenza pandemics of the 20th 

century. Emerging Infectious Diseases 9–14

	 80.	 Kofman YB, Garfin DR (2020) Home is not always a 

haven: The domestic violence crisis amid the covid-19 

pandemic. Psychol Trauma Theory Res Pract Policy 

12(S1):S199–S201

	 81.	 Kohei T, Naoki M (2017) Effects of the distant popula-

tion density on spatial patterns of demographic dynam-

ics. R Soc Open Science

	 82.	 Kosub S, Homan CM (2007) Dichotomy results for 

fixed point counting in boolean dynamical systems. In: 

Proc. ICTCS, pp 163–174

	 83.	 Kuhlman CJ, Mortveit HS (2015) Limit sets of gen-

eralized, multi-threshold networks. J Cell Autom 

10:161–193

	 84.	 Kuhlman CJ, Mortveit HS, Murrugarra D, Kumar VSA 

(2011) Bifurcations in boolean networks. In: AUTOM-

ATA, pp 29–46

	 85.	 Kuhlman CJ, Kumar VSA, Marathe MV, Ravi SS, Rosen-

krantz DJ (2015) Inhibiting diffusion of complex con-

tagions in social networks: theoretical and experimental 

results. Data Min Knowl Discov 29(2):423–465

	 86.	 Kuhlman CJ, Ren Y, Lewis BL, Schlitt J (2017) Hybrid 

agent-based modeling of zika in the united states. In: 

Winter Simulation Conference (WSC), pp 1085–1096

	 87.	 Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, 

Tomkins A, Upfal E (2000) Stochastic models for the 

web graph. In: Proceedings of the 41st Annual Sym-

posium on Foundations of Computer Science (FOCS), 

IEEE Computer Society, Washington, DC, USA, p  57, 

http://​dl.​acm.​org/​citat​ion.​cfm?​id=​795666.​796570

	 88.	 Kumar S, Grefenstette JJ, Galloway D, Albert SM, Burke 

DS (2013) Policies to reduce influenza in the workplace: 

Impact assessments using an agent-based model. Am J 

Public Health 103(8):1406–1411

https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/956750.956769
http://dl.acm.org/citation.cfm?id=795666.796570


326

K. R. Bissett et al.

1 3 J. Indian Inst. Sci.| VOL 101:3 | 303–327 July 2021 | journal.iisc.ernet.in

	 89.	 Kuylen E, Willem L, Broeckhove J, Beutels P, Hens N 

(2020) Clustering of susceptible individuals within 

households can drive measles outbreaks: an individual-

based model exploration. Sci Rep 10:13

	 90.	 Laubenbacher R, Jarrah AS, Mortveit HS, Ravi SS 

(2020) Mathematical formalism for agent-based mod-

eling. Compl Soc Behav Syst 2:683–703

	 91.	 Lenormand M, Deffuant G (2013) Generating a syn-

thetic population of individuals in households: sample-

free vs sample-based methods. J Artif Soc Soc Simul 

16:2

	 92.	 Leskovec J (2008) Dynamics of large networks. Pitts-

burgh, PA, USA, p aAI3340652. PhD thesis

	 93.	 Letendre K, Fincher CL, Thornhill R (2010) Does infec-

tious disease cause global variation in the frequency 

of intrastate armed conflict and civil war? Biol Rev 

85:669–683

	 94.	 Little RJA, Wu MM (1991) Models for contingency 

tables with known mmargin when target and sampled 

populations differ. J Am Stat Assoc 86(413):87–95

	 95.	 Lum K, Chungbaek Y, Eubank SG, Marathe MV (2013) 

A two-stage, fitted values approach to activity match-

ing. In: Procedia - Social and Behavioral Sciences

	 96.	 Ma L, Srinivasan S (2015) Synthetic population genera-

tion with multilevel controls: a fitness-based synthesis 

approach and validations. Comput-Aided Civ Infra-

struct Eng 30(2):135–150. https://​doi.​org/​10.​1111/​

mice.​12085

	 97.	 Macauley M, Mortveit HS (2009) Cycle equivalence of 

graph dynamical systems. Nonlinearity 22:421–436

	 98.	 Marathe A, Lewis B, Barrett C, Chen J, Marathe M, 

Eubank S, Ma Y (2011) Comparing effectiveness of top-

down and bottom-up strategies in containing influenza. 

PLoS ONE 6:e25149-1-e25149-6

	 99.	 Marathe A, Chen J, Eubank S, Liao S, Ma Y (2014) 

Impact of paid sick leave policy: a social planners per-

spective. Am J Public Health 104:1

	100.	 Marathe A, Chen J, Chu S, Chungbaek Y, Khan M, Kuh-

lman C, Mortveit H, Vullikanti A, Xie D (2016) Effect of 

modeling slum populations on influenza spread Delhi. 

BMJ Open 2:2

	101.	 Medlock J, Galvani AP (2009) Optimizing influenza 

vaccine distribution. Science 325(5948):1705–1708

	102.	 Meindl B, Templ M, Alfons A, Kowarik A (2014) sim-

pop : An open source R package for generating syn-

thetic populations. http://​www.​ihsn.​org/​home/​proje​cts/​

synth​etic-​popul​ations

	103.	 Miller J, Hagberg A (2011) Efficient generation of net-

works with given expected degrees. In: Proceedings of 

Algorithms and Models for the Web-Graph (WAW), pp 

115–126

	104.	 Moeckel R, Spiekermann K, Wegener M (2003) Creat-

ing a synthetic population. In: 8th International Con-

ference on Computers in Urban Planning and Urban 

Management (CUPUM)

	105.	 Mortveit HS, Reidys C (2007) An introduction to 

sequential dynamical systems. Springer

	106.	 Müller K, Axhausen K (2010) Population synthesis for 

microsimulation: State of the art. Tech. rep., Technical 

Report August. Swiss Federal Institute of Technology 

Zurich

	107.	 Muller K, Axhausen KW (2011) Hierarchical ipf: Gen-

erating a synthetic population for switzerland. In: ERSA

	108.	 Namazi-Rad MR, Mokhtarian P, Perez P (2014) Gen-

erating a dynamic synthetic population-using an age-

structured two-sex model for household dynamics. 

PLoS ONE 9:e4761-1-e4761-16

	109.	 National Center for Education Statistics (2013) Char-

acteristics of public and private elementary and sec-

ondary schools in the United States: Results from the 

2011d12 schools and staffing survey. Tech. Rep. NCES 

2013312, Department of Education

	110.	 National Center for Education Statistics (2014) Pri-

vate school universe survey (PSS): Public-use data file 

user’s manual for school year 2011-12. Tech. Rep. NCES 

2014351, Department of Education

	111.	 Nobari S, Lu X, Karras P, Bressan S (2011) Fast random 

graph generation. In: Proceedings of the 14th Interna-

tional Conference on Extending Database Technology 

(EDBT/ICDT), pp 331–342, https://​doi.​org/​10.​1145/​

19513​65.​19514​06

	112.	 Railsback SF, Grimm V (2011) Agent-based and 

individual-based modeling: a practical introduction. 

Princeton University Press

	113.	 Ramadan OE, Sisiopiku VP (2019) A critical review 

on population synthesis for activity- and agent-based 

transportation models

	114.	 Reluga TC, Medlock J, Perelson AS (2008) Backward 

bifurcations and multiple equilibria in epidemic mod-

els with structured immunity. J Theor Biol 252:155–165

	115.	 Rivers CM, Lofgren ET, Marathe MV, Eubank S, Lewis 

BL (2014) Modeling the impact of interventions on 

an epidemic of ebola in sierra leone and liberia. PLOS 

Curr Outbreaks

	116.	 Rosenkrantz DJ, Marathe MV, Ravi SS, Stearns RE 

(2018) Testing phase space properties of synchronous 

dynamical systems with nested canalyzing local func-

tions. In: Autonomous Agents and Multi-Agent Systems 

(AAMAS), pp 1585–1594

	117.	 Rosenthal DM, Ucci M, Heys M, Hayward A, Lakhan-

paul M (2020) Impacts of covid-19 on vulnerable chil-

dren in temporary accommodation in the uk. Lancet 

Public Health 5:E241–E242

	118.	 Santos A, McGuckin N, Nakamoto H, Gray D, Liss 

S (2011) Summary of travel trends: 2009 National 

Household Travel Survey. Tech. Rep. FHW A-PL-ll-022, 

U.S. Department of Transportation Federal Highway 

Administration

	119.	 Schelling T (1978) Micromotives and macrobehavior. 

Norton and Co., New York

https://doi.org/10.1111/mice.12085
https://doi.org/10.1111/mice.12085
http://www.ihsn.org/home/projects/synthetic-populations
http://www.ihsn.org/home/projects/synthetic-populations
https://doi.org/10.1145/1951365.1951406
https://doi.org/10.1145/1951365.1951406


327

Agent-Based Computational Epidemiological Modeling

1 3J. Indian Inst. Sci. | VOL 101:3 | 303–327 July 2021 | journal.iisc.ernet.in

	120.	 Shrira I, Wisman A, Webster GD (2013) Guns, germs, 

and stealing: Exploring the link between infectious dis-

ease and crime. Evol Psychol 11:270–287

	121.	 Stearns RE, Ravi SS, Marathe MV, Rosenkrantz DJ 

(2019) Symmetry properties of nested canalyzing func-

tions. In: Discrete Mathematics & Theoretical Com-

puter Science, p 17 pages

	122.	 Tosic PT (2010) On the complexity of enumerating 

possible dynamics of sparsely connected boolean net-

work automata with simple update rules. In: Autom-

ata 2010 - 16th Intl. Workshop on CA and DCS, pp 

125–144

	123.	 Truscott J, Ferguson NM (2012) Evaluating the ade-

quacy of gravity models as a description of human 

mobility for epidemic modelling. PLoS Comput Biol 

8:1–12

	124.	 Usher K, Bhullar N, Durkin J, Gyamfi N, Jackson D 

(2020) Family violence and covid-19: Increased vul-

nerability and reduced options for support. Int J Ment 

Health Nurs 29:549–552

	125.	 Vigo D, Patten S, Pajer K, Krausz M, Taylor S, Rush B, 

Raviola G, Saxena S, Thornicroft G, Yatham LN (2020) 

Mental health of communities during the covid-19 

pandemic. Can J Psychiatry 65(10):681–687

	126.	 WebMD (2015) Cold, flu, & cough health center. http://

www.webmd.com/cold-and-flu/what-are-epidemics-

pandemics-outbreaks, visited 30 January 2015

	127.	 Wu S, Adiga A, Mortveit HS (2014) Limit cycle struc-

ture for dynamic bi-threshold systems. Theoret Com-

put Sci 559:34–41

	128.	 Xia H, Barrett CL, Chen J, Marathe MV (2013) Com-

putational methods for testing adequacy and quality of 

massive synthetic proximity social networks. In: Proc. 

IEEE International Conference on Big Data Science and 

Engineering (BDSE)

	129.	 Xia H, Chen J, Marathe MV, Swarup S (2014) Com-

parison and validation of synthetic social contact 

networks for epidemic modeling (extended abstract). 

In: Proceedings of The Thirteenth International Con-

ference on Autonomous Agents and Multiagent Systems 

(AAMAS), Paris, France

	130.	 Yaméogo BF, Gastineau P, Hankach P, Vandanjon PO 

(2020) Comparing methods for generating a two-

layered synthetic population. Transportation Research 

Record 223–233

	131.	 Ye X, Konduri K, Pendyala RM, Sana B, Waddell P 

(2009) A methodology to match distributions of both 

household and person attributes in the generation of 

synthetic populations. http://​urban​model.​asu.​edu/​

popgen/​papers/​Popul​ation​Synth​esize​rPaper_​TRB.​pdf, 

submitted for Presentation Only to the 88th Annual 

Meeting of the Transportation Research Board, January 

11-15, 2009

	132.	 Yeom JS, Bhatele A, Bisset K, Bohm E, Gupta A, Kale 

L, Marathe M, Nikolopoulos D, Schulz M, Wesolowski 

L (2014) Overcoming the scalability challenges of epi-

demic simulations on Blue Waters. In: Parallel and Dis-

tributed Processing Symposium, 2014 IEEE 28th Inter-

national, pp 755–764, https://​doi.​org/​10.​1109/​IPDPS.​

2014.​83

	133.	 Yeom JS, Bhatele A, Bisset KR, Bohm E, Gupta A, Kale 

LV, Marathe M, Nikolopoulos DS, Schulz M, Weso-

lowski L (2014) Overcoming the scalability challenges 

of epidemic simulations on Blue Waters. In: 28th IEEE 

International Parallel & Distributed Processing Sympo-

sium (IPDPS)

	134.	 Yi M, Marathe A (2013) Policy trap and optimal subsi-

dization policy under limited supply of vaccines. PLoS 

ONE 8:e67249-1-e67249-9

	135.	 Zhu Y, Joseph  Ferreira J (2014) Synthetic population 

generation at disaggregated spatial scales for land use 

and transportation microsimulation. http://​assets.​confe​

rence​spot.​org/​files​erver/​file/​66219/​filen​ame/​14-​5313.​

pdf, transportation Research Board Annual Meeting

Keith R. Bissett  is a Senior Software Engi-
neer at Apple. His research interests include 
high performance computing, cloud ser-
vices, and software systems architectures.

Jose Cadena  is a Research Staff Member 
in the Computational Engineering Division 
at Lawrence Livermore National Laboratory. 
His research interests include graph mining, 
machine learning for network data, combi-
natorial optimization, and approximation 

algorithms. 

Maleq Khan  is an Assistant Professor in 
the Department of Electrical Engineering 
and Computer Science at Texas A&M Uni-
versity—Kingsville. His research interests 
include parallel and distributed algorithms, 
high performance computing, graphs ana-

lytics, data mining, and computational epidemiology.

Chris J. Kuhlman  is a Research Associate 
Professor in the Biocomplexity Institute at 
the University of Virginia. His research 
interests include modeling of human behav-
ior, simulation, high performance and dis-
tributed computing, algorithms, and net-

work science.

http://urbanmodel.asu.edu/popgen/papers/PopulationSynthesizerPaper_TRB.pdf
http://urbanmodel.asu.edu/popgen/papers/PopulationSynthesizerPaper_TRB.pdf
https://doi.org/10.1109/IPDPS.2014.83
https://doi.org/10.1109/IPDPS.2014.83
http://assets.conferencespot.org/fileserver/file/66219/filename/14-5313.pdf
http://assets.conferencespot.org/fileserver/file/66219/filename/14-5313.pdf
http://assets.conferencespot.org/fileserver/file/66219/filename/14-5313.pdf

	Agent-Based Computational Epidemiological Modeling
	Abstract | 
	1 Introduction
	2 An Integrated Modeling Methodology: Scope and Motivation
	3 Technical Challenges
	4 Modeling Environment
	4.1 Graph Dynamical Systems
	4.1.1 Theoretical Foundations
	4.1.2 Example: SIR Model With Explicit Dependency Graph
	4.1.3 Example: SIR Model With Implicit Dependency Graph
	4.1.4 Analysis Problems and System Characterizations

	4.2 Synthetic Population Generation
	4.2.1 Synthetic Populations and Their Building Blocks
	4.2.2 Constructing Synthetic Individuals and Households
	4.2.3 Determining Activities of Individuals
	4.2.4 Determining Locations for Activities
	4.2.5 Generating Social Contact Networks
	4.2.6 Other Population Generation Approaches

	4.3 Stylized Network Construction
	4.3.1 Erdos–Renyi Networks
	4.3.2 Preferential Attachment Networks
	4.3.3 Chung-Lu Networks

	4.4 Epidemiological Simulation
	4.4.1 The Disease Model
	4.4.2 Intervention and Behavior Modification
	4.4.3 Social Network Representation
	4.4.4 Performance


	5 Policy Implications
	6 Summary
	Acknowledgements
	References




