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Abstract: This publication describes an innovative approach to voice control of operational
and technical functions in a real Smart Home (SH) environment, where, for voice control
within SH, it is necessary to provide robust technological systems for building automation and for
technology visualization, software for recognition of individual voice commands, and a robust system
for additive noise canceling. The KNX technology for building automation is used and described in
the article. The LabVIEW SW tool is used for visualization, data connectivity to the speech recognizer,
connection to the sound card, and the actual mathematical calculations within additive noise canceling.
For the actual recognition of commands, the SW tool for recognition within the Microsoft Windows
OS is used. In the article, the least mean squares algorithm (LMS) and independent component
analysis (ICA) are used for additive noise canceling from the speech signal measured in a real SH
environment. Within the proposed experiments, the success rate of voice command recognition for
different types of additive interference (television, vacuum cleaner, washing machine, dishwasher,
and fan) in the real SH environment was compared. The recognition success rate was greater than 95%
for the selected experiments.

Keywords: automatic speech recognition; Smart Home (SH); LabVIEW; independent component
analysis (ICA); least mean squares algorithm (LMS)

1. Introduction

Spoken communication is the basic and most widely used way of transmitting information
between people. The computer industry, where the goal is to make the computer a fully-fledged partner
of human beings in spoken language, is no exception. This goal is pursued mainly because such a way
of communication can be beneficial and can significantly facilitate a person’s life. Voice communication
systems are increasingly used in industrial and social practice. In most applications, the usability is
limited to a narrow area of tasks, i.e., dictionary limitations or predetermined commands which are to
be recognized by a computer. Thus, various systems of machine and equipment control using voice
commands or automatic dictation transcription are generally applicable. These systems are especially
suitable in cases where a person’s eyes and hands are employed in other activities.
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Dotihal et al. deals with the smart home (communication between the devices and gateway takes
place through Power Line Communication (PLC) and the RF links either through TCP protocol or
Message Queue Telemetry Transport (MQTT) protocol) with aims at controlling home appliances
via smartphone and voice by using Alexa acting as a client [1]. Erol et al. built and tested a digital
voice assistants system with an IoT device to control and simulate the process of assistive robotic
workload within voice activation and control in order to improve human–robot interactions with
IoT perspectives [2]. Social robotics is becoming a reality and voice-based human–robot interaction
is essential for a successful human–robot collaborative symbiosis. The main objective of Diaz et al.
is to assess the effect of visual servoing in the performance of a linear microphone array regarding
distant ASR in a mobile, dynamic, and non-stationary robotic testbed that can be representative of real
HRI scenarios [3]. Novoa et al. proposed to replace the classical black-box integration of automatic
speech recognition technology in HRI applications with the incorporation of the HRI environment
representation and modeling, and the robot and user states and contexts [4]. Grout in his paper, the role
of the human-computer interface for remote, or online, laboratories are considered, for example,
hand position/motion/gesture control and voice activation, which are modes of human-computer
interaction (HCI) that are of increasing interest [5]. He et al. designed to implement an Arduino
board alongside motion sensors and audio receiver to control a robot car by means of a cloud server,
and IoT technologies, where the system for control the robot car by preset voice commands integrates
Google Voice API [6]. Kennedy et al. investigate a new passive attack, referred to as voice command
fingerprinting attack, on smart home speakers with experimental results on a real-world dataset
suggest that voice command fingerprinting attacks can correctly infer 33.8% of voice commands
by eavesdropping on encrypted traffic [7]. Knight et al. uses a combination of sensors, Raspberry
Pis, camera feeds, and multiple interaction methods (voice, text, and visual dashboards) to facilitate
laboratory communication for the fully interconnected laboratory of the future [8]. Kodali et al.
presented a solution for applications, where is crucial for the development of Smart Cities as a whole
along with Smart Homes (for example, switch a light source, HVAC systems, or any other electrical
equipment on or off, by being physically present in the premises, remotely or automatically based
on time or a sensor’s reading) with a speech recognition system to give the users a much more
intuitive and natural mean to communicate with and control the connected devices [9]. Leroy et al.
propose federated learning for keyword spotting to solve out-of-domain issues with continuously
running embedded speech-based models such as wake word detectors with the aim of fostering
further transparent research in the application of federated learning to speech data [10]. Based on
the interactive experience principle of smart design in the smart building system Li et al. classifies
and summarizes intelligent design from the “five senses” interaction, including visual interaction,
voice interaction, tactile interaction, cognitive interaction, and emotional interaction, and proposes
future research suggestions and directions and promotes the sustainable development of the smart
building [11]. Liu designed and implemented of Smart Home Voice Control System based on
Arduino [12]. Vanus used Voice communication within the monitoring of the daily living activities
in smart home care [13] with the assessment of the quality of speech signal processing within voice
control of operational –technical functions in the smart home [14].

This work is focused on the implementation of innovative voice control of operational and
technical functions in the real Smart Home (SH) environment for subsequent testing of selected
filtration methods. We tested and compared the methods of noise filtration by using an adaptative
system (LMS) and a hybrid system (LMS+ICA). For this study’s purposes, the plug-and-play platform
seemed to be the ideal tool for testing, or more precisely, connection with our virtual devices created
in the LabVIEW graphically oriented interface. In this paper, we do not have ambitions to develop
algorithms of recognition, but we present a way how to improve the effectiveness of speech recognizer
via the mentioned adaptive systems. The partial goals of the work are as follows.
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• To ensure control of operational and technical functions (blinds, lights, heating, cooling, and forced
ventilation) in the SH rooms (living room, kitchen, dining room, and bedroom) using the
KNX technology.

• To ensure recognition of individual commands for the control of operational and technical
functions in SH.

• To record individual voice commands (“Light on”, “Light off”, “Turn on the washing machine”,
“Turn off the washing machine”, “Dim up”, “Dim down”, “Turn on the vacuum cleaner”,
“Turn off the vacuum cleaner”, “Turn on the dishwasher”, “Turn off the dishwasher”, “Fan on”,
“Fan off”, “Turn on the TV”, “Turn off the TV”, “Blinds up”, “Blinds down”, “Blinds up left”,
“Blinds up right”, “Blinds up middle”, “Blinds down left”, “Blinds down right”, “Blinds down left”,
and “Blinds down middle”).

• To ensure data connectivity among the building automation technology, the sound card, and the
speech recognition software tool.

• To upload sample additive interference in a real SH environment (TV, vacuum cleaner, washing
machine, dishwasher, and fan).

• To ensure additive noise cancelling in the speech signal using the least mean squares algorithm
(LMS) and the independent component analysis (ICA).

• To ensure visualization of the aforementioned processes of Visualization software application
with a SH simulation floor plan; in this work, the measurement and processing of the speech
signal were implemented using the LabView software tool together with a database of interference
recordings.

• To ensure the highest possible recognition success rate of speech command in a real SH
environment with additive noise.

2. Related Work

As part of the currently addressed issue of “smart home” automation, automatic or semi-automatic
control and monitoring of household appliances and the operational technical functions, such as lights,
blinds, heating, cooling or forced ventilation, is provided. Amrutha focuses upon different steps
involved for speaker identification using MATLAB Programming with a speech recognition accuracy
of more than 90% within Voice Controlled Smart Home [15]. Kamdar elaborates on the different
methods of integrating voice recognition technology in home automation systems [16] Kango describes
networked smart home appliances like a ubiquitous culture within SH [17]. Smart appliances often
use innovative technologies and communication methods [18] that enable a variety of services for both
the consumers and the manufacturers. Smart homes can, therefore, be defined as those that have the
characteristics of central control of home devices, networking capabilities, interaction with the users
via smart interfaces, etc. For natural interaction with the users, one of the most user-friendly methods
is vocal interaction (VI), which corresponds to the physical environment of a smart home. System VI,
which can be accessed from, for example, the garage, the bathroom, the bedroom, or the kitchen,
requires a distributed set of microphones and speakers together with a centralized processing unit [19].
Automatic Speech Recognition (ASR) can be divided into three basic groups [20]. The first group
consists of isolated word recognition systems (each word is spoken with a pause before and after
the speech, for example in banking or airport telephone services). The second group comprises small
glossary systems for application commands and control, and the last group consists of large glossary
systems for continuous speech applications. From the ASR perspective, the smart home system is
a mixture of the second and third group, wherein it is possible to dictate e-mail messages and use
grammatically limited commands for household management, the so-called command and control
vocabulary, etc. Predominantly, we can classify the ASR system by means of vocal interaction in two
main categories: first, these are specific control applications that form the essence of smart homes
(voice control of operational and technical functions and appliances), and, second, there are general
vocal applications that can be used in all ASR systems [19]. Using a computer speech recognition
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technology, a multipurpose wireless system can be designed and created and such a system can turn
off and on any household electrical appliance depending on the user’s voice command. Thoraya
Obaid et al. [21] proposed a wireless voice system for the elderly and the disabled. The proposed
system has two main components, namely a voice recognition system and a wireless system.
The LabVIEW software was used to implement the voice recognition system. ZigBee modules were
used for wireless communication. The proposed system only needs to be “trained” once. Based on
the data received by and stored in the wireless receiver connected to the appliances, the required
operations are performed. Another home automation system was designed by Dhawan S. Thakurand
and Aditi Sharma [22]. The proposed system can be integrated as a standalone portable unit;
allows wireless control of lights, fans, air conditioners, televisions, security cameras, electronic doors,
computer systems, and audiovisual equipment; and can turn on or off all appliances that are connected
to the electrical network. However, more complex commands can be managed through a set of
alternatives where the vocabulary is limited. To handle these tasks, syntax, which specifies the
given word and phrase with their admissible combinations (alternatives), is required [19]. Dictation
involves automatic translation of speech into the written form. Dictation systems include large
vocabulary and, in some cases, applications that include additional professional dictionaries for the
application [23]. Domain-specific systems can thus increase recognition accuracy [19]. Many factors in
the ASR system for VI can be regulated. For example, speech variability is generally of limited use.
Language flexibility can be limited by a suitable grammatical proposal, etc. The ability to accurately
recognize the speech captured that has been limited depends primarily on the vocabulary size and
the signal-to-noise ratio (SNR). Thus, recognition can be improved, first, by reducing the size of the
vocabulary and, second, by improving the signal-to-noise ratio. The size of vocabulary constraints in VI
systems is based on grammar. Reducing vocabulary, for example by shortening individual commands,
can lead to improved recognition [24,25]. Similarly, the quality of speech captured affects the accuracy
of recognition [26]. Real-time response is another required characteristic. System performance is
affected by three aspects: recognition speed, memory size requirements, and recognition accuracy.
These aspects are in conflict with each other, as it is relatively easy to improve recognition speed
while reducing memory requirements at the expense of reducing recognition accuracy [27]. The task
of designing a voice recognition system is, therefore, to reduce the size of the vocabulary at each
moment of the conversation as much as possible. ASR systems often use specific domains and specific
applications tailored to improve performance, but vocabulary size is important in any general ASR
language, regardless of the technique used in the implementation. Some systems have been designed
from the ground up to examine the effects of vocabulary limitation, such as the Bellcore system [25],
which contains up to 1.5 million individual words. Recognition accuracy decreased linearly with
a logarithmic increase in directory size [25]. ASR systems currently are widely used also in the
field of industrial robotics [28], in the field of wheelchair steered [29], in the field of defense and
aviation [30], and in the field of telecommunications industry [31]. The IoT platform [32] within the
cyber-physical system [33], which can be understood as a combination of physical [34], network [35]
and computational processes [36,37], also plays an important role in current voice control applications.
Speech contains information that is usually obtained by processing a speech signal captured by
a microphone using sampling, quantization, coding [38], parametrization, preprocessing, segmentation,
centring, pre-emphasis, and window weighting [39,40]. The next step is speech recognition with

• statistical approach for continuous speech recognition [41] with different approaches [42] for
speech recognition system’s [43] using the perceptual linear prediction (PLP) of speech [44],
for example,

– Audio-to-Visual Conversion in Mpeg-4 [45],
– acoustic modeling and feature extraction [46],
– speech activity detectors [47] or joint training of hybrid neural networks for acoustic modeling

in automatic speech recognition [48],
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• the RASTA method (RelAtive SpecTrAl) [38], and
• the Mel-frequency cepstral analysis (MFCC), for example,

– dimensionality reduction of a pathological voice quality assessment system [49],
– content-based clinical depression detection in adolescents [50],
– speech recognition in an intelligent wheelchair [51],
– speech recognition by using the from speech signals of spoken words [52],

• the hidden Markov models (HMM) [53], and
• artificial neural networks (ANN) [54], for example,

– feed-forward Neural Network (NN) with back propagation algorithm and a Radial Basis
Functions Neural Networks [55],

– an automatic speech recognition (ASR) based approach for speech therapy of aphasic
patients [56],

– fast adaptation of deep neural network based on discriminant codes for speech
recognition [57],

– implementation of dnn-hmm acoustic models for phoneme recognition [58],
– combination of features in a hybrid HMM/MLP and a HMM/GMM speech recognition

system [59], and
– hybrid continuous speech recognition systems by HMM, MLP and SVM [60].

An essential part of speech signal processing is also the suppression of additive noise in the speech
signal using single-channel or multichannel methods [61], for example, single-channel methods like

• speech enhancement using spectral subtraction-type algorithms [62],
• use of complex adaptive methods of signal processing [63,64],
• model-based speech enhancement [65,66],
• increasing additive noise removal in speech processing using spectral subtraction [67], and
• noise reduction of speech signal using wavelet transform with modified universal threshold [68]

or denoising speech signals by wavelet transform [69].

Multichannel methods include

• the least mean square algorithm (LMS) [70,71],
• the recursive least squares algorithm (RLS) [72,73],
• the independent component analysis (ICA) [74,75], and
• the principal component analysis (PCA) [76,77] or beamformer (BF) methods for speech

acquisition in noisy environments [78], to linearly constrained adaptive beamforming [79] with
a robust algorithm [80].

3. The Hardware Equipment in SH

3.1. SH Automation with the KNX Technology

Individual modules of the KNX technology were used for the implementation of SH automation.
The KNX technology is designed for complex automation of intelligent buildings and households in
accordance with European standard EN50090 (European Standard for Home and Building Systems)
and ISO/IEC 14543 standard. It is used not only to control the shading elements (blinds, shutters,
and awnings), but also to control the lighting (dimmable lights and lights being switched), the heating
in the house, and, also, to control the other equipment in the building. It combines all technological
parts in the house into one, logically arranged system, to increase the comfort of living. Based on the
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preference for building automation voice control by seniors, the elderly and the disabled, to support
independent living, GHOST visualization software for voice control of operational and technical
functions in SH was designed and tested. The GHOST visualization software connects the environment
for recognition of individual voice commands and the KNX technologies [81]. The connection between
the computer with voice control and the KNX communication bus, within the voice communication,
was implemented using a Siemens KNX IP Router N146 module (5WG1 146-1AB01) (Figure 1).
The module described has a KNX interface on one side and an Ethernet connector on the other side.
However, when using this router, it is necessary to communicate over the network using the UDP
protocol. Due to the automatic assignment of IP addresses, a switch was added between the computer
and the KNX IP Router.

Figure 1. Block diagram of PC and KNX technology connection using an IP router.

The next step is the software adaptation of the individual protocols (KNX and UDP). Input data
in the form of component addresses and states of the individual modules can be changed using
the ETS application. The method used is based on mapping IP addresses and UDP messages sent
via the bus during each change in the sensor part of the system. KNX sensors, KNX bus buttons
and switching, blind, dimming, and fan coil KNX actuators were used to control the operational and
technical functions in the bedroom, kitchen, hallway, bathroom, and living room.

3.2. Steinberg UR44 Sound Card

In a classic USB mode, special drivers are required for Windows or Mac OS X, and the card then
supports the ASIO, WDM, or Core Audio standards established (Table 1).

Table 1. Steinberg UR44 sound card specifications.

Sound Card Type USB

Number of analogue outputs 6
Number of microphone inputs 4
Number inputs 4
Number outputs 4
MIDI YES
Phantom power supply +48VDC

Sampling frequency
44.1 kHz, 48 kHz, 88.2 kHz,
96 kHz, 176.4 kHz, 192 kHz

Resolution up to 24 bits at a maximum sampling rate

3.3. RHODE NT5 Measuring Microphones

The RHODE NT5 microphone is a small-diaphragm condenser microphone for recording sound
sources, consisting of an externally deflected condenser, a 1/2” capsule with a gold-covered diaphragm,
an active J-FET impedance transducer with a bipolar output buffer and dual power supply (Table 2).
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Table 2. RHODE NT5 microphone specifications.

Acoustic Principle Pressure Gradient

Sound pressure level 143 dB
Active electronics J-FET impedance converter with a bipolar output buffer
Directional characteristics Cardioid (kidney)
Frequency range 20 Hz–20 KHz
Output impedance 100 Ω
Power supply options 24VDC or 48VDC
Sensitivity −38 dB re 1 Volt/Pascal (12 mV @ 94 dB SPL) +/− 2
Equivalent noise level 16dBA
Output XLR
Weight 101 g

4. The Software Equipment in SH

4.1. ETS5 - KNX Technology Parametrisation

The ETS5 SW tool was used for the actual parametrization of the individual modules (sensors,
bus buttons, and actuators) of the KNX technology (Figures 2 and 3).

Figure 2. The main loop for continuous data reading.
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Figure 3. Simplified block diagram of the “smart home” algorithm.

4.2. LabVIEW Graphical Development Environment

The LabVIEW (Laboratory Virtual Instruments Engineering Workbench) graphical development
environment is a product made by National Instruments, and this environment enables programming
in a specific graphical programming language called “G”. This makes it intuitive even for
inexperienced programmers/beginners, allowing programming without a deeper knowledge of syntax.
The environment is, therefore, at the level of, for example, the C language, but unlike this language,
it is not oriented towards the text, but graphically. The final product of this development environment
is called a virtual instrument (Virtual Instrument, abbreviated VI), because its character and activity
resemble a classic device in its physical form. Therefore, the virtual instrument is a basic unit of every
application created in this development environment and contains [82] the following.

• Interactive Graphical User Interface (GUI)—the so-called front panel, which simulates the front
panel of a physical device. It contains objects, such as controls and indicators, which can be used
to control the running of the application, to enter parameters and to obtain information about the
results processed.

• Block diagram, in which the sequence of evaluation of the individual program components (the
program algorithm itself, their interconnection and parameters) is defined. Each component
contains input and output connection points. The individual connection points can be connected
to the elements on the panel using a wiring tool.

• Subordinate virtual instruments, the so-called subVI. The instrument has a modular, hierarchical
structure. This means that it can be used separately, as an entire program, or as its individual
subVI’s. Each VI includes its icon, which is represented in the block diagram, and a connector
with locations connected for the input and output parameters.

The sequence of the program run is given by the data flow. The block diagram node is executed
when it receives all the inputs required. After the node is executed, it creates the output data and



Sensors 2020, 20, 6022 9 of 24

passes the data to another node in the data stream path. The movement of data across the nodes
determines the order of execution of the VI and the functions in the block diagram.

4.3. Speech Recognition

A commercially available recognizer by Microsoft within the Windows OS was used for the actual
speech recognition.

5. SW Application for Automation Voice Control in a Real SH

5.1. Visualization

One of the goals of the work is to create a model that will correspond to the recordings measured
from a real SH environment using the LabView software. Based on this requirement, a visualization of
a smart home was created. A commercially available Windows recognizer by Microsoft was used for
voice control of the visualizations.

5.2. Speech Recognition

In order to be able to communicate with the recognizer, it is necessary to install the Speech
SDK 5.1 driver, which works on the principle of converting a voice command into text. It is freely
available software allowing developers to apply speech synthesis and recognition in Windows from
various programming languages. A freely available VI (Speech recognition engine) was used for the
communication between LabVIEW and the recognizer, which only needs to define the input field of
the commands in a string format to the Grammar dictionary input connector, according to which the
voice commands are compared. Then, the result of the command compared is converted into text at
the output from the “Recognized command”.

5.3. Virtual Cable Connection

Therefore, in order to be able to filter voice commands to which interference was added and,
thus, to send the data filtered to the recognizer, it was necessary to install the VB-CABLE (Virtual
Audio Cable) program. It is software for transferring audio streams between applications or devices.
It creates a set of virtual audio devices (so-called Virtual Cables), each of which is composed of a pair
of input/output endpoints. Any application can then send an audio stream to the output part of the
virtual cable, and another application can receive this stream through its input part. All transmissions
are made digitally and there is no loss of quality. The program is suitable for recording audio output
of the applications in real-time or for transferring the audio stream to another application, in which it
is further processed.

On the computer, it is necessary to enable recording from this virtual connection in the audio
settings and to disable other devices (microphone integrated in the laptop and the Steinberg UR44
sound card, or other devices).

5.4. The Main Loop for Data Reading

One microphone, which is set to index 0, was used for voice control of the visualizations.
All visualizations contain a main loop, the task of which is to continuously read data, normalized it,
add interference to speech and send this data to other loops. The measuring chain is shown in Figure 2.

As described above, the output data from the sound card is represented by a signed int32
resolution (−231 + 231− 1). Therefore, it is necessary to recalculate the amplitude values so that the
input signals were first indexed and divided by the value of 232

2 .
If the state for loading interference recordings is activated, these interferences are added from

the database to the real speech. As the interference recordings are approximately 5 s long, but the
data collection from the sound card can take any time, it was necessary to synchronize the lengths of
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these signals. This is achieved using subVI rotation sums, when the time window of data collection is
first detected and, based on this window, the time window of interference recordings is then defined.
This is subsequently read and moved forward by another time window. As soon as you move to the
end of the recording, the entire cycle starts from the beginning.

5.5. Visualization of a “Smart Home”

The application consists of a user interface loop, which is used to turn on/off the filtration and to
capture the change in the position of the person icon, whose task is to simulate the part of the house in
which the user is currently located. For example, if the person icon is placed in the bathroom area, it is
not possible to activate lights or other devices located in other parts of the house (Figure 3).

If the position changes, the message “UPDATE” is triggered in the loop intended for filtering,
where the data on the current coordinates of the occurrence of the simulated person (the person icon)
is transferred, and the room the person is located in is evaluated. Subsequently, the data is converted
into variables and stored in a cluster.

5.6. Glossary of Commands

The glossary for a “smart home” is defined by commands for switching the lights on/off and
closing/opening the blinds, which can be used in all rooms. Other commands can then be used within
the specific room (Table 3).

Table 3. Glossary of commands for voice control of “smart” household.

Command Room

“Light on” All
“Light off” All

“Turn on the washing machine” bathroom
“Turn off the washing machine” bathroom

“Dim up” bedroom
Dim down bedroom

“Turn on the vacuum cleaner” bedroom
“Turn off the vacuum cleaner” bedroom

“Turn on the dishwasher” kitchen
“Turn off the dishwasher” kitchen

“Fan on” Hall
“Fan off” Hall

Turn on the TV Living room
Turn off the TV Living room

“Blinds up” Kitchen/hall/living
room/bedroom

“Blinds down” Kitchen/hall/living
room/bedroom

“Blinds up left” Kitchen/hall/living room
“Blinds up right” Kitchen/hall/living room

“Blinds up middle” Kitchen/hall/living room
“Blinds down left” Kitchen/hall/living room

“Blinds down right” Kitchen/hall/living room
“Blinds down left” Kitchen/hall/living room

“Blinds down middle” Kitchen/hall/living room

5.7. Application Control

The “smart home” application consists of 5 rooms, namely, a bathroom, a bedroom, a hall,
a living room, and a kitchen, in which voice commands can be issued. After turning on the application,
the person icon is placed in the initial position, which is located in the hall. This state is the default, so it
is possible to issue voice commands, but it is not possible to respond to them. For voice control, it is
always necessary to place the person icon in a preselected position, where the command is executed
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based on the evaluation of the coordinates. For example, if the user wants to pull the blinds in
the bedroom, they must move the person icon to this position, see Figure 4. This prevents unwanted
conditions where the user moves the person icon into the kitchen, for example, and wants to control
the device in other parts of the house.

Figure 4 shows the front panel of our virtual SMART Home. The whole house is functional
and fully distributed with actual recordings from a real house. Within the recording process,
several thousands of real recordings of the selected interference sources (television, vacuum cleaner,
washing machine, dishwasher, and fan) were made. It is possible to place a “figurine” into the picture
that simulates a user controlling the household via voice. “Noises” coming from the individual
sources (household appliances) were recorded from various distances and positions. The retention
measurements were taken in a semi-reflective room when the background noise level was being
changed during the recording via the user’s movement within the room. According to the scenario,
every command was repeated 100 times for the individual position, and 20 different speakers
participated (10 men and 10 women, various age). These experimental scenarios bring us results
in the form of a ratio. The aim was to provide a realistic view of the importance of filtering in
commercial speech recognizers in a real environment. Within the virtual device, the user’s movement
in the room was being simulated, and the level of background noise was changing. In general,
the interference level ranged between 0 and 20 dB. Our attempt was to come as close as possible to
real scenarios. In other words, we wanted to create a virtual device that would provide additionally
checked records for the purposes of development and testing of the filtration methods.

Figure 4. Front panel of the “smart home” application.

6. The Mathematical Methods Used

6.1. Least Mean Squares Algorithm

The LMS algorithm is one of the most widespread and most widely used adaptive algorithms
employed in current practice. The strength of the LMS algorithm lies in its simplicity and mathematical
incomplexity [71]. These algorithms are based on a gradient search algorithm, also called the maximum
gradient method. The dependence of the adaptive FIR filter output error signal standard deviation
on the filter coefficients is a quadratic curve with one global minimum [72]. The output equation is
defined according to Equation (1).

y(n) = w(n)x(n), (1)

y(n) = wT(n)x(n). (2)
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Filter recursion is

w(n + 1) = w + 2µe(n)x(n), (3)

where µ represents the step size of the adaptive filter, w(n) is a vector of filter coefficients, and x(n) is
the input vector of the filter.

Figure 5 shows a general diagram of an adaptive filter system where y(n) represents the output
signal of the filter, d(n) represents the noisy signal measured, n(n) represents the noise from the
reference sensor and e(n) represents the deviation of the output signal from the measured one.

Figure 5. General block diagram of an adaptive system.

6.2. Independent Component Analysis

Independent component analysis is one of the blind source separation methods (BSS), which are
methods used to estimate independent sources from multichannel signals. BSS methods in the field of
digital signal processing consist in a situation where several signals are mixed together, and the task is
to find out what the source signals looked like.

Independent component analysis, as one of the possible solutions to the “cocktail-party problem”,
is a statistical and computational method for detecting hidden factors that are the basis of groups
of random variables, measurements, or signals. This method defines a model for observing many
randomly variable data, which is typically defined as a large sample database. In this model, the data
variables are considered as linear mixtures of some unknown hidden variables, and the mixing
system is not known. Hidden variables are considered non-Gaussian and independent of each other
and are called independent components of the data observed. These independent components,
also called sources or factors, can be found using the ICA method. Independent component analysis
is superficially related to principal component analysis and factor analysis. However, ICA is a much
more powerful method capable of finding the underlying factors or resources, even if these other
methods fail completely. There is the following transformation,

x(k) = As(k) + v(k), (4)

where A represents a mixing matrix. The goal is to find the separation matrix, i.e., a matrix H having
a size of N∗M to which the following applies, H = H−1A. The two basic limitations of the ICA method
include the impossibility to recover the energy of source signals and the impossibility to maintain the
order of the source signals. Thus, the output components have a different amplitude with respect to
the input signals, and when the ICA method is applied again, the components have a different order
and polarity of signals.

These limitations are compensated by multiplying the resulting separation matrix H by two
matrices. Matrix P is a permutation matrix that adjusts the order of the separated components,
and matrix D is a diagonal matrix that adjusts the energies of separated signals. In summary, therefore,
the following applies:
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H = A−1DP. (5)

6.3. Prerequisites for ICA Method Processing

Before the actual application of the ICA method (see Figure 6), preprocessing in the form of
centering and bleaching the input signals is performed [76]. The centering is supposed to remove the
DC component from the signal edited. In this step, the signal’s mean value is subtracted from the
input signal. Therefore, the following applies.

xc(k) = x(k)− 1
K

K

∑
1=k

x(k) (6)

After processing, the inverse process can be performed using a separation matrix H and
estimates y(k):

yc(k) = y(k)− H
1
K

K

∑
1=k

x(k) (7)

Bleaching is a process of modifying a signal after the application of which the input signals are
uncorrelated and are scattered per unit. Therefore, if the sensor signals x(k) are bleached, then their
correlation matrix is equal to the unit matrix: E{xxT} = I =. This transformation can be written
as follows,

xB(k) = Bx(k), (8)

where Bx(k) denotes a bleached vector and B represents the so-called whitening dimension matrix
N ∗M for which the following applies: BBT = I. The Singular Value Decomposition (SVD) method can
be used to calculate the bleach matrix and to design a bleach matrix using eigenvectors and eigenvalues
of the correlation matrix of mixture vectors.

Figure 6. Basic model of the independent component analysis (ICA) method.

7. Experimental Part—Results

7.1. Selected Filtering Methods and Recognition Success Rate

To suppress interference, the ICA method was selected together with the adaptive method with
the LMS algorithm. Despite its simplicity and mathematical incomplexity, the LMS algorithm produced
good-quality results of the global SNR.
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7.2. Search for Optimal Parameter Settings for the LMS Algorithm

As, in the visualizations, it is not possible to determine, in advance, what the next command will
be (for this reason the ideal parameters of the LMS algorithm cannot be set), it was first necessary to
perform offline identification. This was performed by finding the optimal values for each command
and interference according to the global SNR. From these values found, the best filter length M was then
selected as well as convergence constant µ. The filtration takes place in two steps (Figure 7), where the
speech signal contaminated with interference and the reference noise are first fed to a bandpass
filter set at 300 Hz–3400 Hz, which is approximate frequency range corresponding to human speech.
Then, the filtered signals are sent to the LMS algorithm, where y(n) is the filtered signal, and e(n) is the
filtration error.

Figure 7. Filtration measuring chain for the LMS algorithm.

Table 4 shows that, with increasing interference energy, there will be greater demands on the
adaptive filter. It means higher filter length M and convergence constant µ. When testing, the filter
appeared to require a higher filtration length with increasing interference energy, but there is a problem
when, at high values (filter length of 1.000 and higher), the useful signal, which is partially filtered,
is distorted, and the filtration error increases. The same applies to the convergence constant, where,
at high values (above 0.1), the scales get disbalanced and the filter thus becomes unstable. Computing
time is another problem. The greater the length of the filter and the smaller the convergence constant,
the longer the calculation will take and vice versa. This creates a conflicting situation where the effort
is for the best possible filtration in a minimum of time.

Table 4. Optimal parameter settings for the LMS algorithm, visualization of a “smart home”.

Interference Filter Length M Convergence Constant µ [-]

Washing machine 240 0.01
Vacuum cleaner 80 0.001
Fan 210 0.01
Dishwasher 40 0.01
TV 110 0.01

7.3. Independent Component Analysis

Only one microphone was used for voice control of the visualizations and, therefore, it is not
possible to solve the classic “cocktail party problem”. For this reason, hybrid filtration was used
(Figure 8), where the ICA method was implemented behind the output of the adaptive filter (Table 5).
After passing through the bandpass, the signals are sent to the LMS algorithm and filtered out. It is
clear from the waveforms that the algorithm significantly suppresses the interference, but, at the
same time, the filtration error increases. This is due to the effort of the LMS algorithm to suppress
the interference as much as possible while partially filtering the speech. This is one of the features of
adaptive algorithms that must be taken into account. In LabVIEW, a function in the Signal Processing
→ Time Series Analysis library was used.
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Figure 8. Measuring chain of hybrid LMS and ICA filtrations.

Table 5. ICA function block parameter settings.

Parameter Value

Method FastICA
Number of components 2
Number of iterations 1000
Convergence tolerance 0.000001

7.4. Recognition Success Rate

One-hundred iterations were performed for each command, and, based on the recognized
/unrecognized status, the recognition success rate was evaluated. The commands were spoken into
the microphone at a constant distance of 15 cm. The recognizer had the lowest recognition rate for words
ending in “off” (“light off”, “i-stop off”, and “radio off”). This can be caused by the phonetic aspect of
the command, which has low energy. Another reason is the property of adaptive filters when the word is
suppressed (slightly filtered).

8. Discussion

Three commands were tested for washing machine interference: “Light on”, “Light off”, and “Turn
off the washing machine”. Table 6 shows that the success rates before filtration were 28%, 21%, and 85%,
respectively. When the washing machine is switched off, the high success rate of the filtration is caused
mainly by the fact that the recognizer itself has a learning algorithm, wherein it returned previous
values, which can be seen in the filtration results, where the success rate of the recognition was worse.

Table 6. The results of recognition success rate for washing machine interference.

LMS and ICA Washing Machine Maximum Volume

Command Before [%] LMS [%] LMS + ICA [%]

“Light on” 28 100 100
“Light off” 21 45 70

“Turn off the
washing machine”

85 60 78

For vacuum cleaner interference (Table 7), the average success rate before filtration was only 1%,
when only the commands “dim up” (5%) and “dim down” (3%) were recognized. After filtration,
the average success rate for the LMS algorithm was 80% and the average success rate for the ICA
algorithm was 86%. The lowest success rate was recorded for the “light off” command, where the
filtration for the algorithm was only 27%, and 45% for the ICA method.
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Table 7. The results of recognition success rate for vacuum cleaner interference.

LMS and ICA Vacuum Cleaner Maximum Volume

Command Before [%] LMS [%] LMS + ICA [%]

“light on” 0 100 100
“light off” 0 27 45

“blinds down” 0 95 100
“blinds up” 0 93 100
“Dim up” 5 100 100

“dim down” 3 100 100
“Turn off the vacuum

cleaner”
0 45 60

For fan interference (Table 8), the average success rate before filtration was only 11%, when the
commands “light on” (42%) and “light off” (24%) were most recognized. After filtration, the average
success rate for the LMS algorithm was 82% and the average success rate for the ICA algorithm was
91%. The lowest success rate was recorded for the “fan off” command again, where the filtration for
the algorithm was only 18%, and 13% for the ICA method.

Table 8. The results of recognition success rate for fan interference.

LMS and ICA Fan Maximum Volume

Command Before [%] LMS [%] LMS + ICA [%]

“light on” 42 100 100
“light off” 24 28 90

“blinds down” 2 100 100
“blinds up” 5 91 100

“blinds down left” 3 88 100
“blinds down right” 0 83 100

“blinds down
middle”

0 100 100

“blinds up left” 6 95 100
““blinds up right” 9 100 100

“blinds up middle” 15 100 100
“Fan off” 18 18 13

For dishwasher interference (Table 9), the average success rate before filtration was only 2%,
when the command “Turn off the dishwasher” was most recognizable, but, on the other hand, it had
zero success rate after filtration. The average success rate for the LMS algorithm and the ICA method
was the same, namely, 85%.

Table 9. The results of recognition success rate for dishwasher interference.

LMS and ICA Dishwasher Maximum Volume

Command Before [%] LMS [%] LMS + ICA [%]

“light on” 0 100 100
“light off” 0 65 66

“blinds down” 0 100 100
“blinds up” 0 100 100

“blinds down left” 0 100 100
“blinds down right” 3 100 100

“blinds up left” 5 100 100
“blinds up right” 0 100 100

“Turn off the
dishwasher”

10 0 0
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With the TV on (Table 10), the average success rate before filtration was only 20%, wherein the
commands “blinds up middle” (42%), “blinds down left” (24%), “blinds down right” (21%), and “blinds
down middle” (20%) were most recognizable. This is due to the fact that the recognizer was able to
capture such long words between pauses of dialogues from the television. The average success rate for
the LMS algorithm was 84% while, for the ICA method, it was 82%. The lowest recognition success
rate after filtration was with the “blinds down” command, where the recognizer usually evaluated
another alternative (“blinds down middle”, “blinds down right”, and “blinds down left”) (Figure 9).

Table 10. The results of recognition success rate for vacuum cleaner interference.

LMS and ICA TV Maximum Volume

Command Before [%] LMS [%] LMS + ICA [%]

“light on” 60 100 100
“light off” 0 74 68

“blinds down” 0 62 51
“blinds up” 0 74 60

“blinds down left” 24 97 80
“blinds down right” 21 98 96

“blinds down
middle”

20 100 98

“blinds up left” 15 91 88
“blinds up right” 8 74 90

“blinds up middle” 42 100 98
“Turn off the TV” 27 52 69

Figure 9. Recognition results for speech commands for additive interference in the real SH environment.

The spectrograms (Figures 10–14) show that the behavior of the appliances is similar after filtration,
especially as for the washing machines and the vacuum cleaner. For the fan, the results are
identical. This is mainly due to the uniform distribution of the noise, which is close to the
Gaussian one. Furthermore, by theory, adaptive filters do not function well with these noises, and,
as for the ICA method, this is a basic limitation when these interferences cannot be handled well.
The spectrogram also shows that the best filtered interference was in the dishwasher. In the case
of television interference, it can be seen, on the other hand, that the quality of filtration favors the
LMS algorithm. The main reason is that only one microphone is used, so the classic principle of the
ICA method cannot be addressed.
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Figure 10. Comparison of spectrograms with closed windows, “light on” command, washing
machine interference.

Figure 11. Comparison of spectrograms with closed windows, “light on” command, vacuum
cleaner interference.

Figure 12. Comparison of spectrograms with closed windows, “light on” command, fan interference.
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Figure 13. Comparison of spectrograms with closed windows, “light on” command,
dishwasher interference.

Figure 14. Comparison of spectrograms with closed windows, “light on” command,
television interference.

9. Conclusions

This study was focused on an innovative method of processing speech signals used for voice
control of operational and technical functions in Smart Home, with subsequent testing of selected
filtering methods. To control the operational and technical functions (blinds, lights, heating, cooling,
and forced ventilation) in the SH rooms (living room, kitchen, dining room, and bedroom), a program
for controlling the KNX technology was created using the ETS 5 software tool. A Microsoft recognizer
was used to recognize the individual voice commands. To ensure visualization and data connectivity
among the building automation technology, the sound card, and the SW tool for speech recognition,
a LabView SW tool was used in this work together with a database of additive interference recordings
in a real SH environment (television, vacuum cleaner, washing machine, dishwasher, and fan). A linear
adaptive LMS filter and the ICA method were chosen to filter speech signals that contained additive
noise from the real SH environment. The criterion for successful recognition was represented by
a sequence of one hundred repetitions for each command based on which the recognized/unrecognized
state was evaluated. During testing, commands for five types of interference were tested. The results
show that the hybrid method showed a higher recognition success rate than the LMS algorithm,
on average by 6%. The average recognition success rate before and after filtering was 64.2% higher
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for the LMS algorithm and 69.8% for hybrid filtering. The overall results reveal that hybrid filtration
showed a higher success rate by only about 5%. Due to the computational complexity of the
ICA method, it is much more advantageous to implement the LMS algorithm, which is capable
of high levels of filtering despite its simplicity, but, with the increasing performance and quality of
computer technology, there is room for more complex algorithms to address large tasks at relatively
low cost.

In the next work, the authors will focus on optimizing the control of the operational and technical
functions in SH and increasing the recognition success rate of the individual speech commands using
appropriate speech recognition algorithms and appropriate algorithms for additive noise canceling in
real time.
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