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Abstract

Cellular metabolism regulates immune cell activation, differentiation and effector functions but 

current metabolic approaches lack single-cell resolution and simultaneous characterization of 

cellular phenotype. Here, we developed an approach to characterize the metabolic regulome of 

single cells together with their phenotypic identity. The method, single-cell metabolic regulome 

profiling (scMEP), quantifies proteins that regulate metabolic pathway activity using a high-

dimensional antibody-based approach. We employed mass cytometry (CyTOF) to benchmark 

scMEP against bulk metabolic assays by reconstructing the metabolic remodeling of in vitro-

activated naïve and memory CD8+ T cells. We applied the approach to clinical samples and 

identified tissue-restricted, metabolically repressed cytotoxic T cells in human colorectal 

carcinoma. Combining our method with imaging mass spectrometry (MIBI-TOF), we uncovered 

the spatial organization of metabolic programs, which indicated exclusion of metabolically 

repressed immune cells from the tumor-immune boundary. Overall, our approach enables robust 

approximation of metabolic and functional states in individual cells.

Immune cells dynamically execute highly context-dependent functions, including migration 

into affected tissues, exponential expansion and secretion of effector molecules. All of these 
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diverse capacities are enabled and coordinated by dynamic changes in cellular 

metabolism1–3. Pharmacological targeting of selected metabolic pathways can thus be used 

to influence specific aspects of immune cell behavior, e.g. direct the balance between 

effector and regulatory functionality4,5. Such therapeutic modulation has been shown to 

improve antitumor responses6–8, ameliorate autoimmune diseases9,10 and is a promising 

option for many other diseases11.

So far, approximation of the cellular metabolic state has been mostly based on quantification 

of metabolites and intermediates of selected metabolic pathways. Typically in bulk assays, 

mass spectrometry12 is used to quantify metabolite abundances and to trace isotopically 

enriched metabolites through metabolic pathways13. Alternatively, an approach termed 

extracellular flux analysis measures oxygen consumption and acidification of the 

extracellular milieu as proxies for OXPHOS and glycolytic activity, respectively. Together, 

these technologies have yielded invaluable insight into cellular metabolism and they 

continue to provide the basis for many studies in the field of immunometabolism.

Still, significant challenges and open questions related to metabolic heterogeneity and its 

relationship with cell identity remain. Firstly, while several metabolic features have been 

shown to direct T cell differentiation14, a more comprehensive understanding of the 

coordination within and between metabolic pathways as well as the interplay with other 

cellular processes would allow to better direct T cell differentiation for various therapeutic 

uses. Furthermore, given the recently highlighted metabolic differences between 

physiologically activated cells and in vitro models15, there is a need to analyze metabolic 

states directly ex vivo. Especially analysis of limited samples from human clinical material, 

which has been challenging using traditional technologies, could determine tissue-specific 

metabolic states as well as their potential modulation in human diseases, particularly 

cancer16,17. Moreover, multimodal analysis of metabolic immune cell states within their 

physiological microenvironment18 or in metabolically challenging contexts could reveal 

novel therapeutic targets and guide clinical decisions19. An ideal technological solution to 

approach these questions would bridge the gap between highly multiplexed, single-cell 

phenotyping platforms and the bulk determination of metabolic state, thus enabling the study 

of cellular metabolism directly from ex vivo human clinical samples with sparse material 

while determining important metabolic and functional relationships.

To address this need, we have developed an approach, termed single-cell metabolic 

regulome profiling (scMEP), that enables quantification of metabolic features of individual 

cells by capturing the composition of the metabolic regulome using antibody-based 

proteomic platforms. We assessed over 110 antibodies against metabolite transporters, 

metabolic enzymes, regulatory modifications (e.g. protein phosphorylation), signaling 

molecules and transcription factors across eight metabolic axes and on a variety of sample 

formats and tissue types. Utilizing these antibodies in multiplexed mass cytometry20 assays 

demonstrated that heterogeneous populations such as human peripheral blood can be 

metabolically analyzed in a highly robust manner and that cell identity is reflected in 

lineage-specific metabolic regulome profiles. Furthermore, we benchmarked scMEP against 

conventional extracellular flux analysis, demonstrating close agreement of metabolic 

regulome expression with glycolytic and respiratory activity. We investigated the tissue-
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specificity of metabolic characteristics of human cytotoxic T cell subsets isolated from 

clinical samples, including colorectal carcinoma and healthy adjacent colon. This analysis 

revealed the metabolic heterogeneity of physiologically activated CD8+ T cell subsets, 

including subsets expressing the T cell exhaustion-associated molecules CD39 and PD1. 

Finally, we adopted scMEP to multiplexed imaging of human tissue samples by MIBI-

TOF21,22 which revealed the spatial organization of metabolic T cell states as well as 

exclusion of clinically relevant CD8+ T cell subsets from the tumor-immune boundary.

Overall, our scMEP approach enables the study of cellular metabolic states in combination 

with phenotypic identity. We expect this to deepen our understanding of cellular metabolism 

in homeostatic and dysfunctional settings, across heterogeneous cell populations and in situ, 

together providing a new lens through which to understand and impact human disease.

Results

Targeted quantification of the metabolic regulome discriminates human immune 
populations

Much like the epigenetic regulome governs transcription by controlling gene accessibility, 

the balance of cellular metabolites, and thus the metabolic state, is influenced by the 

molecular machinery that regulates these pathways. As such, we sought to quantify the 

abundance of metabolite transporters, rate-limiting metabolic enzymes and their regulatory 

modifications (e.g. phosphorylation), modifiers of mitochondrial dynamics, as well as 

transcription factors and signaling molecules that drive specific metabolic programs, here 

collectively referred to as the cellular metabolic regulome. To accomplish this, we assessed 

the performance of over 110 commercially available antibodies by mass cytometry, 

immunohistochemistry (IHC) and MIBI-TOF (Supplementary Figure 1a,b). Following this 

screening, we selected a subset of metabolic antibodies (N = 41) that were used in varying 

combinations and in conjunction with phenotypic antibodies in this study (Fig. 1a).

Given the importance of metabolic networks to immune cell function, we first asked whether 

functional specialization within the human immune system might be reflected in lineage-

specific metabolic regulomes. We obtained whole blood and identified the major immune 

cell lineages through phenotypic markers (Supplementary Figure 2a,b), thus enabling in 
silico subset selection and comparison of metabolic regulomes of cell lineages without the 

need for prior isolation or enrichment (Fig. 1b). We observed lineage-specific metabolic 

states that were in agreement with previously established functional roles (Fig. 1c,d). For 

example, plasmacytoid dendritic cells (pDCs) expressed high levels of several regulators of 

glycolysis (e.g. glucose transporter GLUT1/SLC2A1), and fatty acid metabolism (e.g. fatty 

acid translocase FAT/CD36) which both have been shown to impact pDC functionality, 

including hallmark interferon production23. In line with their metabolic quiescence in the 

absence of antigen, lymphocytes (T and B cells) expressed lower levels of many metabolic 

proteins and intermediate levels of proteins within the tricarboxylic acid cycle (TCA) and 

the electron transfer chain (ETC), crucial for basal respiration. In general, lineage-specific 

expression of metabolic enzymes was found to be reproducible across different donors as 

well as independent experiments and was stable during standard blood collection and storage 

(Supplementary Figure 2c–h).
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Given these robust and lineage-specific profiles, we hypothesized that scMEP could be used 

to infer cell identity independently of cell lineage markers. We found that metabolic features 

were largely able to separate immune cell lineages, with expected overlap between CD4+ 

and CD8+ T cells and to a lesser extent NK cells (Fig. 1e). In addition, metabolic features 

could predict immune cell identity for a large fraction of cells (94% average in training and 

test data, Fig. 1f). Together, this demonstrates the suitability and robustness of scMEP to 

study metabolic regulation and its relationship to single-cell specialization and it revealed 

remarkable cell type-specific metabolic diversification within the human immune system.

Benchmarking single-cell metabolic regulomes with metabolic flux

Assessing metabolic enzyme abundances has provided insight into the regulation of cellular 

metabolism in many scenarios24–26 and multiple studies have identified enzymes that 

determine metabolic pathway activity27. To establish the relationship between antibody-

based, single-cell metabolic features and pathway activity, we activated human naïve and 

memory T cells (including CD4+ and CD8+) and analyzed them by mass cytometry and 

extracellular flux analysis (Fig. 2a). Focusing on glycolytic and TCA/ETC components, 

mass cytometry-based scMEP analysis recapitulated several established hallmarks of 

metabolic remodeling upon TCR engagement28–30, including increased surface expression 

of GLUT1, as well as elevated intracellular levels of several key glycolytic enzymes 

including hexokinase 2 (HK2), phosphofructokinase 2 (PFK2) and critical downstream 

enzymes such as lactate dehydrogenase A (LDHA) and the monocarboxylate transporter 1 

(MCT1, Fig. 2b,c). Likewise, TCA/ETC proteins such as citrate synthase (CS), oxoglutarate 

dehydrogenase (OGDH), the cytochrome complex (CytC) and ATP synthase (ATP5A) were 

upregulated upon TCR engagement (Fig. 2b,d). Of note, upregulation of metabolic enzymes 

exceeded activation-induced increases in cell size and could, to a large extent, not be 

explained by mitochondrial content (Supplementary Figure 3a–e).

Performing extracellular flux analysis on the same samples, we found that as expected, 

levels of basal glycolysis and OXPHOS increased upon TCR engagement (Fig. 2e and 

Supplementary Figure 4a). Comparison to scMEP showed that the analyzed glycolytic 

enzymes were robustly correlated with glycolytic flux across several donors and independent 

experiments (linear regression mean r2 = 0.77, Fig. 2f). A similarly strong correlation was 

observed between expression of TCA/ETC components and OXPHOS activity (linear 

regression mean r2 = 0.72, Fig. 2f). Given this correlation, we hypothesized that it would be 

possible to utilize scMEP-based high-dimensional co-expression patterns to derive in silico 
scores representing glycolytic and OXPHOS activity. Of note, these scMEP-based glycolytic 

and OXHPOS scores strongly and robustly predicted respective metabolic activity across 

multiple donors, activation time points, and independent experiments (Supplementary Figure 

4b–f). In addition to T cells, we validated mass cytometry-based scMEP values against 

extracellular flux analysis in differentially activated human monocyte-derived macrophages 

which again demonstrated agreement between these assays and highlights that scMEP 

analysis faithfully recapitulates metabolic pathway activity across various stimulation 

conditions and multiple human immune cell types (Supplementary Figure 5a–h).
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Extracellular flux analysis suggested that upon TCR engagement, naïve T cell populations 

simultaneously increase their glycolytic and respiratory activity (Fig. 2g). However, given 

the nature of bulk measurements, it remained unclear whether there is metabolic 

heterogeneity and specialization of a subset of cells towards a glycolytic or oxidative 

phenotype. scMEP scores calculated for each cell independently revealed simultaneous 

upregulation of the glycolytic and oxidative machinery on the single-cell level (Fig. 2g), 

together indicating that these cells simultaneously engage multiple metabolic pathways to 

support their wide-ranging bioenergetic demands31. Furthermore, our single-cell analysis 

revealed previously obscured metabolic heterogeneity within each timepoint, with T cells 

activated for two days spanning almost the entire range of possible glycolytic and respiratory 

scMEP scores (Fig. 2h). Cells activated for three days displayed a more homogeneous 

upregulation of glycolytic and TCA/ETC enzymes, suggesting eventual convergence of 

metabolic remodeling and potentially indicating the presence of a series of metabolic and 

cellular checkpoints32. Together, this data validates the close relation of scMEP-based 

quantification of the cellular metabolic regulome with pathway activity assessed through a 

well-established orthogonal method and demonstrates the ability of scMEP to enable the 

discovery of metabolic heterogeneity at the single-cell level.

Integrative modeling of T cell activation identifies checkpoints of metabolic switching

In order to study the metabolic remodeling of human T cells and its relation to cell 

activation, differentiation, and proliferation, we expanded our analysis to incorporate a 

broader set of metabolic pathways and other cellular features. To do so, we simultaneously 

analyzed 48 non-redundant, biological (non-technical) parameters across millions of single 

cells (Fig. 3a). Indicating the initiation of metabolic remodeling in activated naïve T cells, 

we observed early phosphorylation of signaling molecules (e.g. ribosomal protein S6) and 

induction of transcription factors (e.g. Hypoxia-inducible factor 1-alpha HIF1A) which was 

closely followed by upregulation of metabolic enzymes (GLUT1, HK2 and LDHA, Fig. 3a), 

together reminiscent of previously described temporal optimization patterns in which 

expression hierarchy matches enzyme order in metabolic pathways33.

We next integrated the high-dimensional information of all features to visualize the 

metabolic and phenotypic progression of naïve CD8+ T cells upon TCR stimulation. This 

indicated a continuous progression of immune activation and metabolic rewiring across 

multiple days with recently activated cells (day 1 and 2) spanning larger areas of the 

phenotypic and metabolic space compared to cells from later days (day 3 and 5, Fig. 3b and 

Supplementary Figure 6a). Consistent with previous reports34, these observations indicate 

that, like cell phenotype and cellular transcriptional profile, naïve CD8+ T cell metabolism is 

most plastic in the earliest phases of antigen experience.

To further explore the temporal coordination of metabolic remodeling in conjunction with 

cell phenotype, we inferred a pseudotime axis representing progression of cellular 

differentiation and metabolic remodeling (Fig. 3c). Pseudotime correlated well with time of 

activation and was robust across different trajectory algorithms as well as independent 

donors (Supplementary Figure 6b–e). We found metabolic protein expression within 

pathways to be highly coordinated, especially during early remodeling (Supplementary 
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Figure 6f,g). In addition to intra-pathway coordination, we found early synchronization of 

metabolic protein expression trajectories across various metabolic and other cellular 

pathways (Fig. 3d,e). Their divergence at later stages potentially indicates redirection of 

metabolic intermediates into different metabolic pathways. For example, cells maintained 

high expression of the glutamine transporter ASCT2 but downregulated the glutamine-to-

glutamate converting enzyme GLS, possibly increasing glutamine availability for nucleotide 

biosynthesis35.

Utilizing the change of metabolic feature expression over pseudotime (first derivative), we 

defined three inflection points during metabolic remodeling of naïve human CD8+ T cells 

(Fig. 3e). The first inflection point (pseudotime 0.2) was marked by a coordinated and 

accelerated upregulation of metabolic proteins in various pathways (e.g. concerted induction 

of GLUT1, ASCT2, OGDH, VDAC1; Fig. 3e) leading up to the second inflection point 

(pseudotime 0.45), which was characterized by initiation of RNA synthesis (BrU 

incorporation) and activation of cellular stress responses (NRF2_p and XBP1). Further, we 

observed reduced expression of carnitine palmitoyltransferase (CPT1A), a rate-limiting 

enzyme of fatty acid oxidation. Interestingly, this second inflection point coincides with cells 

exiting the G0/G1 cell cycle phase (Fig. 3d,e). The third metabolic inflection point 

(pseudotime 0.6) was defined by stabilized or decreasing expression levels of metabolic 

proteins (e.g. GLUT1 and ASCT2) as well as peak translational activity (puromycin 

incorporation). Of note, this inflection point coincided with the first cell division, 

determined through reduction in CFSE signal. Interestingly, VDAC1 (also porin, located in 

the outer mitochondrial membrane) peaked at this point, suggesting an increase in 

mitochondrial mass prior to the first cell division, followed by cell division-dependent 

dilution36. Further underlining this crucial interplay between cell cycle progression, cell 

division and metabolic activity37, activation of T cells in the presence of low-dose 

oligomycin revealed activation time-dependent influences on metabolic rewiring that led to 

suppressed T cell division (Supplementary Figure 7a–d).

Naïve and memory T cells are known to differentially engage metabolic pathways. 

Comparing their metabolic regulator expression using scMEP confirmed that memory CD8+ 

T cells displayed increased GLUT1, elevated TCA/ETC proteins (e.g. CS), higher fatty acid 

oxidation components (CPT1A), and greater mitochondrial mass (VDAC1, Supplementary 

Figure 8a–d), all of which are well established features of memory T cells. Taken together, 

scMEP facilitated in-depth and multimodal analysis of early T cell activation which revealed 

regulatory pathway coordination and identified distinct phases of T cell metabolic 

remodeling as well as their relationship to transitions between cellular states.

Tissue-specific metabolic regulome profiles define human T cell subsets

In addition to cell-intrinsic factors, metabolic states are influenced by the tissue in which 

they reside15, underlining the importance of determining metabolic states directly ex vivo 
and in clinical samples. To investigate potential tissue-dependent metabolic influences in the 

context of human cancer, we prepared single-cell suspensions from tissue resections of 

colorectal carcinoma, including tumor (N = 6) and healthy adjacent tissue from the same 

patients (N = 6, see Supplementary Table 2). In addition, we included unrelated healthy 
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donor PBMCs (N = 5) and lymph node biopsies (N = 3). Samples were stained with 18 

phenotypic and 27 metabolic antibodies (see Supplementary Table 1) and analyzed by mass 

cytometry. We identified all major cell lineages (Supplementary Figure 9a–f) but focused 

our downstream analysis on CD8+ T cells (for CD4+ T cells see Supplementary Figure 10a–

f). Employing automated clustering via FlowSOM, we grouped CD8+ T cells into ten 

distinct metabolic states, based exclusively on their metabolic features (Fig. 4a–c). Identified 

metabolic CD8+ T cell scMEP states included subsets characterized by low metabolic 

protein expression (scMEP1&2) suggesting reduced metabolic activity, subsets with elevated 

expression of a broad range of regulators (including CD98, GLUT1, PFK2, MCT1, CytC; 

scMEP9&10), indicating increased metabolic demands, and subsets with characteristic 

expression patterns, e.g. increased ACADM/HIF1A (scMEP4&7) or CD98 (scMEP3&8) 

which indicate more specific, context-dependent metabolic adaptions.

Determining the tissue distribution of these phenotypes, we found that peripheral T cells 

primarily consisted of the metabolically low scMEP1 (mean 76.6% of peripheral CD8+ T 

cells) with smaller numbers of scMEP5 (19.7%) and negligible frequencies of all other 

metabolic states (all < 3%; Fig. 4d). Compared to peripheral blood, tissue infiltrating CD8+ 

T cells displayed greater metabolic heterogeneity with a more diverse range of phenotypes. 

Interestingly, we found a specific metabolic phenotype (scMEP3) to be enriched in cells 

isolated from colorectal carcinoma (mean 14.6% of total CD8+ T cells) versus cells from 

healthy adjacent sections (mean 0.8%, P = 0.0396, FDR = 0.198) and all other tissues 

(PBMCs 0.1%, lymph nodes 2.4%; Fig. 4e and Supplementary Figure 9f). This subset was 

characterized by enriched expression of CD98 and lower levels of several metabolic 

enzymes across various pathways (GLS, GOT2, PFK2, ATP5A, CS, S6_p, CPT1A, 

PGC1a_p).

Since CD8+ T cell scMEP states were defined using exclusively metabolic features, we next 

investigated their immunological characteristics (Fig. 4f). scMEP metabolic states associated 

clearly with distinct immunological phenotypes. For example, metabolically low states 

(scMEP1&5) displayed features of resting cells (CD69-, CD38- and Ki-67low) with naïve 

(CD45RA+ and TCF1high, scMEP1) or memory phenotypes (CD45RA- and TCF1low, 

scMEP5). scMEP9, which displayed high overall expression of metabolic proteins, showed 

signs of recent activation (CD69+, CD38+ and Ki-67high), again indicating the increased 

metabolic demands of cycling cells.

Of note, the tumor-associated metabolic T cell state (scMEP3) was significantly enriched in 

exhaustion-associated molecules programmed death 1 (PD1) and CD39 (both not used for 

the initial definition of scMEP states). Besides scMEP3, we also observed enrichment of 

CD39+ and/or PD1+ cells (termed CD39/PD1 cells) in scMEP8. With the exception of 

increased CD98 and minor enrichments in GLUT1 and GAPDH, cells from scMEP3 but not 

scMEP8 showed decreased expression of metabolic regulators (i.e. reduced ATP5A, CS, 

CytC and PGC1a_p) and were thus termed metalow CD39/PD1 cells. Interestingly, lower 

mitochondrial capacity as indicated here is a characteristic of T cell exhaustion6,38. 

Furthermore, metalow CD39/PD1 cells (scMEP3) were TCF1low which has been proposed to 

specifically identify terminally exhausted T cells39. In comparison, cells from scMEP8 

retained TCF1 expression and were characterized by higher levels of many metabolic 
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regulators (thus termed metahigh CD39/PD1 cells), which might be indicative of different 

functional capacities of these subsets. Lastly, while the metalow subset (scMEP3) was 

strongly enriched in CD39 and PD1, it also included a fraction of cells negative for both 

markers (mean 28%, Fig. 4g), suggesting that integration of the metabolic state could be 

employed as an additional dimension to functionally define T cell capacities. In summary, 

these analyses demonstrate the unique capability of scMEP to identify metabolic states of 

low abundance cell populations directly from sparse clinical samples, revealing important 

relationships between cellular phenotype and metabolism in human disease.

Cellular metabolism is related to spatial organization in human tissue compartments

In addition to lineage intrinsic factors, activation status and tissue of residence, a cell’s 

metabolism is influenced by local nutrient availability and other microenvironmental 

conditions16,17. To analyze metabolic regulation directly in human tissues, we adapted the 

scMEP approach to a high-dimensional imaging platform, specifically MIBI-TOF. Having 

assessed the performance of all metabolic antibodies in traditional IHC (Supplementary 

Figure 11) and MIBI-TOF (Fig. 5a,b and Supplementary Figure 12a), we obtained human 

tissue samples (standard, archival formalin-fixed, paraffin-embedded (FFPE) blocks), 

including sections from colorectal carcinoma patients (N = 4) and non-malignant control 

sections from independent donors (N = 3, different to patients analyzed in Fig. 4, see 

Supplementary Table 2). Sections were stained with a combination of lineage and metabolic 

antibodies (Fig. 5a and Supplementary Table 1). In total, we acquired 58 fields of view 

(FOV; 400 μm by 400 μm, resolution ~400 nm), each comprised of 36 antibody-dimensions, 

thus allowing us to determine cell lineage, subset, and activation status, together with 

metabolic characteristics (Fig. 5b).

From these images, we identified single cells and clustered them into the main cell lineages 

(Fig. 5c and Supplementary Figure 12b–d). In agreement with our mass cytometry analysis 

(see Fig. 4), distinct cell lineages displayed lineage-specific metabolic protein expression 

patterns with potentially activation-induced glycolytic expression in T cells and high 

metabolic protein levels in epithelial cells from colorectal carcinoma tissue (Fig. 5d and 

Supplementary Figure 12e). To interrogate the spatial organization of metabolic features, we 

used context-dependent spatial enrichment (CDSE) analysis40 which indicated the presence 

of spatially enriched metabolic features (Fig. 5e). For example, GLUT1high cells were highly 

enriched around other GLUT1high cells, independent of cell lineage. This analysis also 

revealed spatial enrichments of enzymes within the same metabolic pathway (e.g. 

GLUT1high cells enriched around PKM2high cells), suggesting the existence of 

environmental niches that enable or drive certain cellular metabolic behavior. We found such 

spatial enrichment for glycolysis, respiratory and amino acid pathways in contrast to fatty 

acid metabolism where FAT/CD36 but not CPT1A was enriched on endothelial cells, 

potentially indicating their role in tissue uptake of fatty acids but not their oxidation41.

In analogy to single-cell scMEP scores (see Fig. 2), we calculated spatial, pixel-based 

scMEP scores to visualize the spatial distribution of metabolic programs directly in images 

(Fig. 5f and Supplementary Figure 12f). Imaging several regions within a tissue section, we 

found that scMEP scores of total immune cells varied across but also within donors, together 
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reinforcing the concept of local, microenvironment-driven influences on metabolic 

polarization that can be revealed by image-based scMEP analysis.

The tumor-immune boundary represents a unique metabolic niche

Metabolic competition within the tumor microenvironment is known to influence immune 

cell metabolism42. To investigate whether malignant epithelial cells directly modulate 

neighboring immune cells, we computationally identified a tumor-immune border40 and 

compared immune cells close (within 20 μm) to cells located further away from this 

boundary (Fig. 6a). A large fraction of FOVs (17 out of 24) displayed metabolic polarization 

of immune cells towards the tumor, which was dominated by increased expression of CD98 

and ASCT2 and which could not be not explained by variations in immune cell lineage (Fig. 

6a). CD98 and ASCT2 have shown prognostic value in human cancer43,44 and it will be of 

great interest to see whether integrating their expression with tissue features or 

multidimensional co-expression of other metabolic proteins will improve diagnostic power.

Again focusing on CD8+ T cells, in=depth analysis of metabolic features revealed a variety 

of diverse subsets (Supplementary Figure 13a,b), akin to our suspension-based analysis. As 

before, we identified two metabolically divergent subsets of CD39/PD1 cells (metahigh and 

metalow, Supplementary Figure 13c,d). Integrating spatial information unique to imaging 

data revealed that metalow CD39/PD1 cells were located further away from the tumor-border 

than their metahigh counterparts (Fig. 6b,c) and that the expression of metabolic feature on 

these CD39/PD1 cells was correlated to distance to closest tumor cell (most pronounced for 

CPT1A, Fig. 6d). Together, this analysis suggests that only CD39/PD1 cells that were distal 

and unengaged with the tumor appeared metabolically suppressed as opposed to more 

metabolically active cells at the tumor-immune interface. These observations potentially 

reconcile the ambivalent nature of CD39 and PD1 expression, which is associated with 

exhaustion and dysfunction but at the same time T cell activation45–47.

In summary, these spatial analyses revealed specific exclusion of metabolic immune cell 

subsets from the tumor-immune boundary, demonstrating the influence of tissue architecture 

on metabolic regulation that goes beyond what can be observed using conventional deep 

phenotyping of cell identity alone. Incorporating this new lens of single-cell metabolism into 

translational research promises better control of cellular alterations and dysfunction in 

human disease.

Discussion

Biological tissues possess great heterogeneity, thus necessitating the use of single-cell 

platforms for their in-depth study48. Technological advances are pushing the frontier of 

single-cell analyses on multiple levels, including the genome49, transcriptome50 as well as 

aspects of the epigenome51 and proteome20. Here, we presented scMEP, an approach that 

utilizes antibody-based assays to analyze metabolic regulation in combination with cellular 

identity on the single-cell level. Focusing on the metabolic regulome allowed us to define 

metabolic states directly from limited, ex vivo, human material. For example, we performed 

metabolic analyses of fewer than 1000 (median 842) human tumor-infiltrating CD8+ T cells 

per sample (Fig. 4). Recent studies have highlighted significant metabolic differences 

Hartmann et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2021 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between such physiologically activated cells and in vitro models15. Our scMEP approach is 

applicable to fixed cells and FFPE tissues, offering the opportunity to analyze metabolic 

states from existing clinical cohorts and thus enabling the identification of features 

associated with clinical outcome or therapeutic success.

Instead of individual metabolites, scMEP quantifies the abundance of metabolic regulators. 

Many of these factors are known to directly drive or correlate with metabolic flux25,27,28 and 

we demonstrated their correlation with metabolic pathway activity (Fig. 2). Nevertheless, , 

as indicated in our analysis of oligomycin inhibition, scenarios might exist in which external 

factors (e.g. synthetic inhibitors) drive a divergence between regulator expression and 

momentary pathway activity. Such inherently interesting exceptions would however be 

easily identified by subsequent validation and orthogonal technologies.

We validated a large number of antibodies (Supplementary Table 1) to provide a resource for 

the implementation and potential adjustments of scMEP. Of interest for pre-clinical 

researchers, a large fraction (~70%) of the tested metabolic antibodies are reactive with 

murine epitopes. All antibodies were validated post heavy-metal conjugation which 

potentially affects antibody-binding affinity. Presented antibody performances are therefore 

assay-specific and might reflect the impact of the employed conjugation chemistry.

Mass cytometry and MIBI-TOF both allow simultaneous quantification of >40 features, 

permitting analysis of multiple metabolic pathways. However, given its antibody-based 

nature, the scMEP approach can be transferred to other high-dimensional probe-based 

platforms, e.g. flow cytometry. Analysis of metabolic aspects by single-cell RNA 

sequencing using with novel analytical approaches could offer additional insights52. 

Especially once challenges related to RNA stability following fixation and permeabilization 

are resolved, antibody-sequencing hybrid technologies53,54 would present an exciting 

platform to implement scMEP, combining the unbiased nature of RNA sequencing with the 

large dynamic range of protein expression and the ability to assess post-transcriptional and 

post-translational regulation offered by antibody-based technologies55. In addition, 

metabolic profiling could be further extended by combining single-cell analysis of metabolic 

regulation with determination of epigenetic features51.

We demonstrated that scMEP can drive the discovery of biologically and clinically relevant 

findings. Reconstruction of metabolic remodeling of T cells (Fig. 3) could serve as a 

framework to design metabolic interventions in a phase-specific manner to direct in vitro 
differentiation of chimeric antigen receptor (CAR) T cells56 or cells used in adoptive cell 

transfer (ACT) therapy57. Applying scMEP to human clinical material revealed the presence 

of tissue-specific metabolic T cell subsets (Fig. 4), including two metabolically diverging 

subsets expressing CD39 and PD1 which were expanded in human colorectal carcinoma. 

Follow-up image-based scMEP via MIBI-TOF (Fig. 5) revealed that the metabolically-

repressed CD39/PD1 cells were excluded from the tumor-immune boundary, a complex 

multicellular structure known to regulate immune function40. Although surface expression 

of CD39 and PD1 indicate T cell exhaustion/dysfunction, they can be expressed more 

broadly. The here identified association of metabolic phenotype with CD39/PD1 expression 

and TCF1 downregulation, as well as the tumor-specific expansion of this metabolic subset 
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and its exclusion from the tumor-immune boundary suggest that incorporation of metabolic 

profiling to identify functionally diverse T cell states could further improve clinical 

stratification, e.g. to better predict response to immunotherapy.

In summary, we here presented a robust approach to study the metabolism of single cells 

using antibody-based multiplex technologies. The application of scMEP should enable a 

better understanding of human immune cell biology and benefit the identification of disease-

associated metabolic alterations that could serve as potential biomarkers and therapeutic 

targets for a variety of human diseases.

Online methods

Human samples

De-identified peripheral blood samples from healthy human subjects (see Supplementary 

Table 2) were obtained and experimental procedures were carried out in accordance with the 

guidelines of the Stanford Institutional Review Board (IRB). Written informed consent was 

obtained from all subjects. Fresh whole human blood in heparin collection tubes or 

leukoreduction system chamber contents (Terumo BCT) were obtained via the Stanford 

Blood Center. PBMCs were isolated via Ficoll (GE Healthcare) density gradient 

centrifugation.

FFPE tissue samples were obtained from the tissue repository of the Stanford Department of 

Pathology. Colorectal carcinoma and healthy adjacent tissue samples for mass cytometry 

(see Supplementary Table 2) were collected fresh after resection and transported for 

processing on ice in cell culture medium (CCM: RPMI-1640 (life technologies), 10% FBS, 

1x L-glutamine, 1x penicillin/streptomycin (Thermo Fisher)). Samples were minced and 

processed using the MACS tumor dissociation kit (Miltenyi Biotec) as recommended. All 

viable single-cell suspensions were frozen in FBS supplemented with 10% DMSO and 

stored in liquid nitrogen.

In vitro cell activation

Cryopreserved PBMC samples where thawed into 10 ml of cold CCM supplemented with 

0.025 U/ml benzonase (Sigma) and washed once (250 g, 4 ºC). Pan T cells were enriched 

through negative selection using magnetic beads (Pan T cell Isolation Kit, Miltenyi Biotec). 

Isolated T cells (including CD4+ and CD8+) were CFSE labeled by incubating them with 80 

μm CSFE (Thermo Fisher) in CCM for 5 min at RT as described previously34. Labeled cells 

were quenched with warm CCM and washed three times by centrifuging for 5 min at 250 g. 

After washing, samples were divided for naïve and memory T cell isolation. Naïve T cells 

were enriched by depleting CD45RO expressing T cells using magnetic beads and memory 

T cells were isolated by depleting CD45RA expressing T cells. Using this approach, all cells 

used in subsequent assays were negatively isolated. Cells were counted using an automated 

cell counting system and distributed into a 24-well plate in CCM at 1×106 cells/well. For 

naïve T cells, 5 ng/ml of IL-2 was added to the culture and memory T cells were 

supplemented with 5 ng/ml IL-7 and IL-15 (all Peprotech). Cells were activated in a reverse 

time-course so that their total time in culture was identical and to ensure that all cells finish 
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their indicated activation period at the same day to enable extracellular flux analysis. To do 

so, anti-CD3/anti-CD28 beads (Dynabeads, Thermo Fisher) were added in a 1:1 cell-to-bead 

ratio on the respective day and cells were incubated at 37 ºC, 5% CO2 for up to 5 days. At 

the end of the activation period, cells from the same condition (same wells) were divided up 

and entered into the mass cytometry and extracellular flux analysis workflows.

Activation of human macrophages

Human macrophages were generated from isolated monocytes obtained from buffy coats of 

healthy donors (Sanquin, Amsterdam) in the presence of 25 ng/mL human macrophage-

colony stimulating factor (M-CSF, Miltenyi) in Iscove’s modified Dulbecco’s medium 

(IMDM, Life Technologies) with 10% FCS, penicillin (100 U/mL), streptomycin (100 

μg/mL) as described before59. On day 6, cells were harvested, seeded at 106 cells/mL, and 

stimulated 24 hr with 10 ng/ml LPS (Sigma-Aldrich) or remained untreated before 

metabolic analysis.

Live/dead discrimination and cell fixation

Whole blood was fixed, and erythrocytes were lysed using Lyse/Fix Buffer (BD 

Biosciences) as suggested by the supplier. Cryopreserved single-cell suspensions (viable 

PBMC, lymph node and tumor biopsy samples) where thawed into 10 ml of cold CCM 

supplemented with 0.025 U/ml benzonase (Sigma) and washed once (250 g, 4 ºC). In vitro 
activated T cell and macrophage populations (not cryopreserved) were washed once in CCM 

and directly processed further. For live/dead cell discrimination, monoisotopic cisplatin-194 

(Fluidigm) was pre-conditioned for 48 h at 37 ºC, aliquoted and stored at −20 ºC. Viability 

staining was performed by resuspending cells in 1 ml of low-barium PBS and adding 

cisplatin-194 to a final concentration of 500 nM, followed by incubation for 5 min at RT and 

washing with cell staining medium (CSM: low-barium PBS with 0.5 % BSA and 0.02 % 

sodium azide (all Sigma)). Cells were fixed with 1.6% paraformaldehyde (PFA) in PBS for 

10 min at RT and washed twice with CSM. Fixed cells were either entered directly into the 

staining workflow or cryopreserved by resuspending them in CSM supplemented with 10% 

DMSO and storing them at −80 ºC.

Heavy-metal conjugation of antibodies

Antibodies were conjugated to heavy-metal ions with commercially available MaxPar 

(Fluidigm) or MIBItag (IonPath) reagents using an optimized conjugation protocol60. In 

short, antibodies were reduced with 4 mM TCEP (Thermo Fisher) for 30 min at 37 ºC and 

washed two times. For conjugations using MaxPar reagents, metal chelation was performed 

by adding metal solutions (final 0.05 M) to chelating polymers and incubating for 40 min at 

RT. Metal-loaded polymers were washed twice using a 3 kDa MWCO microfilter 

(Millipore) by centrifuging for 30 min, 12,000 g at RT. For conjugations using MIBItag 

reagents, pre-loaded polymers were obtained, and no loading reactions needed to be 

performed. For both approaches, antibody buffer exchange was performed by washing 

purified antibody through a 50 kDa MWCO microfilter (Millipore) and centrifuging for 10 

min, 12,000 g at RT. Partially reduced antibodies and metal-loaded polymers were incubated 

together for 90 min at 37 ºC. Conjugated antibodies were washed four times and collected 

by two centrifugations (2 min, 1,000 g, RT) into an inverted column in a fresh 1.6 ml 
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collection tube. Protein content was assessed by NanoDrop (Thermo Fisher) measurement, 

antibody stabilization buffer (Candor Bioscience) was added to a final volume of at least 50 

v/v % and antibodies were stored at 4 ºC. Conjugations to 139La, 209Bi (Sigma Aldrich), 

and 140Ce (Trace Sciences International) were performed following the above protocol, 

using either Fluidigm or IonPath polymers. 139La-conjugated antibodies were lyophilized 

immediately after conjugation and reconstituted prior to staining. 209Bi conjugations are 

following a slightly modified protocol60. Conjugations of antibodies to platinum-isotopes 

were performed following polymer-independent protocols61,62.

Palladium barcoding and staining with heavy-metal conjugated antibodies

To eliminate technical variability during staining or acquisition, individual samples within 

one experiment were palladium-barcoded as described previously63 and combined into a 

composite sample before further processing and staining. Cell-surface antibody master-mix 

in CSM was filtered through a pre-wetted 0.1 μm spin-column (Millipore) to remove 

antibody aggregates and added to the samples. After incubation for 30 min at RT, cells were 

washed once with CSM. To enable intracellular staining, cells were permeabilized by 

incubating with ice-cold MeOH for 10 min on ice and washed to times with CSM to remove 

any residual MeOH. Intracellular antibody master-mix in CSM was added to the samples 

and incubated for 1 h at RT. Cells were washed once with CSM and resuspended in 

intercalation solution (1.6% PFA in PBS and 0.5 μM rhodium-intercalator (Fluidigm)) for 20 

min at RT or overnight at 4 °C. Before acquisition, samples were washed once in CSM and 

twice in ddH2O and filtered through a cell strainer (Falcon). Cells were then resuspended at 

1 × 106 cells/mL in ddH2O supplemented with 1x EQ four element calibration beads 

(Fluidigm) and acquired on a CyTOF2 mass cytometer (Fluidigm).

Antibody validation workflow

Mass cytometry-based antibody validation was performed on a range of cell lines, immune 

populations found in whole blood and T cells with or without TCR activation. First, various 

leukemic, embryonic and carcinoma cell lines62 were cultured in standard conditions, fixed, 

palladium-barcoded and subsequently stained with heavy-metal conjugated antibodies as 

described above. Whole blood was processed as described above and stained with a 

combination of metabolic antibodies and cell lineage markers (CD45, CD3, CD4, CD8, 

CD45RA, CD66, CD14, CD19, CD20, HLA-DR, CD56, CD57, CD11c, CD123, FceRI, 

CD235ab as established previously64) to identify the major immune cell types through 

manual gating. Human T cells were either rested or activated with anti-CD3/anti-CD38-

beads for 72 h (see above), fixed and palladium-barcoded before staining with metabolic 

antibodies. Metabolic antibodies were initially used at a concentration of 2 μg/ml which was 

subsequently adjusted if necessary. For all populations, median arsinh values were calculated 

and positive staining was defined as a median of at least 10 ion counts (asinh transformed 

value >1.5) of any subpopulation. Where available, cell-lineage specific expression and 

induction upon activation were compared to previously determined values for the given cell 

population25,26,65.

To validate antibodies on tissues, control tonsil and liver FFPE tissues were stained with the 

indicated metal-conjugated antibodies as described below and their performance was 
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validated through traditional IHC and MIBI-TOF. Detectable staining was determined 

through visual inspection of both IHC and grayscale MIBI-TOF images. For intra-assay 

quality control, IHC and MIBI-TOF images were visually compared and in addition, related 

to previously determined staining patterns65.

Extracellular flux analysis

Extracellular flux analysis of T cell activation was performed by adopting previously 

outlined protocols66. In short, in vitro activated T cells were spun onto a Cell-Tak (Thermo 

Fisher) coated XF96 cell culture microplate (Agilent) with a density of 100,000 or 150,000 

cells/well and rested in Seahorse XF RMPI 1640 medium supplemented with 2 mM L-

glutamine, 2 mM sodium pyruvate and 25 mM glucose (all Agilent) for 1 h in a non-CO2 

incubator at 37 ºC. ECAR and OCR were measured using a Seahorse XF96 extracellular 

flux analyzer (Agilent). Oligomycin (1 μM), fluoro-carbonyl cyanide phenylhydrazone 

(FCCP; 1.5 μM) and rotenone (0.5 μM) together with antimycin A (0.5 μM) were 

sequentially injected to establish baseline parameters. Extracellular flux analysis of 

macrophages was performed as outlined previously67, including an additional injection of 25 

mM glucose. Raw data was imported into the R environment in order to calculate basal 

glycolysis respiration rates as described68. Data was normalized by cell number. For linear 

regression between extracellular flux analysis values and mass cytometry values, both were 

asinh transformed with a cofactor of 5.

Mass cytometry data preprocessing

Raw mass cytometry data was first bead-normalized to remove acquisition-related influences 

on marker expression using the premessa R package. Next, barcoded cells were assigned 

back to their initial samples using their unique palladium barcode combination. Normalized 

data was uploaded onto cytobank.org69 or cellengine.com to identify single, live cells by 

excluding remaining beads (140Ce and 153Eu) and manually gating on DNA (103Rh) and 

viability (194Pt) channels. Data was subsequently imported into the R environment, asinh 

transformed (cofactor 5) and normalized to the 99.9th percentile of each respective channel 

before downstream analysis.

Clustering and data visualization

Pre-processed single-cell (mass cytometry and MIBI-TOF) data was clustered using the 

FlowSOM R package70 and the indicated input channels. Resulting clusters were either 

manually annotated with the main cell lineages based on their lineage marker profiles or, if 

the underlying number and identity of clusters was unknown (e.g. for clustering on 

metabolic features) the metaclustering function of the FlowSOM package was used. Given 

their widespread expression across cell lineages, differences in metabolic protein expression 

between different populations and clusters were visualized by marker enrichment 

modeling58. UMAP embeddings were calculated using the R uwot implementation with the 

following parameters: n_neighbors = 15, min_dist = 0.02.
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Calculation of metabolic scMEP scores

To calculate single-cell scMEP scores, expression values (debarcoded, bead-normalized, 

asinh transformed and percentile-normalized as described above) from all metabolic 

enzymes within a given pathway (glycolysis, respiration, amino acid metabolism and fatty 

acid metabolism) were summed and divided by the number of channels within the pathway.

To calculate image-based scMEP scores, pixel-based expression values from pre-processed 

data were blurred with a gaussian filter (sigma = 6) and asinh transformed. Next, pixel 

values from images within a given pathway were summed and finally percentile normalized 

to the 99th percentile.

Trajectory analysis of metabolic remodeling

Pre-processed data was randomly subsampled to represent all indicated days of activation 

equally. Pseudotime was calculated using the SCORPIUS71 and Slingshot72 algorithms, 

given their documented robustness across different datasets73, making use of the dynverse R 

implementation. All indicated channels were used as input dimensions to both algorithms 

and we did not define priors. Mitotic (M phase) cells and were excluded from this analysis 

given their drastically different metabolic characteristics. Strongly cell phase-dependent 

markers (IdU incorporation and H3 phosphorylation74) were not used as input dimensions 

for the trajectory calculation. Resulting pseudotime was scaled from 0–1. While resting cells 

(day 0) and cells from day 5 were included in the trajectory calculation to allow 

identification of starting and end points, we were mostly interested in early T cell activation 

(pseudotime 0.1–0.8), thus focusing downstream analysis on this period which additionally 

constitutes the most robust part of the trajectory as determined by comparison between 

SCORPIUS and Slingshot trajectories.

Analysis of scMEP repeatability and robustness

To determine the robustness of the scMEP approach, metabolic regulator expression values 

of samples from the same healthy donors were stained and analyzed in two separate 

experiments and compared by linear regression using the lm() function. Hierarchical 

clustering using the R function hclust() was performed using the same input data. For the 

training phase of immune cell lineage prediction from metabolic features, cells were first 

compensated using the CATALYST package75 and an in-house determined isotopic purity 

matrix to rule out slight signal overlap contributing to this prediction. Next, 20,000 cells 

were randomly subsampled from three healthy donors to create an L1 regularized linear 

regression model using the glmnet R package76. For the test phase, data was derived from 

two independent healthy donors not included in the training data. Prediction of T cell 

maturation status from scMEP profiles was performed similarly by randomly subsampling 

cells from both conditions into separate training and test data. Metabolic heterogeneity was 

defined as the cellular Euclidean distance to the average expression levels of the given 

population34. Only (pre-processed) metabolic feature expression values were used for this 

calculation.
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Staining for multiplexed ion beam imaging

Tissue sections (4 μm) were cut from colorectal carcinoma and control colon FFPE tissue 

blocks using a microtome and mounted on silanized gold-coated slides (IONpath). Mounted 

tissue sections were incubated at 70°C for 20 min and deparaffinized with three washes of 

fresh xylene followed by rehydration with successive washes of ethanol 100% (2x), 95% 

(2x), 80% (1x), 70% (1x), and distilled water. Washes were performed using a Leica ST4020 

Linear Stainer (Leica Biosystems) programmed to three dips per wash for 30 s each. 

Rehydrated sections were immersed in epitope retrieval buffer (Target Retrieval Solution, pH 

9, DAKO Agilent), incubated at 97 °C for 40 min and cooled down to 65 °C using Lab 

vision PT module (Thermofisher Scientific). Slides were washed with MIBI wash buffer 

(low-barium PBS IHC Tween buffer (Cell Marque) containing 0.1% (w/v) BSA 

(Thermofisher Scientific)). Slides were then placed into a Sequenza staining rack 

(Thermofisher Scientific) and sections were blocked for 1 h with blocking buffer (1X TBS 

IHC Wash Buffer with Tween 20 (Cell Marque) + 2% donkey serum, 0.1% cold fish skin 

gelatin (Sigma), 0.1% Triton X-100, and 0.05% sodium azide). Metal-conjugated antibody 

mix was prepared in 3% (v/v) donkey serum TBS IHC wash buffer and filtered using a 

centrifugal filter with a 0.1 mm PVDF membrane (Merck Millipore). Sections were stained 

with the antibody mix, incubating overnight at 4°C in the Sequenza staining rack. After 

incubation, slides were washed twice with MIBI wash buffer and fixed for 5 min in 2% 

glutaraldehyde solution (Electron Microscopy Sciences) in low-barium PBS. Slides were 

then rinsed briefly in low-barium PBS and then dehydrated with successive washes of Tris 

0.1 M (pH 8.5) (3x), distilled water (2x), and ethanol 70% (1x), 80% (1x), 95% (2x), 100% 

(2x). Slides were immediately dried in a vacuum chamber for at least 1 h prior to imaging.

Immunohistochemistry

All MIBI-TOF antibodies were validated by DAB chromogenic IHC. The protocol for IHC 

closely followed the MIBI-TOF staining protocol, with minor changes. Before assembly of 

slides into the Sequenza staining rack and blocking, endogenous peroxidase activity was 

quenched by incubation in 3% H2O2 for 30 min and sections were washed with H2O on an 

orbital shaker for 5 min. Sections were stained with MIBI antibodies individually, and 

detected with ImmPRESS universal (Anti-Mouse/Anti-Rabbit) secondary antibody kit 

(Vector labs) and ImmPACT DAB Substrate kit (Vector Labs), according to the 

manufacturer’s guidelines.

Multiplexed ion beam imaging acquisition

Quantitative imaging was performed using a custom designed MIBI-TOF mass spectrometer 

(IONpath), as previously described21,40, with an image size of 400 μm2 and 1024 × 1024 

pixels. The entire cohort of 58 FOVs was acquired over a 24 h period of continuous imaging, 

yielding a total of 2088 single channel images.

Imaging data pre-processing and single-cell segmentation

Multiplexed imaging data was preprocessed as described before40. In short, for each pixel, 

MS spectra were converted into pixel counts by extracting a mass range from atomic mass 

unit amu-0.25 to amu±0. Background (due to absence of tissue or high gold signal) was 
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removed, and noise was filtered out using a k-nearest-neighbor approach. To segment single 

cells from images, we trained a convolutional neural network77 using annotated training data 

from a variety of different cancer types. The network output was fed into the watershed 

algorithm to produce individual cells. This mask was used to extract per-cell counts for each 

marker in each image. Counts were normalized by cell size to account for different sampling 

of cells in the given plane. Normalized data was imported into the R environment and 

transformed using an inverse hyperbolic sine (asinh) cofactor of 0.05 (adjusted due to cell 

size normalization).

Context-dependent spatial enrichment analysis

The context-dependent spatial enrichment (CDSE) approach40 was used to identify 

structured patterns of metabolic protein expression in the tissue. For each pair of metabolic 

features, X and Y, the number of times cells positive for protein X was within a 50-pixel 

(~20 um) radius of cells positive for protein Y was counted. Thresholds for positivity were 

customized to each feature individually. A null distribution was produced by performing 

1000 bootstrap permutations where the locations of cells positive for protein Y were 

randomized. Randomizations retained the distribution of cells positive for protein Y across 

major lineage categories: immune, endothelial, epithelial, and fibroblast. A z-score was 

calculated comparing the number of true cooccurrences of cells positive for protein X and Y 

relative to the null distribution. For each pair of metabolic proteins X and Y the average z-

score was calculated across malignant and control tissues separately.

Visualization

Plots were created using the ggplot2 R package. Schematic representations were created 

with biorender (https://biorender.io/). Figures were prepared in Illustrator (Adobe).

Statistical analysis

All statistical tests used in this study are described in detail in the according figure legends. 

In general, we selected two-tailed tests over their one-tailed alternatives. Where indicated, 

we applied Welch’s correction to t-tests to account for unequal variances. For comparisons 

of cell populations derived from the same individual, we performed matched t-tests. To 

account for multiple hypotheses testing, we applied the BH procedure to report the 

associated FDR. Additional information can be found in the Life Science Reporting 

Summary.

Data availability

Single-cell mass cytometry (CyTOF) datasets for metabolic analysis of human whole blood 

populations, in vitro T cell activation and analysis of metabolic states in human tissues as 

well as MIBI-TOF imaging data of colorectal carcinoma and healthy colon are publicly 

available at https://doi.org/10.5281/zenodo.3951613.

Code availability

All custom R scripts associated with this manuscript will be made available upon request.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Single-cell metabolic regulomes organize the human immune system.
a, Conceptual overview of the scMEP approach. Important regulators of metabolic activity 

were identified and respective antibodies were conjugated to heavy-metal isotopes for their 

use in mass cytometry (CyTOF) and MIBI-TOF. For a full account of all probes tested in 

this study see Supplementary Table 1. Scale bar = 100 μm. b, Whole blood of healthy 

individuals (N = 5, for donor characteristics see Supplementary Table 2) was fixed and 

stained with an antibody panel of 23 metabolic and 22 immunological antibodies. Cell 

populations were identified through FlowSOM clustering (Supplementary Figure 2a,b) and 
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annotated into the major immune cell lineages. Shown are examples of (asinh transformed) 

expression values across identified peripheral immune cell lineages. Black dots represent 

population medians. c, Normalized (99.9th percentile) mean expression of all assessed 

metabolic regulators across immune cell lineages. d, Examples of metabolic regulator 

expression across immune cell lineages. Shown are live, single, CD45+ cells of one 

representative individual. e, Cells from all five donors were subsampled for equal 

representation of all immune cell lineages and all donors. Only metabolic regulators (23 

features) were used as input data to the UMAP-based dimensionality reduction. Cells are 

colored by their lineage identity determined as in b. f, L1 regularized linear regression (using 

only metabolic features) was trained on a subset of donors (N = 3) and tested on a separate 

set of donors (N = 2). Stated numbers report balanced accuracy for the indicated population.
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Fig. 2: Single-cell metabolic regulome profiles of T cell activation dynamics.
a, Experimental setup to benchmark scMEP mass cytometry analysis with bulk metabolic 

analysis by extracellular flux analysis (Seahorse). b, Examples of mass cytometry-quantified 

expression levels of glycolytic (top) and TCA/ETC (bottom) enzymes following no (resting, 

left) and 3 days (right) of activation of naïve T cells. Examples show data of one 

representative experiment (out of N = 4 independent experiments). c, Expression levels of 

important determinants of glycolysis on naïve CD8+ T cells. Black dots indicate population 

medians. d, Expression levels of TCA/ETC components on naïve CD8+ T cells as in c. e, 
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Extracellular flux analysis of bulk cell populations from the same donor as in a-c. 

Extracellular acidification rate (ECAR; top) and oxygen consumption rate (OCR; bottom) 

for each measurement following injections of mitochondrial modifiers. FCCP = fluoro-

carbonyl cynade phenylhydrazon, Rot = Rotenone, AA = antimycin A. Shown is data from 

one individual (out of N = 4 independent experiments). Circles and error bars represent 

mean±s.d. for three technical replicates (wells). f, Correlation between glycolytic and 

oxidative enzymes (left panel) and basal glycolysis (top row) or basal respiration (bottom 

row). Mass cytometry and extracellular flux analysis values were asinh transformed. Circles 

represent mean population values for each donor and are based on technical replicates 

(single cells in mass cytometry and three replicate wells in flux analysis). Black lines and r2 

values represent results of a linear regression model, with black shading representing the 

95% confidence interval (CI). Log10 of (Benjamini-Hochberg; BH) false discovery rate 

(FDR)-adjusted P-values and r2 values from linear regression models (middle panel). Black 

line indicates a BH-corrected P-value of 0.05. Protein-based scMEP scores (right) represent 

the mean expression of all metabolic enzymes within a pathway. Each circle represents the 

mean scMEP score of a T cell population (naïve or memory). g, Linear correlation of mean 

(based on three technical replicates) flux analysis values (left) and single-cell scMEP scores 

(right) of naïve CD8+ T cell populations, calculated as in f. Shown is data from one 

individual (out of N = 4 independent experiments). Red lines and r2 values represent results 

of a linear regression model, with black shading representing the 95% CI. h, scMEP scores 

as in g, visualized for each day.
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Fig. 3: Integrative modeling of metabolic rewiring reveals determinants of human T cell 
activation.
a, Normalized (99.9th percentile) expression of metabolic and phenotypic proteins by naïve 

CD8+ T cells across different days of activation. Shown are cells from one representative 

donor (N = 3 independent donors). Black dots indicate population medians. b, Cells were 

subsampled for equal representation of the indicated days of activation. Metabolic and other 

features (with the exception of IdU and H3 phosphorylation) were used as input to UMAP 

dimensionality reduction and visualization. Cells are colored by their day of activation (top) 

and shown separately for each day of activation (bottom). c, Cells as in b were used as input 

to SCORPIUS trajectory inference using the same features as in b. Data was grouped into 

100 bins based on pseudotime. Heatmap depicts mean (scaled) expression levels of the 

indicated feature in the according pseudotime bin. Density (top) shows cell distribution 

along the pseudotime axis. d, Examples of continuous (smoothed) protein expression along 

pseudotime, calculated as in c and grouped by metabolic pathway. Vertical lines indicate 

important inflection points in the trajectory. Inflection points were chosen based on 

coordinated changes in the slope (see e) across the indicated metabolic regulators and divide 

T cell metabolic remodeling into distinct stages. e, Slope (first derivative) of protein 

expression across pseudotime as in c.
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Fig. 4: Cytotoxic T cell metabolic states reflect tissue of residence.
Healthy donor PBMC (N = 5), lymph node biopsies (N = 3) as well as single-cell 

suspensions from colorectal carcinoma (N = 6) and matched adjacent healthy sections (N = 

6, see Supplementary Table 2) were barcoded, stained and acquired on a mass cytometer. a, 

Major cell lineages from all samples and tissues were identified through FlowSOM 

clustering. UMAP-dimensionality reduction was calculated using subsampled data from all 

lineages and all available features. Cells are colored by their FlowSOM-based lineage 

definition (left). Total CD8+ T cells from all samples were selected and metabolic regulators 

were used to define 10 scMEP states using FlowSOM. UMAP-dimensionality reduction was 

calculated using subsampled data and only metabolic features. Cells are colored by their 

scMEP state (right). b, UMAP visualization of CD8+ T cell scMEP states as in a, colored by 

normalized expression of the indicated metabolic proteins. c, Marker enrichment modeling 

(MEM) was used to visualize enrichment (purple) or depletion (yellow) of metabolic protein 

expression across CD8+ T cell scMEP states. d, Frequencies of scMEP states across 

Hartmann et al. Page 27

Nat Biotechnol. Author manuscript; available in PMC 2021 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individual samples. e, Statistical comparison of scMEP state frequencies (see also 

Supplementary Figure 9f). P-values were calculated using a two-sided, paired t-test between 

healthy and malignant colon sections from the same patient. Welch correction was applied to 

account for potentially differing variances. Effect size is represented as Cohen’s d. Estimate 

= −13.8, t-statistic = −2.76, CI −26.7 to −0.97, 5 degrees of freedom, BH FDR = 0.198. f, 
MEM of immunological markers (not used for metabolic clustering) across scMEP states 

(left). UMAP visualization as in a,b with cells colored by their normalized expression value 

of the indicated marker. g, Biaxial representation of cells from scMEP3 pooled from all 

colorectal carcinoma samples (left). Frequencies of cells within scMEP3, gated as PD1+ and 

CD39+ across all colorectal carcinoma samples (right).
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Fig. 5: Imaging-based scMEP analysis reveals spatial influences on the organization of metabolic 
features.
a, FFPE colon-sections from colorectal carcinoma patients (N = 2) and healthy controls (N = 

2) were stained with a panel of 36 antibodies. A total of 58 fields of view (FOV), each 400 

μm by 400 μm, were acquired by MIBI-TOF. b, Exemplary grayscale images of features 

used for lineage identification (top), immune activation and subsets (middle) and their 

metabolic characterization (bottom). See also Supplementary Figure 12. Scale bar = 100 μm. 

c, A pixel-based classifier was applied to automatically identify single-cells within these 

images (left, scale bar = 25 μm). FlowSOM was used to identify the main cell lineages based 

on their lineage marker expression values. Single-cell data was projected onto two-

dimensions using UMAP and colored by their cell lineage identity (middle). Clustered 

single-cell data can be mapped back onto the original segmented images to investigate 

Hartmann et al. Page 29

Nat Biotechnol. Author manuscript; available in PMC 2021 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spatial influences (right, scale bar = 100 μm). d, Metabolic regulome profiles of cell lineages 

as identified in c are represented as MEM scores. e, Cellular microenvironments were 

defined as cells present within a 20 μm radius (based on cell centroids) of any given index 

cell. Colors indicate cell lineage as in d (left, scale bar = 25 μm). Within all such groups, 

spatial enrichments were calculated by comparing the distributions of metabolic protein 

expression with a random subsampling of the same cell lineage composition. Enrichments 

(red) and avoidances (blue) are visualized as average z-scores across all FOVs. Black 

outlines indicate proteins within the same metabolic pathway (right). f, Spatial scMEP 

scores for a given metabolic pathway were calculated by averaging (and blurring) pixel-

based expression values of all metabolic markers within a pathway. Areas of immune cell 

infiltration were outlined manually based on CD45 staining (left and middle, scale bar = 100 

μm). Circles represent mean glycolytic scMEP scores for all CD45+ cells within a FOV 

(right). Black lines indicate donor means.
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Fig. 6: Metabolic polarization at the tumor-immune boundary in human colorectal carcinoma.
a, Immune cells within a 20 μm radius of malignant epithelial cells were classified as located 

within the tumor-immune border (left, scale bar = 100 μm). Shown is data from all 24 FOVs 

that contain a tumor-immune boundary. Two-sided Wilcoxon-rank sum test (FDR-corrected 

using the BH approach to adjust for multiple hypothesis testing) were used to compare cells 

close to the border with cells further from the border in each FOV that contained cells of 

both categories. Heatmap shows Wilcoxon rank sum test-based estimates (representing the 

median of the difference between samples of the two groups) of enrichment for enriched 

(magenta) and decreased (cyan) expression on immune cells within the border. Non-

significant (BH-adjusted P-value > 0.05) estimates were colored white (middle). Exemplary 

grayscale images of two FOVs showing polarization of CD98 towards the tumor immune 

border, indicated in yellow. Scale bar = 100 μm (right). b, CD8+ T cells expressing high 

levels of CD39 and/or PD1 were clustered into two subsets based on their metabolic features 

(see Supplementary Figure 13). The two subsets (metahigh and metalow) were visualized in 

the original images (left top and bottom, scale bar = 100 μm). c, Two-sided Wilcoxon rank 
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sum test of distance to closest malignant epithelial cell for CD39/PD1 cells stratified by 

metabolic phenotype (P = 2.2e-16). Numbers indicate median distance. d, Linear regression 

between normalized asinh expression of metabolic enzymes (e.g. CPT1A) and distance to 

closest tumor cell (bottom right). Red line and values indicate linear regression model (P = 

2.2e-16).
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