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Development of a machine learning-based model to predict
hepatic inflammation in chronic hepatitis B patients with
concurrent hepatic steatosis: a cohort study
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Summary
Background With increasingly prevalent coexistence of chronic hepatitis B (CHB) and hepatic steatosis (HS), simple,
non-invasive diagnostic methods to accurately assess the severity of hepatic inflammation are needed. We aimed to
build a machine learning (ML) based model to detect hepatic inflammation in patients with CHB and concurrent HS.

Methods We conducted a multicenter, retrospective cohort study in China. Treatment-naive CHB patients with
biopsy-proven HS between April 2004 and September 2022 were included. The optimal features for model
development were selected by SHapley Additive explanations, and an ML algorithm with the best accuracy to
diagnose moderate to severe hepatic inflammation (Scheuer’s system ≥ G3) was determined and assessed by
decision curve analysis (DCA) and calibration curve. This study is registered with ClinicalTrials.gov (NCT05766449).
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Findings From a pool of 1,787 treatment-naive patients with CHB and HS across eleven hospitals, 689 patients from
nine of these hospitals were chosen for the development of the diagnostic model. The remaining two hospitals
contributed to two independent external validation cohorts, comprising 509 patients in validation cohort 1 and 589
in validation cohort 2. Eleven features regarding inflammation, hepatic and metabolic functions were identified.
The gradient boosting classifier (GBC) model showed the best performance in predicting moderate to severe
hepatic inflammation, with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI
0.83–0.88) in the training cohort, and 0.89 (95% CI 0.86–0.92), 0.76 (95% CI 0.73–0.80) in the first and second
external validation cohorts, respectively. A publicly accessible web tool was generated for the model.

Interpretation Using simple parameters, the GBC model predicted hepatic inflammation in CHB patients with
concurrent HS. It holds promise for guiding clinical management and improving patient outcomes.

Funding This research was supported by the National Natural Science Foundation of China (No. 82170609,
81970545), Natural Science Foundation of Shandong Province (Major Project) (No. ZR2020KH006), Natural Science
Foundation of Jiangsu Province (No.BK20231118), Tianjin Key Medical Discipline (Specialty), Construction Project,
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Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western
medicine of Tianjin municipal health and Family Planning Commission (2021022).

Copyright © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
We searched PubMed for publications without language
restriction, published before September 30th, 2023, using
search terms “chronic hepatitis B” and “hepatic steatosis” and
“inflammation”, with search terms found in abstract, title or
MESH headings. Although there have been studies on chronic
hepatitis B (CHB) with concurrent hepatic steatosis (HS), no
diagnostic model for hepatic inflammation in CHB patients
with concurrent HS has been established.

Added value of this study
In this study, we used machine learning algorithms to
construct a diagnostic model for hepatic inflammation, by
deriving data from 1,787 patients with liver biopsy-confirmed
CHB with concurrent HS in eleven hospitals across China. Our
results showed that the gradient boosting classifier (GBC)
model including eleven features [aspartate transaminase,
prothrombin time, platelet, albumin, gamma-glutamyl
transferase, hepatitis B e antigen (HBeAg)-positive, hepatitis

B surface antigen, white blood cell, international normalized
ratio, body mass index and total bilirubin] had the highest
accuracy. The area under the receiver operating characteristic
curve (AUROC) of the GBC model was 0.86 (95% CI
0.83–0.88), 0.89 (95% CI 0.86–0.92) and 0.76 (95% CI
0.73–0.80) in the training, external validation 1 and external
validation 2 cohorts, respectively. Further, subgroup analysis
was employed to determine the performance of the GBC
model in subgroups stratified by age, sex, body mass index,
HBeAg status, HBV DNA level, and presence of diabetes.

Implications of all the available evidence
The GBC model established in our study has the potential to
be a valuable diagnostic tool for identifying hepatic
inflammation in treatment-naive CHB patients with
concurrent HS. It can help clinicians assess the severity of liver
inflammation. To facilitate the use of the GBC model, a free
website was created: https://py3.reallife-liver.com/.
Introduction
Chronic hepatitis B (CHB) is the most prevalent viral
liver disease, with an estimated global prevalence of
4.1% in 2019, accounting for over 300 million
infections.1–4 Meanwhile, the global prevalence of fatty
liver reached 30% in 2019 due to improved living
standards, changes in lifestyle, and dietary habits.5

Notably, in regions like Asia,6 where CHB is endemic,
the coexistence of fatty liver and hepatitis B virus (HBV)
infection is likely to be common. Our previous meta-
analysis showed that the prevalence of hepatic stea-
tosis (HS) among patients with CHB was 32.83%.7 Both
CHB and HS are predominant contributors to chronic
liver injury, increasing the risk of cirrhosis and hepa-
tocellular carcinoma (HCC).8,9 Furthermore, studies
have confirmed that the presence of steatohepatitis
significantly increases the risk of liver-related compli-
cations and mortality in CHB patients.10,11

Chronic hepatic inflammation is a key driving force
for hepatic fibrosis, cirrhosis, and even HCC.12–17
www.thelancet.com Vol 68 February, 2024
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Guidelines recommend that moderate to severe
inflammation confirmed by liver biopsy is an important
indication for antiviral therapy.17–20 Timely and accurate
diagnosis of hepatic inflammation is crucial for guiding
clinical management and improving the prognosis of
patients with chronic liver diseases (CLDs). Although
liver biopsy has long been considered the gold standard
for diagnosing hepatic inflammation, it suffers from
several drawbacks, such as invasiveness, high cost, and
the risk of procedure-related complications. As a result,
liver biopsy is not feasible for all patients with CHB.
Therefore, non-invasive tests (NITs) based on serum
indicators and imaging methods have gained favor in
clinical practice.

Currently, several NITs have been developed for
identifying hepatic inflammation in different contexts.
Zhang et al.21 established a nomogram specifically for
CHB patients with normal alanine transaminase (ALT),
which was based on hepatitis B e antigen (HBeAg),
aspartate transaminase (AST), and platelet (PLT), with
an area under the receiver operating characteristic curve
(AUROC) of 0.751. Similarly, Chen et al.22 established a
non-invasive diagnostic model for CHB patients with
ALT ≤2 times the upper limit of normal, utilizing AST,
gamma-glutamyl transferase (GGT), anti-hepatitis B vi-
rus core antibody (anti-HBc), and prothrombin time
(PT). This model demonstrated an AUROC of 0.767.

Machine learning (ML) uses artificial intelligence to
generate predictive models more efficiently than tradi-
tional methods by uncovering hidden patterns within
large, complex datasets. An increasing number of
studies have applied ML techniques to facilitate disease
progression prediction in chronic viral hepatitis, nonal-
coholic fatty liver disease (NAFLD), cirrhosis complica-
tions, and other CLDs, making ML-based models
become valuable tools for implementation in clinical
practice.23–26 In this study, we aimed to develop a ML-
based diagnostic model for moderate to severe hepatic
inflammation (Scheuer’s system ≥ G3) in CHB patients
with concurrent HS to provide a non-invasive and cost-
effective alternative to liver biopsy, enabling early
detection of hepatic inflammation in these patients.
Methods
Study population
This multicenter, retrospective study included
treatment-naive CHB patients with concurrent HS with
liver biopsy between April 2004 and September 2022
from eleven Chinese hospitals. Patients were divided
into a training cohort (Nanjing Drum Tower Hospital;
The First Affiliated Hospital of Fujian Medical Univer-
sity; The Affiliated Hospital of Hangzhou Normal Uni-
versity; The First Affiliated Hospital of Zhengzhou
University; Taizhou Hospital of Zhejiang Province
affiliated to Wenzhou Medical University; The Fifth
People’s Hospital of Wuxi; The Affiliated Infectious
www.thelancet.com Vol 68 February, 2024
Diseases Hospital of Soochow University; Huai’an No.4
People’s Hospital; The Third Hospital of Zhenjiang
Affiliated Jiangsu University) and two independent
external validation cohorts (Tianjin Second People’s
Hospital [validation cohort 1] and Shanghai Ruijin
Hospital [validation cohort 2]). This study is registered
with ClinicalTrials.gov (NCT05766449).

Ethics statement
This study has received approval from the Institutional
Ethics Review Board of all the involved hospitals. As this
was a retrospective study, the requirement for informed
consent was waived.

Inclusion and exclusion criteria
Adult participants with CHB [defined as a positive
hepatitis B surface antigen (HBsAg) for at least 6
months] who were treatment naive before liver biopsy,
and were concurrent with HS [steatosis >5% on histo-
logical assessment (training cohort and validation cohort
1) or ultrasound assessment (validation cohort 2)] were
included. The exclusion criteria were as follows: (1)
other viral co-infections such as hepatitis C virus, hep-
atitis D virus, hepatitis E virus, and human immuno-
deficiency virus); (2) coexistence with alcohol-associated
fatty liver disease, autoimmune hepatitis, and other
CLDs; (3) concurrent with HCC and other malig-
nancies; (4) complicated with various end-stage dis-
eases, and systemic inflammation such as ongoing
infection, respiratory failure, decompensated heart fail-
ure, and flare of autoimmune diseases; (5) insufficient
clinical data in the medical file.

Data collection
Before initiating the data collection process, training
sessions on the data extraction form were conducted for
all involved staff in participating centers. Medical re-
cords of eligible patients were meticulously reviewed.
Clinical and laboratory data, including demographic
characteristics, routine blood tests, liver biochemistry,
coagulation, and virology data, were systematically
extracted into standardized forms. To ensure data rele-
vancy and consistency, only laboratory examinations
conducted within a 14-day window before the liver bi-
opsy were considered. A second reviewer randomly
assessed and verified 30% of the extracted data. Given
the variations in units across participating centers, the
units of all laboratory measurements were harmonized.
Extreme outliers, either significantly large or small
values, were flagged for review. Such outliers were re-
evaluated by the site’s principal investigator or the
designated physician-in-charge to ascertain data validity
and to rule out data entry errors.

Liver biopsy
Ultrasound-guided liver biopsies were performed with
16-gauge biopsy needles to obtain hepatic specimens
3
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with at least 1 cm and six portal tracts. Pathological ex-
aminations were performed by two independent board-
certified pathologists from the respective centers who
were blinded to the clinical data. Discrepancies were
resolved through discussion, reaching a consensus.
Inter-observer variability was assessed to evaluate the
agreement between the pathologists (Supplemental
Method). The obtained specimens were assessed using
Scheuer’s27 criteria to evaluate the grade of liver
inflammation (0: none; G1: mild inflammation; G2:
mild to moderate inflammation; G3: moderate inflam-
mation; and G4: severe inflammation.28 Moreover, the
Scheuer and Brunt criteria were utilized respectively to
assess fibrosis staging (0–4) and the degree of steatosis
(0–3). Scheuer staging system is extensively used by
pathologists in each research center as a principal
method for staging. In this system, grades G3 to G4
indicate moderate to severe inflammation.28

Overview of ML models
We developed and compared seven models, including
gradient boosting classifier (GBC), random forest (RF),
eXtreme Gradient Boosting (XGB), adaptive boosting
(ADB), gaussian naive bayes (GNB), logistic regression
(LR) and K-nearest neighbors (KNN) to predict moderate
to severe hepatic inflammation. GBC builds a strong
classifier by iteratively training a weak classifier. Each
iteration adjusts the weight of the sample so that pre-
viously misclassified samples receive more attention.29

RF is an ensemble learning model that is based on
multiple single decision trees.30 By aggregating the re-
sults of these decision trees into one result, it compen-
sates for the disadvantage of overfitting in single
decision tree and reduces variance.31,32 XGB is an
ensemble learning model based on the gradient boost-
ing algorithm.33 It builds a strong classifier by iteratively
training multiple weak classifiers and optimizing the
loss function using gradient descent. XGB performs
well when processing structured data and large-scale
data sets, with efficiency and accuracy. ADB adjusts
the weight of the sample based on the classification
error rate of the sample, so that samples with higher
classification error rates receive more attention, and the
final classification result is determined through
weighted voting.34,35 GNB is a probabilistic classifier
based on ‘bayes’ theorem. It assumes that features are
independent and uses Gaussian distribution to model
the probability distribution of continuous features.36

GNB is simple, fast, and works well for classification
problems with high-dimensional data and small sam-
ples. LR is a learning algorithm with a logistic function
as its core. It assesses the relationship between depen-
dent variables and one or more independent variables,
deriving classification probabilities using logical func-
tions.37 KNN is an instance-based learning algorithm. It
classifies a new sample into the most common category
among its K nearest neighbors by measuring the
distance between samples. KNN is simple and easy to
understand, and is suitable for problems with multi-
category classification and non-linear decision
boundaries.

Primary objective
The primary objective of this study was to develop a ML-
based model for diagnosing moderate to severe hepatic
inflammation in CHB patients who have concurrent
HS.

Statistical analysis
Patient data were presented as continuous or categor-
ical variables. Kolmogorov-smirnov test was used to
assess whether the data followed a normal distribution.
For normally-distributed continuous variables, the data
were described as mean ± standard deviation and
compared using the t-test. If continuous variables did
not conform to a normal distribution, the Mann–
Whitney U test was used, and results were presented
as median (interquartile range). Categorical data were
presented as numbers and frequencies, and either the
Chi-square test or Fisher’s exact test was used for
comparisons. All statistical tests were two-sided, with
P-values <0.05 indicating statistical significance. SPSS
software version 25.0 (SPSS Inc., Chicago, IL) was used
in this study.

In the training queue, over 35% of missing param-
eters were excluded from the analysis. 23 variables of
the training cohort, including sex, age, body mass index
(BMI), diabetes mellitus, hypertension, white blood cell
(WBC), neutrophils, hemoglobin (Hb), PLT, total bili-
rubin (Tbil), albumin (ALB), ALT, AST, alkaline phos-
phatase (ALP), GGT, uric acid (UA), total cholesterol
(TC), triglyceride (TG), PT, international normalized
ratio (INR), HBsAg, HBeAg-positive, and HBV DNA
≥105 IU/mL, were included in seven machine algo-
rithms to generate a pre-model for diagnosing moderate
to severe hepatic inflammation. To avoid overfitting,
five-fold cross-validations were used in the ML model-
building process.38 The SHapley Additive exPlanations
score39 was calculated to assess the importance of each
clinical feature and provide a quantitative description of
the overall relationship between moderate to severe
hepatic inflammation and all 23 features according to
the pre-model. This process requires sequentially inte-
grating features, starting with the most important
feature, and gradually adding the next feature in order of
importance. Through this method, we conducted 23
feature inclusion iterations and ultimately selected the
number of features that generated the highest AUROC
in these iterations. The optimal cutoff of GBC model
was estimated using the Youden index. The diagnosis
performances for the ML models were assessed by the
AUROC, sensitivity (SE), specificity (SP), positive pre-
dictive value (PPV), and negative predictive value
(NPV).40 The Delong test41 was used to compare the
www.thelancet.com Vol 68 February, 2024
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differences between various AUROCs. Furthermore, de-
cision curve analysis (DCA)42,43 and calibration44 were used
to assess the diagnostic performance of the model.
Missing data were addressed by multiple imputations.45

Python programming software (version 3.8.0) was used
in this study. Multiple imputation was performed on the
original data set using miceforest. We utilized stratified
random sampling to segment the dataset, a process
executed using the StratifiedKFold function from the
sklearn library. This approach allowed for a rigorous
comparative analysis of various machine learning models,
including GBC, RF, XGB, ADB, GNB, LR and KNN.

Finally, the web-based tool for moderate to severe
hepatic inflammation was developed with open access at
https://py3.reallife-liver.com/.

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report.
Results
Patient characteristics
A total of 2,455 CHB patients with concurrent HS who
underwent liver biopsies were identified. Among them,
668 patients who failed to meet the inclusion criteria
were excluded. Finally, 1,787 patients were included for
analysis (Fig. 1).

The baseline characteristics of the training cohort
(n = 689), validation cohort 1 (n = 509), and validation
cohort 2 (n = 589) are presented in Table 1. In the
Fig. 1: Flow diagram of the study population. CHB, Chronic hepat

www.thelancet.com Vol 68 February, 2024
training cohort, the median age was 39.0, and the me-
dian BMI was 24.8 kg/m2. Among them, 78.1% were
male, and 9.0% had diabetes. In validation cohort 1, the
median age was 36.0 years, and the median BMI was
26.3 kg/m2, with 73.1% being male and 6.9% having
diabetes. For validation cohort 2, the median age
mirrored that of the training cohort, at 39.0 years old.
The median BMI was 24.2 kg/m2, 75.2% of them were
male and only 2.7% had diabetes.

Based on liver biopsy, there were 157 (22.8%), 31
(6.1%), and 93 (15.8%) had moderate to severe hepatic
inflammation in the training cohort, the validation
cohort 1, and the validation cohort 2, respectively. The
comparison of population characteristics between pa-
tients with moderate to severe hepatic inflammation
and those without moderate to severe hepatic inflam-
mation is presented in Supplementary Table S1.

Diagnostic performance of moderate to severe
hepatic inflammation in the final GBC model
Twenty-three variables from the training cohort were
integrated into ML algorithms to create pre-models
(Supplementary Fig. S1). Following this, the SHapley
Additive exPlanations method was applied to evaluate
the significance of each variable. Ultimately, eleven
variables from the training cohort (AST, PT, PLT, ALB,
GGT, HBeAg-positive, HBsAg, WBC, INR, BMI, and
Tbil) were incorporated into the final GBC model for
identifying moderate to severe inflammation (Fig. 2A).
Furthermore, the variables included in the final RF
(including AST, ALB, PT, PLT, GGT, INR, ALT, BMI,
HBeAg-positive, and HBsAg), XGB (including AST, PT,
itis B; HS, hepatic steatosis; HBsAg, hepatitis B surface antigen.

5
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Characteristics Training cohort (n = 689) Validation cohort 1 (n = 509) Validation cohort 2 (n = 589)

Male, n/total (%) 538/689 (78.1) 372/509 (73.1) 443/589 (75.2)

Age (years) 39.0 (32.5–48.0) 36.0 (30.0–45.0) 39.0 (32.0–48.0)

Age <40 years, n/total (%) 346/689 (50.2) 314/509 (61.7) 299/589 (50.8)

Age ≥40 years, n/total (%) 343/689 (49.8) 195/509 (38.3) 290/589 (49.2)

Body mass index (kg/m2) 24.8 (22.8–26.8) 26.3 (24.2–28.7) 24.2 (22.2–26.4)

Body mass index <25 kg/m2, n/total (%) 315/606 (52.0) 181/509 (35.6) 336/568 (59.2)

Body mass index ≥25 kg/m2, n/total (%) 291/606 (48.0) 328/509 (64.4) 232/568 (40.8)

Diabetes mellitus, n/total (%) 62/689 (9.0) 35/509 (6.9) 16/589 (2.7)

Hypertension, n/total (%) 56/689 (8.1) 68/509 (13.4) 24/589 (4.1)

White blood cell (109/L) 5.4 (4.7–6.4) 5.6 (4.7–6.5) 5.6 (4.9–6.7)

Neutrophils (109/L) 3.0 (2.4–3.7) 3.1 (2.5–4.0) 3.3 (2.6–4.0)

Hemoglobin (g/L) 150.0 (140.0–159.0) 154.0 (141.0–162.0) 152.0 (140.0–161.0)

Platelet (109/L) 186.0 (152.0–222.5) 207.0 (169.0–247.0) 174.0 (142.0–212.0)

Total bilirubin (μmol/L) 14.1 (11.1–18.4) 14.5 (11.4–18.2) 15.7 (12.0–20.4)

Albumin (g/L) 43.9 (41.0–46.1) 45.8 (43.0–48.4) 43.0 (41.0–46.0)

Alanine transaminase (U/L) 48.3 (31.0–86.0) 44.0 (26.1–77.0) 44.0 (29.5–67.0)

Aspartate transaminase (U/L) 33.0 (24.0–49.0) 28.5 (22.0–46.0) 33.0 (26.0–48.0)

Alkaline phosphatase (U/L) 80.3 (62.0–101.0) 67.5 (55.0–83.0) 71.0 (59.0–85.0)

Gamma-glutamyl transferase (U/L) 32.0 (22.0–52.0) 35.0 (23.0–55.0) 29.0 (20.0–44.0)

Uric acid (μmol/L) 338.4 (284.0–394.2) 337.0 (279.0–398.0) N.A

Total cholesterol (mmol/L) 4.5 (3.9–5.1) 4.6 (4.1–5.2) N.A

Triglyceride (mmol/L) 1.3 (0.9–1.8) 1.2 (0.9–1.7) N.A

Prothrombin time (s) 12.4 (11.4–13.2) 12.5 (11–13.2) 11.8 (11.1–12.8)

International normalized ratio 1.0 (1.0–1.1) 1.0 (0.9–1.0) 1.0 (0.9–1.0)

HBsAg (IU/mL) 1971.6 (370.3–6894.0) 4112.5 (1486.1–15544.5) 3024.4 (992.1–11651.2)

HBeAg (S/CO) 0.6 (0.3–291.7) 1.5 (0.4–1205.5) 6.4 (0.4–978.8)

HBeAg-Positive, n/total (%) 293/654 (44.8) 223/441 (50.6) 309/589 (52.5)

HBV DNA (log10 IU/mL) 5.2 (3.4–7.4) 4.5 (2.5–7.9) 5.3 (4.0–7.0)

HBV DNA <105 IU/mL, n/total (%) 354/689 (51.4) 276/509 (54.2) 266/589 (45.2)

HBV DNA ≥105 IU/mL, n/total (%) 335/689 (48.6) 233/509 (45.8) 323/589 (54.8)

Note: HBsAg, hepatitis B surface antigen; HBeAg, hepatitis B e antigen. Values presented as n (%), median (interquartile range).

Table 1: Baseline characteristics of the cohort.
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PLT, ALB, GGT, HBsAg, BMI, HBeAg-positive, INR,
Tbil, TC, and TG), ADB (including AST, PLT, PT, GGT,
ALB, HBsAg, INR, BMI, HBeAg-positive, neutrophils,
and Tbil), GNB (including AST, ALT, Hb, ALB, PT, and
PLT), LR (including AST, ALT, PLT, Hb, HBsAg, Age,
and ALB), and KNN (including HBsAg, ALT, PLT, UA,
AST, and GGT) diagnostic models were also shown in
Fig. 2. Physicians could calculate the GBC model freely
at https://py3.reallife-liver.com/.

For diagnosing moderate to severe hepatic inflam-
mation, the AUROCs of seven final ML models (GBC,
RF, XGB, ADB, GBC, LR, and KNN) ranged from 0.62
to 0.86 in the training cohort. In the validation cohort 1
and 2, the AUROCs ranged from 0.61 to 0.89 and from
0.72 to 0.78, respectively (Fig. 3). Due to the absence of
UA, TC and TG indicators in the validation cohort 2,
only the performance of GBC, RF, ADB, GNB, and LR
models were calculated. The GBC model obtained the
optimal AUROC in the training cohort and validation
cohort 1, but had lower performance in validation
cohort 2.
The optimal cutoff of the final GBC model for
diagnosing moderate to severe hepatic inflammation
was 0.218. At this cutoff, the corresponding accuracy,
sensitivity (SE), specificity (SP), positive predictive value
(PPV), and negative predictive value (NPV) of the GBC
model in the training cohort were 0.80 (95%
CI 0.77–0.83), 0.75 (95% CI 0.72–0.78), 0.81 (95% CI
0.78–0.84), 0.53 (95% CI 0.50–0.57) and 0.92 (95% CI
0.90–0.94) (Table 2). In the validation cohort 1, the GBC
model achieved a high SE (0.85 [95% CI 0.82–0.88]).
However, the SE of the GBC model in validation cohort
2 showed a lower value of 0.58 (95% CI 0.54–0.62)
corresponding to the optimal cutoff (Table 2).

Performance of the GBC model for moderate to
severe hepatic inflammation diagnosis under
different subgroups
Subgroup analysis can provide a deeper understanding
of the diagnostic performance of the GBC model in
specific patient populations. Therefore, the performance
of the GBC model in diagnosing moderate to severe
www.thelancet.com Vol 68 February, 2024
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Fig. 2: SHapley Additive exPlanations plot: the impact of clinical features for diagnosing moderate to severe hepatic inflammation in
the gradient boosting classifier, random forest, eXtreme Gradient Boosting, adaptive boosting, gaussian naive bayes, logistic regression,
and K-nearest neighbors. A. gradient boosting classifier, B. random forest, C. eXtreme Gradient Boosting, D. adaptive boosting, E. gaussian
naive bayes, F. logistic regression, G. K-nearest neighbors. Note: BMI, body mass index; WBC, white blood cell; Hb, hemoglobin; PLT, platelet;
Tbil, total bilirubin; ALB, albumin; ALT, alanine transaminase; AST, aspartate transaminase; ALP, alkaline phosphatase; GGT, gamma-glutamyl
transferase; UA, uric acid; TC, total cholesterol; TG, triglyceride; PT, prothrombin time; INR, international normalized ratio, HBsAg, hepatitis B
surface antigen; HBeAg, hepatitis B e antigen.

Fig. 3: Diagnostic performance of the final machine learning models for moderate to severe hepatic inflammation in training cohort and
external validation cohorts. A. Training cohort, B. Validation cohort 1, C. Validation cohort 2. Note: GBC, gradient boosting classifier; RF,
random forest; XGB, eXtreme Gradient Boosting; ADB, adaptive boosting; GNB, gaussian naive bayes; LR, logistic regression; KNN, K-nearest
neighbors.
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Accuracy Area under receiver operating
characteristic curve

Sensitivity Specificity Positive predictive value Negative predictive value

Training cohort

GBC 0.80 (0.77–0.83) 0.86 (0.83–0.88) 0.75 (0.72–0.78) 0.81 (0.78–0.84) 0.53 (0.50–0.57) 0.92 (0.90–0.94)

RF 0.80 (0.77–0.83) 0.85 (0.82–0.88) 0.69 (0.66–0.73) 0.83 (0.80–0.86) 0.55 (0.52–0.59) 0.90 (0.88–0.93)

XGB 0.79 (0.76–0.82) 0.84 (0.82–0.87) 0.71 (0.68–0.75) 0.81 (0.78–0.84) 0.53 (0.49–0.56) 0.91 (0.89–0.93)

ADB 0.76 (0.73–0.80) 0.83 (0.80–0.86) 0.73 (0.70–0.76) 0.77 (0.74–0.80) 0.49 (0.45–0.53) 0.91 (0.89–0.93)

GNB 0.79 (0.76–0.82) 0.82 (0.79–0.85) 0.65 (0.62–0.69) 0.83 (0.80–0.86) 0.54 (0.50–0.57) 0.89 (0.87–0.92)

LR 0.76 (0.73–0.79) 0.81 (0.78–0.84) 0.70 (0.67–0.73) 0.78 (0.75–0.81) 0.49 (0.46–0.53) 0.90 (0.87–0.92)

KNN 0.67 (0.63–0.70) 0.62 (0.58–0.65) 0.42 (0.38–0.46) 0.74 (0.71–0.78) 0.33 (0.29–0.36) 0.81 (0.78–0.84)

Validation cohort 1

GBC 0.79 (0.76–0.83) 0.89 (0.86–0.92) 0.85 (0.82–0.88) 0.79 (0.76–0.83) 0.21 (0.17–0.25) 0.99 (0.98–1.00)

RF 0.84 (0.81–0.87) 0.89 (0.86–0.92) 0.85 (0.82–0.88) 0.84 (0.80–0.87) 0.25 (0.22–0.29) 0.99 (0.98–1.00)

XGB 0.79 (0.76–0.83) 0.88 (0.85–0.91) 0.83 (0.79–0.86) 0.79 (0.76–0.83) 0.21 (0.17–0.24) 0.99 (0.98–1.00)

ADB 0.77 (0.74–0.81) 0.85 (0.81–0.88) 0.81 (0.77–0.84) 0.77 (0.73–0.81) 0.19 (0.15–0.22) 0.98 (0.97–0.99)

GNB 0.83 (0.80–0.86) 0.89 (0.86–0.92) 0.75 (0.72–0.79) 0.84 (0.80–0.87) 0.23 (0.20–0.27) 0.98 (0.97–0.99)

LR 0.81 (0.77–0.84) 0.86 (0.83–0.89) 0.75 (0.71–0.79) 0.81 (0.78–0.84) 0.20 (0.17–0.24) 0.98 (0.97–0.99)

KNN 0.70 (0.66–0.74) 0.61 (0.57–0.65) 0.46 (0.41–0.50) 0.72 (0.68–0.76) 0.10 (0.07–0.12) 0.95 (0.94–0.97)

Validation cohort 2

GBC 0.77 (0.74–0.81) 0.76 (0.73–0.80) 0.58 (0.54–0.62) 0.81 (0.78–0.84) 0.36 (0.32–0.40) 0.91 (0.89–0.93)

RF 0.78 (0.74–0.81) 0.76 (0.72–0.79) 0.47 (0.43–0.51) 0.83 (0.80–0.86) 0.35 (0.31–0.39) 0.89 (0.87–0.92)

ADB 0.72 (0.68–0.75) 0.72 (0.68–0.75) 0.60 (0.56–0.64) 0.74 (0.70–0.77) 0.30 (0.26–0.34) 0.91 (0.89–0.93)

GNB 0.76 (0.73–0.80) 0.72 (0.68–0.76) 0.42 (0.38–0.45) 0.83 (0.80–0.86) 0.31 (0.27–0.35) 0.88 (0.86–0.91)

LR 0.70 (0.67–0.74) 0.78 (0.74–0.81) 0.73 (0.70–0.77) 0.70 (0.66–0.74) 0.31 (0.28–0.35) 0.93 (0.91–0.95)

Note: GBC, gradient boosting classifier; RF, random forest; XGB, eXtreme Gradient Boosting; ADB, adaptive boosting; GNB, gaussian naive bayes; LR, logistic regression; KNN, K-nearest neighbors.

Table 2: Diagnostic performance of the machine learning models for moderate to severe hepatic inflammation.
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hepatic inflammation was investigated in different
subgroups (age, sex, BMI, HBeAg status, HBV DNA
level, and presence of diabetes). In both the training
cohort and the validation cohorts, the GBC model
correspondingly had the highest AUROCs of 0.87 (95%
CI 0.84–0.91), 0.90 (95% CI 0.86–0.94), and 0.79 (95%
CI 0.74–0.83) in patients with HBV DNA ≥105 IU/mL
(Supplementary Table S2).

Evaluation of the GNB model performance for
moderate to severe hepatic inflammation diagnosis
by DCA and calibration curve
The DCA for the GBC model demonstrated a consistent
net benefit in the training cohort and two validation
cohorts over a range of threshold probabilities. In all
three cohorts, the GBC model outperformed the ‘treat
none’ strategy, indicating that it had practical utility in
decision-making (Fig. 4). The calibration curve showed
that the GBC model achieved good diagnostic perfor-
mance in the training cohort, but underestimated the
risk of moderate to severe hepatic inflammation in the
validation cohort 1 (Supplementary Fig. S2).
Discussion
In this study, we developed and validated a ML-based
model to predict moderate to severe hepatic inflamma-
tion for treatment-naive CHB patients with concurrent
HS. The diagnostic model exhibited accuracy in both the
training and validation cohorts and remained stable
across different subgroups. In terms of predictive
values, the GBC model generally demonstrates a high
NPV, with most values exceeding 0.9. This indicated the
model’s accuracy and stability in excluding cases of
moderate to severe hepatic inflammation. Although the
PPV in the external validation cohort 1 was lower, this
was likely attributed to the lower prevalence of in-
dividuals with moderate to severe hepatic inflammation
in this group. Further, DCA and calibration curves were
used to evaluate the net benefit and diagnostic perfor-
mance of the GBC model. Our study showed that the
GBC model has the potential to identify moderate to
severe hepatic inflammation in CHB patients with
concurrent HS, which may assist clinicians in assessing
disease severity for further examinations and aiding
decision for treatment.

Chronic hepatic inflammation plays a pivotal role in
driving hepatic adverse events. A cohort study con-
ducted in North America involving 420 HBsAg-positive
patients found that patients combined with steatohepa-
titis had a significantly higher risk of advanced fibrosis,
compared with patients without fatty liver disease
or steatosis alone.11 The initiation of hepatic fibrosis
typically stems from inflammation, and pro-
inflammatory factors could activate hepatic stellate
cells from quiescent status to a fibrogenic phenotype,
www.thelancet.com Vol 68 February, 2024
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Fig. 4: Net benefits of the GBC model by decision curve analysis for diagnosing moderate to severe hepatic inflammation. A. Training
cohort, B. Validation cohort 1, C. Validation cohort 2. Note: GBC, gradient boosting classifier.
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thereby exacerbating the disease severity.46 At the same
time, the epidemic of fatty liver disease makes the
combination of CHB and HS a common clinical phe-
nomenon, potentially accelerating the progression of
liver diseases. Therefore, early and accurate identifica-
tion of inflammation, along with timely intervention,
becomes essential for improving the prognosis of CHB
patients with concurrent HS. However, most existing
non-invasive scoring models based on serum indicators
have shown poor performance. Other scoring models
established on serum biomarkers combined with im-
aging methods can improve diagnostic accuracy to some
extent, but they greatly increase the cost of examina-
tions. Furthermore, current non-invasive scoring
models primarily target either CHB or HS patients,
thereby constraining their applicability to patients with
both conditions.21,22,47–50

With the advancement of ML, clinicians are now
able to turn high volumes of data into feasible models
to improve their competence in diagnosing disease. A
growing number of studies have developed ML
models to assess hepatic pathological changes in pa-
tients with CLDs.51–54 For instance, Wang et al. devel-
oped a dual-task convolutional neural network model
based on ultrasonic shear wave elastography for CHB
patients, reaching an AUROC of about 0.8 in staging
hepatic inflammation.51 Zhou et al. built a diagnostic
model based on the random forest-backward feature
elimination algorithm,54 which achieved an AUROC of
over 0.8 in grading the severity of hepatic inflamma-
tion in 650 CHB patients. However, these studies only
recruited patients with a single liver disease, which
cannot meet the clinical needs of patients who were
concomitant with two important CLDs. Compared
with traditional methods, ML algorithms have
demonstrated sound performance in disease diag-
nosis. Therefore, we established and validated the
GBC model tailored for CHB patients with concurrent
HS. The GBC model, based on serum indicators for
the diagnosis of moderate to severe hepatic inflam-
mation, reached an AUROC of 0.86, showing similar
www.thelancet.com Vol 68 February, 2024
accuracy to expensive and less common imaging
models.48–50

Our study identified eleven clinical features,
including AST, PT, PLT, ALB, GGT, HBeAg-positive,
HBsAg, WBC, INR, BMI, and Tbil, that were signifi-
cantly correlated with moderate to severe hepatic
inflammation. The correlation of AST and GGT with
hepatic inflammation has been well recognized, and
they are commonly used in model development.47,54,55

Moreover, researchers have also confirmed that ALB,
PLT, and INR were significantly associated with the
severity of hepatic inflammation.21,22,56,57 The likely
reason for this is that severe damage to liver cell mass
and hepatic inflammation can affect the production of
thrombopoietin and ALB.58–60 PT is another important
indicator for liver synthesis and reserve function.22,61 It
reflects the severity and prognosis of liver disease, which
makes it an essential variable in the establishment of
diagnostic models.22,56

BMI is one of the important indicators in NAFLD
Fibrosis score (NFS), which can be used to evaluate the
severity of fibrosis in HS patients.62 Our study further
found that BMI was an important indicator for assessing
hepatic inflammation in CHB patients with concurrent
HS. In addition, virological-related indicators, such as
HBsAg level and HBeAg status, are also associated with
the degree of hepatic inflammation. Li et al. previously
constructed a diagnostic model for hepatic inflamma-
tion in CHB patients based on HBsAg levels and other
serological indicators,47 while Zhang et al. also com-
bined HBeAg with other indicators to establish a
diagnostic model for hepatic inflammation in HBeAg-
positive CHB patients.21

In addition, our study assessed the performance of
the GBC model in diverse subgroups to detect any po-
tential biases present within the datasets. The consistent
results across different subgroups proved the general-
izability and stability of the GBC model. Notably, in
subpopulation living with diabetes, an AUROC of over
0.8 was achieved in both the training cohort and external
validation cohort 1, and an AUROC of 0.76 was also
9
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achieved in the external validation cohort 2. Diabetes,
primarily characterized by hyperglycemia, can trigger
inflammatory responses in liver cells, leading to severe
damage caused by mitochondrial oxidative stress,
endoplasmic reticulum stress, and reduced lysosomal
autophagy.63,64 Therefore, it is essential to enhance the
screening and management of hepatic inflammation in
patients with CHB and HS who also have diabetes.
Importantly, the diagnostic efficacy of the GBC model
was validated in HS patients diagnosed by ultrasound,
with an AUROC above 0.75. Therefore, the GBC model
is applicable in CHB patients with concurrent HS
diagnosed by ultrasound. In cases where liver biopsy
cannot be performed, the GBC model developed in this
study could be a supportive diagnostic tool for hepatic
inflammation. Further validation in other populations is
needed to determine its generalizability. Finally, we
established a free website to facilitate the use of
clinicians.

While our study showed promising results, it is
important to acknowledge its limitations. First, the GBC
model was developed using data mainly from Chinese
patients, necessitating further validation in diverse racial
groups to ensure their generalizability. Secondly, the
GBC model was specifically developed based on
treatment-naive CHB patients, and their diagnostic ef-
ficacy for CHB patients with concurrent HS who are
undergoing antiviral therapy needs to be further evalu-
ated. Thirdly, the difference between G2 and G3 is mi-
nor, and both inter-observer and intra-observer
variations objectively exist, even among expert patholo-
gists. However, the analysis for inter-observer variability
showed good agreement. Future prospective studies
with central reporting of the pathological report are
needed to validate our model. Finally, the retrospective
nature of data collection from multiple centers led to
instances of missing data. Although this limitation may
be mitigated by strict inclusion and exclusion criteria
and the large sample size, prospective international
multicenter studies are required for further validation of
the GBC model’s performance.

In conclusion, our study developed the GBC model
for accurately predicting moderate to severe hepatic
inflammation in CHB patients with concurrent HS. The
GBC model achieved stable diagnostic performance in
different subgroups and two independent external vali-
dation cohorts. Furthermore, DCA and calibration curve
analysis confirmed the feasibility of the GBC model in
diagnosing the severity of hepatic inflammation. With
the high accuracy and reliability, the GBC model may be
a useful, non-invasive tool to assess the severity of he-
patic inflammation in treatment-naive CHB patients
with concurrent HS.
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