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Metabolic pathways as possible therapeutic targets for 
progressive multiple sclerosis

Introduction
Disease modifying therapies act by disrupting various facets 
of the immune response to ameliorate disease activity in 
patients with relapsing remitting multiple sclerosis (RRMS). 
These therapies can slow the development of disability and 
as a corollary, they may possibly diminish the conversion of 
RRMS to secondary progressive multiple sclerosis (SPMS) 
(Trojano et al., 2007, 2009; Gold et al., 2010; Kappos et al., 
2015; Giovannoni et al., 2016; Wingerchuk and Weinshen-
ker, 2016). However, once a patient develops SPMS, or if a 
patient has primary progressive multiple sclerosis (PPMS), 
then immunotherapies are generally not effective in lessening 
the disease course (Wiendl and Hohlfeld, 2009; Wingerchuk 
and Weinshenker, 2016; Sartori et al., 2017). Two exceptions 
are ocrelizumab, an anti-CD20 antibody that depletes B cells, 
and siponimod, a modulator of the sphingosine 1-phos-
phate receptor. Ocrelizumab, which is approved for use in 
PPMS patients, lessens the probability of disease progression 
(Montalban et al., 2017) while siponimod has been shown 
to reduce the risk of disability progression in SPMS patients 
(Kappos et al., 2016; Mao-Draayer et al., 2017). However, dis-
ease progression still occurs in most PPMS or SPMS patients 
treated with these medications, and when viewed in combi-
nation with negative results from other immunotherapies, it 
suggests that there are additional mechanisms outside of the 
immune system that play a role in advancing multiple scle-
rosis (MS) pathology. Although we do not have a complete 

understanding of the pathogenesis of the progressive forms of 
this disease, putative mechanisms have been put forth. It has 
been proposed that inflammatory demyelination eventually 
leads to neurodegeneration by various mechanisms including, 
but not limited to, energy depletion through mitochondri-
al dysfunction and/or hypoxia related processes, oxidative 
stress, activated microglia, activated astrocytes, Wallerian 
degeneration, iron accumulation, and apoptosis (Weigel et 
al., 2014; Mahad et al., 2015; Kawachi and Lassmann, 2017). 
While these mechanisms are associated with progressive MS, 
they likely begin during RRMS prior to the full conversion 
to SPMS. Interventions that act on one or more of these pro-
posed mechanisms, or that assist in the repair of the central 
nervous system (CNS), are worth exploring for their potential 
as a treatment, or adjunct therapy, for patients with progres-
sive MS. This paper will focus on a subset of these potential 
interventions, particularly those that facilitate metabolism to 
support neuronal and oligodendrocyte functions, and that 
possibly promote remyelination efforts (Table 1).

The Intertwined Roles of Biotin, Iron and 
Vitamin D for Metabolic Support
Adenosine triphosphate (ATP) is necessary in the CNS for 
maintenance of membrane potentials, synaptic activities, 
metabolic functions of neuronal and glial cells, etc. Mainte-
nance of membrane potentials by Na+/K+ ATPases in healthy 
neurons accounts for a substantial portion of a neuron’s 
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energy consumption (Howarth et al., 2012), which can be 
altered by inflammation and demyelination (Trapp and Stys, 
2009). This can cause a disparity of energy production versus 
expenditure known as “virtual hypoxia” that could lead to 
events that result in axonal degeneration and neuronal dys-
function or degeneration (Stys, 2004; Trapp and Stys, 2009; 
Sedel et al., 2016; Kawachi and Lassmann, 2017). 

Recently, an early study indicated that high dose biotin 
therapy (HDBT) improved results for the expanded disability 
status scale and/or the timed 25-foot walk in 12.6% of patients 
with progressive MS (Tourbah et al., 2016), but these positive 
results require additional verification (Chataway, 2016). The 
putative mechanisms of action that were proposed for HDBT 
focused on metabolic support, i.e., promoting remyelination 
by enhancing fatty acid synthesis via increasing the function-
ality of biotin containing carboxylases and facilitating energy 
production in neurons, potentially countering virtual hypoxia 
(Sedel et al., 2016). Other mechanisms, e.g., regulation of gene 
expression or limiting immune responses, may also be involved 
(Heidker et al., 2016; Sedel et al., 2016) (Table 1). 

Upon examination of the metabolic pathways that involve 
biotin, it is apparent that other nutrients such as iron are uti-
lized by these pathways. For example, both biotin and iron par-
ticipate in biochemical reactions involved in energy production 
(Heidker et al., 2016). Multiple biotin-containing enzymes are 
involved with the generation of intermediates of the tricarbox-
ylic acid (TCA) cycle that supply the electron transport chain 
(ETC), which utilizes iron containing enzymes (e.g., iron-sulfur 
clusters, cytochrome C which contains heme) for the further 
production of ATP. Heme synthesis is an additional interrela-
tionship, requiring iron as well as metabolites generated by the 
biotin-dependent pyruvate and methylcrotonyl carboxylases 
(Atamna, 2004; Atamna et al., 2007; Voet and Voet, 2011).

Lipid synthesis is another example of intertwined roles for 
biotin and iron. The biotin-dependent acetyl-coenzyme A 
carboxylase 1 initiates lipid synthesis, which requires heme 
and iron-sulfur clusters as cofactors for several enzymes, as 
does cholesterol synthesis (Voet and Voet, 2011). As lipids and 
cholesterol are key components of myelin, increased synthesis 
of these compounds in conjunction with remyelination has 
been proposed as a therapeutic mechanism of HDBT (Sedel 
et al., 2016). Interestingly, this hypothesis is somewhat in con-
trast with the usage of simvastatin, which inhibits cholesterol 
synthesis, to treat SPMS. Simvastatin was shown in a phase II 
clinical trial to potentially have value for treating SPMS, with 
the putative therapeutic mechanisms including immunomod-
ulative, neuroprotective or vascular effects (Chataway et al., 
2014). However, simvastatin can hinder myelination during 
development (Xiang and Reeves, 2009) and potentially impair 
remyelination efforts (Miron et al., 2009), which in theory 
could limit its usefulness as a treatment for progressive MS. 

While HDBT likely supports metabolism, it may be acting 
to correct a biotin deficiency that is present in a subgroup of 
MS patients that developed consequentially to have a pro-
longed chronic disease or that occurred independent of MS 
(Heidker et al., 2016; Siddiqui et al., 2017). In addition, the 
prolonged inflammation associated with MS could, in theo-
ry, cause a reduction in the availability of iron for biochem-
ical pathways in neurons and oligodendrocytes (Heidker 

et al., 2016). Thus, a localized deficiency of iron (or heme) 
at the biochemical level, but not necessarily at the tissue or 
systemic level, would act to lessen support for energy pro-
duction, remyelination and/or the maintenance of myelin  
(Heidker et al., 2016). Interestingly, in patients with chronic 
progressive MS, normally appearing white matter areas have 
reduced levels of iron together with low levels of inflamma-
tion (Hametner et al., 2013). Additionally, anemia has been 
identified as a comorbidity in MS, and it may aggravate 
disease, e.g., increasing the risk of a relapse (Tettey et al., 
2016). However, supplying neurons and oligodendrocytes 
with optimal iron levels could be complicated because iron is 
present in excess in some brain regions (e.g., thalamus, cau-
date, globus pallidus, putamen) and it can become deposited 
around damaged vessels in patients with MS, e.g., due to mi-
crohemorrhaging (Weigel et al., 2014). In theory, this excess 
iron could promote pathology by catalyzing oxidative or ni-
trative tissue damage, increasing proinflammatory cytokine 
production, supporting increased glutamate release poten-
tially leading to excitotoxicity, etc. (Weigel et al., 2014). Mi-
croinjection of ferritin, which can bind copious amounts of 
iron, into the rat spinal cord resulted in oligodendrocyte and 
neuronal toxicity, but the injected ferritin also stimulated 
the proliferation of progenitor cells that differentiated into 
oligodendrocytes (Schonberg et al., 2012). Thus, identifying 
a means to achieve an appropriate level of iron for optimal 
support of metabolism and remyelination efforts while lim-
iting the effects of excess iron contributing to pathogenesis 
would be a desired goal as part of an intervention strategy. 

Interestingly, vitamin D has been shown to lessen iron in-
duced toxicity in the locus coeruleus and cultured neuroblas-
toma cells (Chen et al., 2003; Uberti et al., 2016), suggesting 
that vitamin D could help protect against iron related dam-
age in MS. Low levels of vitamin D have also been correlated 
with an increased risk of developing MS, and levels may be 
inversely associated with progression of disease activity in 
RRMS patients (Ascherio and Munger, 2016; Hempel et al., 
2017). Iron, as part of heme, is necessary for the metabo-
lism of vitamin D (Toxqui and Vaquero, 2015), and as stated 
above, products of the biotin-containing enzymes, pyruvate 
carboxylase and methylcrotonyl carboxylase, are used in the 
synthesis of heme. Vitamin D plays a role in myelination and 
remyelination by increasing differentiation of oligodendro-
cyte precursor cells (OPCs), presumably via activation of the 
vitamin D receptor and its heterodimer partner, the retinoid 
X receptor gamma (de la Fuente et al., 2015). Additionally, 
vitamin D increased the expression of oligodendrocyte/
myelin proteins (i.e., myelin oligodendrocyte glycoprotein 
and CNPase) when administered during remyelination fol-
lowing demyelination induced by cuprizone (Mashayekhi 
and Salehi, 2016). These effects likely occur in conjunction 
with vitamin D’s immunomodulatory role (Dankers et al., 
2017). Vitamin D supplementation has been tested in vari-
ous clinical trials that focused mostly on RRMS or clinically 
isolated syndrome, but should also be thoroughly evaluated 
in patients with progressive MS (Pozuelo-Moyano et al., 
2013), especially given its putative action on remyelination 
and possible ability to lesson iron mediated CNS damage. 

Vitamin D, biotin and iron may all work together to sup-
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port myelination and facilitate remyelination efforts (Table 
1). Maintaining optimal levels of these nutrients is predicted 
to enable the best outcome for patients with progressive MS 
since a deficiency in one could affect or undermine the func-
tions of the others. 

Additional Experimental Approaches to 
Promote Metabolism 
Heightened ATP consumption is thought to occur following 
demyelination due to the redistribution of channels along 
the axon to support the propagation of impulses (Holling-
sworth et al., 2017). This is contrasted with healthy myelin 
which helps maintain the distribution of sodium channels 
necessary for saltatory conduction thereby resulting in effi-
cient energy utilization, while oligodendrocytes also provide 
trophic support for axons (Hollingsworth et al., 2017). The 
repair process of remyelination depends on the migration 
and differentiation of OPCs into oligodendrocytes capable 
of forming myelin, but remyelination is an incomplete and 
heterogenous process (Hollingsworth et al., 2017). As in my-
elination, proper metabolic support should facilitate remy-
elination efforts while also supporting axonal processes and 
other neuronal functions (Heidker et al., 2016). Along these 
lines, additional therapies that support ATP production and/
or drive remyelination in the CNS are being explored, e.g., 
ketogenic diet, thyroid hormone, estrogen, and stem cells 
(SCs) (Table 1). While many of these studies have been per-
formed in the context of RRMS, or related models, they may 
provide important insight into therapeutic mechanisms that 
may help ameliorate progressive forms of MS.

Mitochondria generate ATP within neurons via oxidative 
metabolism (Bélanger et al., 2011), with decreased mito-
chondrial functionality contributing to neurodegeneration 
(Storoni and Plant, 2015). Glucose which is metabolized 
into pyruvate via glycolysis, supports ATP generation via 
the oxidative pathways of the TCA cycle and the ETC (Voet 
and Voet, 2011; Mathur et al., 2014). Disturbances of glu-
cose and pyruvate metabolism in MS patients are indicated 
by elevated blood or cerebrospinal fluid levels of pyruvate, 
alpha-ketoglutarate, and citrate, while SPMS patients exhibit 

increased CSF levels of metabolites from both extra-mitochon-
drial glucose and anaerobic metabolism (Mathur et al., 2014). 
A ketogenic diet, which can increase ATP levels, has been pro-
posed as a possible supportive treatment for progressive MS 
(Storoni and Plant, 2015). In rats, a ketogenic diet produced 
higher ATP/adenosine diphosphate ratios in the cerebrum 
than normal diets, making it conceivable that a ketogenic diet 
might assist in providing more adequate levels of ATP for neu-
ronal support (DeVivo et al., 1978). Additionally, ketogenic 
diets may increase antioxidants and promote the expression 
of uncoupling proteins, which may lessen the production of 
reactive oxygen species (ROS) (Storoni and Plant, 2015). When 
tested in murine experimental autoimmune encephalomyelitis 
(EAE), a model of MS, a ketogenic diet caused decreased levels 
of ROS and inflammatory cytokines (Kim et al., 2012). 

Rats exposed to a ketogenic diet for 3 weeks had an in-
creased production of kynurenic acid (KA) in certain areas 
of the brain (Żarnowski et al., 2012). Systemic administra-
tion of L-kynurenine, a precursor of KA, has been shown 
to have neuroprotective properties, i.e., reducing N-meth-
yl-D-aspartic acid induced death of retinal ganglion cells in 
rats (Vorwerk et al., 1996). KA, which can block excitotox-
icity, is generated by the kynurenine pathway (KP), through 
the degradation of the amino acid tryptophan (Lovelace et 
al., 2016; Lim et al., 2017). This process also results in the 
production of nicotinamide adenine dinucleotide (NAD+), 
which is involved in multiple processes, e.g., transcription, 
signaling and cellular metabolism including glycolysis, TCA, 
and beta oxidation (Cantó et al., 2015; Lovelace et al., 2016; 
Lim et al., 2017). Chronic inflammation, such as that found 
in conditions like MS, can cause the KP to become activated 
and dysregulated (Lovelace et al., 2016; Lim et al., 2017). This 
dysregulation leads to lower NAD+ levels and the possible 
depletion of energy (Lovelace et al., 2016; Lim et al., 2017). 
Paradoxically, two other metabolites of the KP, 3-hydroxyky-
nurenine and quinolinic acid (QA), are both excitotoxins 
and are elevated in the spinal cord of EAE rats (Chiarugi 
et al., 2001; Lovelace et al., 2016). Excessive QA with in-
sufficient KA leads to excitotoxicity, and a recent study has 
shown the ratio of QA to KA is elevated in progressive forms 
of MS, but not RRMS, making it a potential biomarker of 

Table 1 Potential approaches to support metabolism and/or remyelination for progressive multiple sclerosis

Approach Possible beneficial impact References

High dose biotin therapy Support metabolism; promote remyelination;  
regulate gene expression; immunomodulation

Heidker et al., 2016; Sedel et al., 2016

Iron Support metabolism; promote remyelination Stephenson et al., 2014; Heidker et al., 2016
Vitamin D Support remyelination; immunomodulation;  

lessen iron-mediated damage
Chen et al., 2003; de la Fuente et al., 2015; Mashayekhi and 

Salehi, 2016; Uberti et al., 2016; Dankers et al., 2017
Ketogenic diet Support metabolism; increase antioxidants;  

lessen production of reactive oxygen species
DeVivo et al., 1978; Kim et al., 2012; Storoni and Plant, 

2015
Modulate kynurenine pathway Support metabolism; reduce excitotoxicity Vorwerk et al., 1996; Lovelace et al., 2016; Lim et al., 2017
Thyroid hormone Metabolic regulation; support remyelination Bernal, 2015; Zhang et al., 2016
Estrogen Support remyelination; lessen inflammation Zhang et al., 2004; Okada et al., 2008, 2010; Deckx et al., 

2013; Khalaj et al., 2013; Khan and Ansar Ahmed, 2016
Stem cells Support remyelination; support metabolism;  

support growth and regeneration; neuroprotective; 
replace central nervous system cells; 
immunomodulation

Jadasz et al., 2012; Teixeira et al., 2013; Markham et al., 
2014; Meamar et al., 2016
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disease progression (Lim et al., 2017). Together, these factors 
make regulation of the KP an attractive therapeutic target for 
progressive MS (Lim et al., 2017).

Hormones, such as TH which is well known for its role in 
metabolic regulation, may play a supportive role in remyelin-
ation. As developmental myelination is driven in part by TH 
stimulating differentiation of OPCs (Bernal, 2015), researchers 
have begun exploring the possibility that TH may increase 
remyelination in MS. Positive results, including lessening im-
pulse propagation deficits, decreasing myelin loss, and lower-
ing axonal degeneration were seen in rats with EAE that were 
treated with TH starting at the presentation of clinical signs, i.e., 
10 days post immunization (Dell’Acqua et al., 2012). Similarly, 
injections of TH after cuprizone administration in murine 
models, led to increased differentiation of OPCs and enhanced 
remyelination (Zhang et al., 2016). These effects may be medi-
ated by increased transcription of Kruppel-like factor 9 (KLF9), 
which encourages differentiation of OPCs (Zhang et al., 2016). 
The positive results in animal studies have led to a phase I clin-
ical trial (NCT02760056) which is underway to investigate the 
dosage and safety of Liothyronine (T3) in patients with MS.

Estrogen, which regulates reproduction, energy balance, 
and immune function (López and Tena-Sempere, 2015; Khan 
and Ansar Ahmed, 2016), is also being considered as a thera-
peutic approach for MS. Remission rates of RRMS approach 
nearly 80% during the later stages of pregnancy when estro-
gen is elevated (Vukusic et al., 2004; Gold and Voskuhl, 2009; 
Deckx et al., 2013). A phase II trial comparing women treated 
with either estriol (a form of estrogen secreted by the placenta 
during pregnancy) or a placebo, each in combination with 
glatiramer acetate, showed decreased relapse rates of MS with 
estriol treatment as compared to placebo (Voskuhl et al., 2016). 
It is thought that activation of estrogen receptors decreases the 
expression of inflammatory signaling molecules, thereby di-
minishing inflammation and the associated demyelination seen 
in MS (Deckx et al., 2013; Khan and Ansar Ahmed, 2016). Es-
trogen also appears to support the proliferation, differentiation, 
and process formation of oligodendrocytes (Zhang et al., 2004; 
Okada et al., 2008, 2010; Khalaj et al., 2013), possibly promot-
ing remyelination. In addition to estrogen, a selective estrogen 
receptor modulator, Tamoxifen, has recently been shown to in-
crease rates of remyelination both in vitro and in rats following 
focal demyelination induced by ethidium bromide (Gonzalez 
et al., 2016). The efficacy of estrogen receptor agonists is being 
explored using mouse models (Kumar et al., 2013; Moore et al., 
2014; Itoh et al., 2017). 

Another area of active research has been exploring the 
use of SCs as a possible treatment for MS. Autologous he-
matopoietic SCs have been used in the regeneration of the 
immune system following immunoablation with some suc-
cess in MS patients with aggressive disease (Mancardi and 
Saccardi, 2008; Muraro et al., 2017). Experimental studies 
suggest that neural and mesenchymal SCs could act to di-
rectly replace cells (e.g., oligodendrocytes and neurons) and 
myelin (Jadasz et al., 2012; Meamar et al., 2016). Additionally, 
SCs can also produce immunomodulatory and trophic factors, 
with neuroprotective, regenerative, and growth properties 
(Reekmans et al., 2012; Teixeira et al., 2013; Meamar et al., 
2016). The exact mechanisms by which SCs improve EAE 

outcomes are unclear, but may favor activation of endogenous 
repair mechanisms (Reekmans et al., 2012). For example, SCs 
can activate endogenous cells to undergo growth or differentia-
tion, and support other functions such as remyelination (Jadasz 
et al., 2012; Meamar et al., 2016). Among the many factors pro-
duced by mesenchymal SCs, brain derived neurotrophic factor 
is thought to support remyelination (KhorshidAhmad et al., 
2016), promote survival of neurons/terminals, enhance neurite 
outgrowth (Crigler et al., 2006; Cova et al., 2010; Hsieh et al., 
2013), and promote mitochondrial function (Markham et al., 
2004, 2012, 2014). These functions fit nicely into the category 
of providing metabolic support for neurons and/or oligoden-
drocytes as a potential therapeutic mechanism. Thus, these 
multiple properties of SCs would be predicted to ameliorate 
the putative pathogenic mechanisms of progressive MS. 

Conclusions 
Therapies that support myelin maintenance, facilitate re-
myelination, and/or promote metabolism could in theory 
act to counter disease progression and possibly even help 
restore some small levels of function in some patients with 
progressive MS. Maximal benefit would be expected to come 
from an intervention that is started early in the course of 
progressive disease, including during the transition period 
from RRMS to SPMS, which may even help forestall the full 
conversion to SPMS. In patients with advanced progressive 
MS, where considerable pathology has accumulated (e.g., ex-
tensive loss of axons and neurons), it will be more challeng-
ing for interventions targeting metabolism or remyelination 
to make a meaningful impact. 

To achieve maximum benefit from metabolic therapies, 
multiple steps along biochemical pathways likely will need to 
be targeted as a deficiency in one step could undermine the 
effects of the intervention at a different step. A sub-optimal 
level of a nutrient could also limit responses in a trial of a 
test compound directed at a different facet of the pathogenic 
process, and a multifaceted approach with therapies that tar-
get other pathogenic mechanisms, e.g., ocrelizumab acting 
on B cells, is predicted to give a better outcome than a thera-
py limited to only metabolic support.

In summary, therapies that support metabolism may be 
useful for treating patients with progressive MS. Maximal 
gains in the battle against this disease will likely come from a 
combination of therapies that are started early in the course 
of disease and promote repair, counter the disease process, 
and provide optimal support of oligodendrocyte and neuro-
nal structures and functions.
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