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The growing demand for computational power has led to the emergence of large-scale data centers that consume
massive amounts of energy, thus resulting in high operating costs and CO2 emission. Furthermore, cloud
computing environments are required to provide a high Quality of Service (QoS) to their clients and, therefore,
need to handle power shortages. An optimized virtual machine allocation to physical hosts lowers energy con-
sumption and allows for high-quality services. In this study, a novel solution was proposed for the allocation of
virtual machines to physical hosts in cloud data centers using the Krill Herd algorithm, which is the fastest

collective intelligence algorithm recently introduced. The performance of the proposed method was evaluated
using the CloudSim simulator, and the results are suggestive of a 35% reduction in energy consumption.

1. Introduction

Energy consumption has increased exponentially in the IT sector in
recent years. Data centers, as the main component of information and
communication technology, have proliferated at an unprecedented rate
as IT developers including IBM, Microsoft, Google, and other similar
large corporations have expanded data centers in recent years to support
their cloud computing and grid computing services. These data centers
are equipped with thousands of servers and switches that use up massive
amounts of energy, thus raising operating costs and increasing carbon
dioxide emission into the environment. On the other hand, cooling
equipment must be used to handle the heat produced by these data
centers, which also consumes energy [1, 2]. Several studies have shown
that servers, in the idle state, consume as much as 70 percent of the
energy they use at peak demand. Therefore, it is not economically wise to
leave servers running with a small workload. Methods used to detect idle
servers are studied in the field of host domain with a low amount of
tracking algorithm. Therefore, maintaining servers with lower efficiency
is costly in terms of energy consumption [3]. Reducing energy con-
sumption is a significant challenge in cloud computing. The aim is not
only to reduce energy consumption but also to take into account the
environmental regulations and standards and contracts between users
and service providers. Given the fact that the virtualization technology,
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as well as the unification and live migration of virtual machines, can
dramatically reduce energy consumption, designing data center with this
approach has attracted much attention.

Anton Beloglazov et al. [4] presented an energy-conscious method for
allocating virtual machines based on answering three central questions:

1) When should virtual machines migrate?
2) Which virtual machines will migrate?
3) Where should virtual machines migrate to?

The same structure was adopted in this study, presenting an optimal
method for the third subproblem based on the Krill Algorithm (KH) a fast,
recently-introduced metaheuristic algorithm. In order to have an accu-
rate evaluation, famous underloaded host detection algorithms, single-
threshold algorithms, over-loaded physical host detection algorithms,
Interquartile Range algorithm (IQR), and the Median Absolute Deviation
Algorithm (MAD) were used. MAD [5] is a powerful statistical analysis
that offers the highest flexibility to distant points in a set compared to the
standard deviation. Moreover, the Interquartile Range algorithm (IQR)
[5], also referred to as the midspread or middle fifty-fifty, is a measure of
statistical dispersion in descriptive statistics. The remainder of this paper
is organized as follows. Section 2 discusses the previously-proposed
methods, Section 3 elaborates on the proposed method, and Sections 4
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and 5 present the simulation results and conclusions, respectively.
2. Related work

Much research work was focused on lowering energy consumption,
which, similar to our approach, were based on a number of metaheuristic
algorithms. A Round Robin method, referred to as RR Dynamic, was
presented [6] for scheduling and aggregating virtual machines and was
used to place migrating virtual machines. The simulation results indicate
that RR Dynamic reduces energy consumption by 34.7% compared to
Round Robin. In 2016, a new, genetic-algorithm-based approach was
presented [7] to find an optimal solution to multidimensional bin pack-
ing problems aiming to improve resource allocation and the integration
of cloud virtual machines. Moreover, a novel and effective evolutionary
approach was proposed [8] for Virtual Machine (VM) allocation to
reduce the energy consumption that was capable of maximizing energy
efficiency in a cloud data center while incorporating more reserved VMs.
This approach can provide fast access to an optimized allocation solution
for a batch of reserved VMs, while at the same time, consolidate more
VMs with fewer physical machines to achieve better energy efficiency
than with existing methods. Basu et al. (2019), presented a method that
focused on an improved Genetic Algorithm (GA), and improper load
balancing will lead to losses in terms of both memory and energy con-
sumption [9]. Alharbi et al. [10] proposed an Ant Colony System (ACS)
embedded with new heuristics as an energy-efficient solution to the
optimization problem formulating the placement of VMs to Physical
Machines in a data center as a constrained combinatorial optimization
problem. This is similar to previous attempts at curtailing energy con-
sumption, including one by Hongjian Li et al. (2015) who focused on a
modified particle swarm optimization (PSO) method for a VMs reallo-
cation algorithm that reduces energy consumption of the entire system
and designed a double-threshold method with multi-resource utilization
to trigger the migration of VMs [11]. A similar VM scheduling method, by
the name of GRANITE, based on the greedy algorithm was proposed [12]
which is capable of minimizing the overall data center energy con-
sumption by analyzing the temperature distribution in the airflow and
the CPU.

Two algorithms, known as the "Combinatorial Ordering First-Fit
Genetic Algorithm" (COFFGA) and" Combinatorial Ordering Next Fit
Genetic Algorithm (CONFGA), were developed and combined. The aim
was to minimize the total number of running servers and the waste of
resources in each server. In comparison to latest solutions from similar
studies, their results indicated that the proposed COFFGA algorithm had
an optimal performance compared to multidimensional bin packing
schemes, such as Permutation Pack (PP), First Fit (FF), and First Fit
Decreasing (FFD), improving the results by 4%, 31%, and 39%, respec-
tively. Moreover, this algorithm provides better performance compared
with available GAs for multi-capacity aggregation resources of the virtual
machine (VM) aggregation in terms of performance and robustness.

In 2012, Wang et al. [13] attempted to improve the Bin-Packing al-
gorithm by introducing a threshold to prevent inconvenient VM migra-
tion. In this scheme, if the total resources of virtual machines from a host
are below the threshold value, VMs on the host would migrate to another
one with sufficient resources. This method takes into account neither
exchange costs nor migration costs, ignores the increase in the potential
of using a host that enhances the productivity of the host, and can even
violate the Service-Level Agreement (SLA).

In their 2012 study, Anton Beloglazov and et al. [14, 15] introduced
the MBFD algorithm for which simulation results show that dynamic VM
reallocation techniques and switching off small idle servers can help in
energy saving. Their methodology has great potential since as far as
productivity is concerned, it offers excellent performance as regards
response time and energy cost savings.

Marco Dorigo [16] also presented a termite-algorithm-based method
for the dynamic VM reallocation. The results of the study are suggestive
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of a 10% improvement in energy efficiency by using the proposed
method under the first scenario compared to the PSO and genetic algo-
rithms, and 13.33% and 2.5% improvements under the second scenario,
compared to PSO and GA, respectively.

Gorent et al. (2012) [17] suggest that the use of virtualization tech-
nology is important for improving the energy efficiency of data centers
and that VM placement is the key in server consolidation. The results of
the study indicate that the GA performs 3.5-5.5% better than the FFD.

Moreover, Yang Quiang and et al. (2012) proposed an algorithm
based on Simulated Annealing that aimed to improve problem insertion.
The simulation results show the SA algorithm to be 25% more energy-
efficient than the FFD algorithm [18]. In 2013, Giriano and et al. pro-
posed an approach based on the self-Adaptive Particle Swarm Optimi-
zation (SAPSO) algorithm for VM allocation to a set of servers in a
dynamic pool. The algorithm reduced the overall processing energy
consumption without compromising on the main objectives [19].

Furthermore, given their many applications, researchers have been
consistently working to improve the performance of cloud data centers
[20, 21]. However, several issues still remain in this area, including the
different energy consumption optimization algorithms, using VMs to
optimize energy consumption, and energy consumption reduction solu-
tions for cloud data centers.

In a 2015 study, Xiong FU and Chen ZHOU [22] proposed a new VM
selection policy (MP) which takes into account resource satisfaction and
can reduce energy consumption, VM migration time, SLA violation, as
well as a VM placement policy (MCC) to find the target host with the
smallest correlation coefficient with the migratable VM.

3. Instrumentation
3.1. Service-Level Agreement (SLA)

Service-Level Agreement (SLA) specifies the level of service quality
agreed between the user and the cloud service provider and states all
service features that must be provided and, consequently, the relevant
policies to be adopted. An SLA generally relies on the response time, or
how fast responses must be made to requests, as a performance metric
[23].

3.2. Energy SLA Violation(ESV)

Energy SLA Violation (ESV) is an important characteristic in
measuring the usage of VM allocation to physical hosts. In fact, ESV
shows the overall behavior of algorithm in the point of energy con-
sumption and the number of SLA contract violations and its aim is to
reduce it [24]. ESV is calculated from Eq. (1):

ESV = Energy(kw/h) * SLA (%) @™

3.3. Energy consumption

Power consumption by physical machines can be accurately described
by a linear relationship of CPU utilization [24]. They also point out that a
free physical machine uses about 70% of its energy consumption when it
is fully utilized. Due, the CPU utilization rate in the physical host Pj is
obtained according to Eq. (2):

plran

Wi = e @

J

Thus the energy consumption of the physical host can be calculated
using Eq. (3):

E(py) =ki.e™ + (1 — k)™ ®
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4. Methods

We aim to obtain an appropriate scheme for allocating resources to
physical hosts using relying on the krill algorithm. In addition to the time
complexity of the algorithm, energy consumption is reduced in data
centers as a result of the load congestion of the system at any given
moment. Given that VM allocation to physical hosts is an NP-Hard
problem, metaheuristic algorithms are the best solution strategies to
take. Accordingly, the krill algorithm was employed in this study.

The krill algorithm (Fig. 1) is the metaheuristic with the best per-
formance among similar algorithms and is used in the approaches to
solving these types of problems. Therefore, this algorithm was used for
acceleration and to provide a convenient solution with a more efficient
function than existing solutions.

Also Fig. 2 shows the basic representation of the KH algorithm.

In the cloud computing environment, there are heterogeneous and
dynamic virtual machines. In the proposed krill-algorithm-based method,
krill represent virtual machines and the baits represent physical ma-
chines. Therefore, virtual machines in the V set are defined by Eq. (4):

V = {VL,V2,..., Vm} 4

Where m denotes the total number of virtual machines and the set of
physical machine is defined by Eq. (5):

H = {HI1,H2,....Hn} )

Where n denotes the total number of physical machines.

This study addresses the problem of mapping virtual machines to
physical hosts in a way that each virtual machine is assigned to only one
physical host while making sure the minimum number of physical hosts
are running. To solve the problem of allocating virtual machines to
physical hosts, each answer was assumed to be a net which was modeled
by an array (Table 1). As evident from Table 1, the index represents the
virtual machine number and the number inside it refers to the number
corresponding to the physical host on which the virtual machine will be
placed. In other words, if Index 2 reads 4, it suggests VM 2 will be placed
on the physical host no. 4.

Vm_ID = Index.

Host_ID = Value.

In the proposed method, an array is attributed to each krill to
represent the length of the net traveled by the krill. The first index in-
dicates the array corresponding to the point where each krill starts its
travel, whereas the last index shows the destination or the food location.
The proposed method consists of the following steps:

Start

Initialize parameters

Make individuals and initialization
For all iterations do

4.1. For all krill do

B W N

4.1.1. Movement induced

4.1.2. Foraging motion

4.1.3. Physical diffusion

4.14. Crossover & mutation
4.1.5. Update krill position

4.1.6. Calculate fitness

4.1.7. Compare with best krill for

replacement
5. Return best krill

Fig. 1. Pseudocode of krill algorithm [24].

P
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1) Initialization.

2) A physical host is selected randomly as the starting point for each
krill. In fact, for the first index, the array corresponding to each krill is
a random value representing the physical host number.

3) The first krill selects a physical host for each virtual machine, and
when it is finished pairing hosts with virtual machines, the update the
krill location locally.

4) If the new answer is optimal compared with existing answers, save it
and update the krill location globally.

5) If all krill have gone through the above steps, enter Step 6; otherwise,
return to Step 3.

NH = NH+1

6) If NH > NHpy, then return the best answer as output; otherwise,
return to Step 2.

NH = Number of physical hosts.

4.1. Selection mechanism

The Kth krill selects a host from the order of physical hosts defined in
the list, assigning a virtual machine to the source j according to the
probability from Eq. (6). In Eq. (6), Tj (1) is the distance from the food
source j at time t.

a ﬂ
_ Iy 0[] ©
- a 14
Z[tj (I)] [nj}
Where n; is the inherent capacity of the source j, a is the parameter
controlling the influence of Tj (t), and f is a parameter for controlling the
effect of n;.

4.2. Global update

When every krill has found a solution to the VM allocation problem,
krill positions (foraging distances) corresponding to all physical hosts
selected by the best krill with the lowest energy consumption can be
updated using Eq. (7):

t}mw = (1 — p)*tj + At ()

In the above equation, Atj increases, and p represents the coefficient
of distance to the food. Moreover, the size of the foraging distance is
limited to facilitate convergence.

4.3. Calculating the fitness criterion

In order to determine whether a solution can provide a convenient
answer, it must be evaluated by a fitness function that attributes a value
to the solution based on the parameters effective in the quality of the
solution. By applying this function to all solutions produced by the pro-
posed algorithm, the value of each solution is calculated, and the solution
with the best value which can be either the maximum or minimum based
on the parameter placement policy is accepted as the most convenient
one. For example, the parameters of Tables 2, 3, 4, 5, and 6 can be used.

Therefore, the fitness function for measuring the value of each answer
is presented in Eq. (8):

fitness =

N (€)]
; E(p;)

5. Experimental
To carry out the simulations, the CloudSim toolkit, an extensible

simulation tool, was used that helps to model and simulate cloud
computing systems and prepare applications. CloudSim is capable of
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Fig. 2. A flowchart of the krill herd algorithm.

Table 1
Example of the answer or net used in the proposed algorithm.
Value 5 2 4 N
Index 0 1 2
Table 2
Parameters used in the proposed method.
Parameters Description
v Virtual machines
P Physical host
ViCpu The required processor for virtual machine (i)
ViMem The amount of required memory for virtual machine (i)
PjCpu The processing power for physical host (j)
Pjmem The amount of required memory for physical host(i)
Pjwcpu The total CPU workload of physical host(j)
Pjwmem The total amount of used memory for physical host(j)
Table 3

Data center specifications.

Scenarios VMs Physical Hosts Data Center
A 290 100 1
B 1175 800 1
Table 4
Virtual machine specification.
Scenarios RAM(MB) CPU MIPS
A 128 1 250-1000
B 613-3840 1 500-2500
Table 5
Physical hosts specifications.
Scenarios RAM(MB) CPU MIPS
A 8192 1 1000-3000
B 4096 1860-2660
Table 6
Works specifications.
Scenarios MIPS)Tasks) Number of Tasks
A 250-1000 290
B 500-2500 1175

modeling the system and behavior of the cloud computing system com-
ponents, including data centers, virtual machines, resource policies, and
application delivery techniques [25]. A review of the previous works
revealed that the traditional and widely-used genetic and MBFD algo-
rithms are some of the best methods in this field, which offered excellent

results. Therefore, for a more accurate evaluation, the proposed method
was simulated and compared with the said algorithms. In addition, to
allow for a better comparison of the algorithms, two scenarios (A and B)
were used that drew their data from existing studies [26], and since
evolutionary algorithms are based on random answers, each algorithm
was executed in ten runs with each scenario the average was taken as the
result of the proposed method.

In the following, the three algorithms (the proposed algorithm, the
GA, and the MBFD algorithm) are presented separately under both sce-
narios using the IQR and MAD algorithms, and the results are presented
in charts and tables. Figs. 3, 4, and 5 illustrate the energy consumption,
the violation of SLA contracts, and the Energy SLA Violation (ESV) "En-
ergy consumption and the number of violations in SLA contracts", which
is a key factor in measuring the use of VM allocation to physical hosts and
is obtained by multiplying energy consumption in kW.h by SLA contracts
in percent (Eq. 1), in the first scenario.

As illustrated by the diagrams, the proposed method offers better

88
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MAD/MMT

Energy Consumption
100

605 G
m MBFD

90
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70
64 63
51
47

40 43 50
40
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0

Energy(W/H)

N
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0

=

MAD/RS  IQR/MMT  IQR/RS

Fig. 3. Average rate of energy consumption in scenario A.
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Fig. 4. The average rate of SLA violation in scenario A.
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Energy SLA Violation
0.16 0.18
0.16
0.1
0.12 0.14
0.10-11 0.12
mGA
0.0 0.08 01
.07 06 0.07 0.08 ®MBFD
05 04 0.06  mProposed
0.04
I 0.02
0
MAD/MMT MAD/RS IQR/MMT IQR/RS
Fig. 5. Average of ESV in scenario A.
Table 7

Percentage of improvement in energy consumption of suggested algo-
rithm compared to genetic algorithm.

MMT RS
IQR 8.57 31.74
MAD 43.18 55.55
AVG %35

Table 8
Percentage of improvement in energy consumption of suggested algo-
rithm compared to MBFD algorithm.

MMT RS
IQR 18.98 8. 89
MAD 18.03 21.56
AVG %17

performance, reducing energy consumption by 35% and 17% compared
with the genetic and MBFD algorithms, respectively. Tables 7 and 8 show
the improvement of energy consumption by the proposed algorithm in
comparison with genetic and MBFD algorithms, with IQR and MAD as
overloaded host detection, random policy search, and minimum migra-
tion time algorithms, for VM selection in the ten runs.

Moreover, Figs. 6 and 7 illustrate energy consumption and SLA and
ESV violations with IQR and MAD as overloaded host detection algo-
rithms under the second scenario.

As regards the results under the second scenario (Tables 9 and 10), it
is also evident that the proposed algorithm performs better, as the tables
indicate a 9-10% improvement in energy consumption compared to the

Energy Consumption

1400
1160
1200
=) 1000
= mGA
= 800
2 452 = MBFD
3 464
=441 444 36450 508 155424 60 Proposed
345 35 200
I II II 200
0
MAD/MMT  MAD/RS  IQR/MMT  IQR/RS

Fig. 6. Average of energy consumption in scenario B.
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SLA violation
5.46 6
4.27
4.57 51 468 5
~ 3.98 392 3.68 4.02
§ 57 .64 3.7 4
< HGA
7 3
.(i.) m MBFD
=
o) 2m Proposed
>
o
1
0
MAD/MMT MAD/RS IQR/MMT IQR/RS
Fig. 7. Average of SLA violation in scenario B.
Table 9

Percentage improvement of energy consumption of suggested algorithm
compared to genetic algorithm.

MMT RS
IQR 70.48 17.02
MAD 0.67 27.55
AVG 29%

Table 10
Percentage improvement of energy consumption of suggested algorithm
compared to MBFD algorithm.

MMT RS
IQR 2.54 9.19
MAD 2.4 20.19
AVG 9%

Table 11
Minimum energy consumption for each algorithm for virtual machine insertion
into physical hosts.

Scenarios Energy consumption Algorithms
A 49.25 MMT-RS IQR-MAD Proposal Method
63.5 MMT-RS IQR-MAD MBFD
77.75 MMT-RS IQR-MAD GA
B 387 MMT-RS IQR-MAD Proposal Method
422.5 MMT-RS IQR-MAD MBFD
644 MMT-RS IQR-MAD GA
Table 12
Percentage improvement of proposed method compared to other methods.
Scenarios MBFD Genetic
A 17% 35%
B 9% 29%

genetic and MBFD algorithms, with IQR and MAD as overloaded host
detection, random selection, and minimal migration time algorithms for
VM selection in the ten runs.

Tables 11 and 12 show the minimum energy consumption in each
algorithm for allocating virtual machines to physical hosts and to
improve the proposed method compared to other methods, respectively.

6. Conclusion

Green computing is a considerable challenge in modern cloud
computing that puts cloud service providers under pressure. A review of
the previous solutions to this problem revealed that more satisfactory
answers can be obtained. Accordingly, a method was presented to curtail
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energy consumption by optimizing the aggregation of virtual machines
and shutting down idle servers, without compromising on the service
quality. The simulation results show that an efficient integration and the
selection of convenient virtual machine migration strategies can help
improve energy efficiency. A comparison of the proposed algorithm with
genetic and MBFD algorithms with IQR and MAD as overloaded host
detection, random selection, and minimum migration time algorithms for
virtual machine selection in the ten runs shows energy consumption to be
reduced by 35% and 17%, respectively. Moreover, using deep learning
algorithms can be helpful in the timely diagnosis of host overload and is
recommended to interested researchers for further study and evaluation.
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