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The excitation–contraction coupling (ECC) in skeletal muscle refers to the

Ca2+-mediated link between the membrane excitation and the mechanical

contraction. The initiation and propagation of an action potential through the

membranous system of the sarcolemma and the tubular network lead to the

activation of the Ca2+-release units (CRU): tightly coupled dihydropyridine and

ryanodine (RyR) receptors. The RyR gating allows a rapid, massive, and highly

regulated release of Ca2+ from the sarcoplasmic reticulum (SR). The release

from triadic places generates a sarcomeric gradient of Ca2+ concentrations

([Ca2+]) depending on the distance of a subcellular region from the CRU. Upon

release, the diffusing Ca2+ has multiple fates: binds to troponin C thus activating

the contractile machinery, binds to classical sarcoplasmic Ca2+ buffers such as

parvalbumin, adenosine triphosphate and, experimentally, fluorescent dyes,

enters the mitochondria and the SR, or is recycled through the Na+/Ca2+

exchanger and store-operated Ca2+ entry (SOCE) mechanisms. To

commemorate the 7th decade after being coined, we comprehensively and

critically reviewed “old”, historical landmarks and well-established concepts,

and blended them with recent advances to have a complete, quantitative-

focused landscape of the ECC. We discuss the: 1) elucidation of the CRU

structures at near-atomic resolution and its implications for functional

coupling; 2) reliable quantification of peak sarcoplasmic [Ca2+] using fast,

low affinity Ca2+ dyes and the relative contributions of the Ca2+-binding

mechanisms to the whole concert of Ca2+ fluxes inside the fibre; 3)

articulation of this novel quantitative information with the unveiled structural

details of the molecular machinery involved in mitochondrial Ca2+ handing to

understand how and how much Ca2+ enters the mitochondria; 4) presence of

the SOCE machinery and its different modes of activation, which awaits

understanding of its magnitude and relevance in situ; 5) pharmacology of

the ECC, and 6) emerging topics such as the use and potential applications

of super-resolution and induced pluripotent stem cells (iPSC) in ECC. Blending

the old with the new works better!
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1 Introduction

By the 1940s, some evidence was published considering the

existence of a link between the excitation and the contraction of

the skeletal muscle. However, it was very scarce, fraught with

technical limitations and in some cases speculative, although

considered “plausible”. Alexander Sandow stated in 1952 that the

muscle “dependence of contraction on excitation indicates that

there must be some process that is initiated in the excited

membrane and which by moving inward makes contact with

the contractile elements so as to initiate contraction. We shall

designate the entire sequence of reactions -excitation, inward

acting link, and activation of contraction- by the term excitation-

contraction (E-C) coupling” (Sandow, 1952). This topic was so

interesting by that time among researchers, that less than 20 years

later the nature of the “inward acting link” was clear.

Since then, we have seen the development of a huge amount

of technology with increasingly improved temporal and spatial

resolution, which has been applied to gain insight into the

excitation-contraction coupling (ECC) in skeletal muscle and

have helped us outline the current landscape of this

phenomenon.

Here, we present the basics of the ECC in skeletal muscle

under physiological conditions, highlighting recent exciting

conceptual advances and technical developments for its study.

We present information gathered in vertebrate models but

focused on mammalian ECC. Blending the old with the new

allows us to commemorate 7 decades of hard work by honoring

notable, classical contributions from many researchers in the

field, but also by integrating new advances performed by intrepid

young generations. We believe this is the best way to yield the

most comprehensive possible picture of the ECC in skeletal

muscle.

2 Ultrastructure, molecular machinery,
and events of the excitation–contraction
coupling mechanism in skeletal muscle

2.1 Historical landmarks
The events responsible for the abrupt muscle transition from

rest to contraction occupied famous physiologists back in the 40 s

of the 20th Century. Two well accepted concepts by that time were

that the sarcolemma had excitatory properties (assumed to be

limited only to the surface of the sarcolemma) and that soon after

excited, the active state of the muscle was established (Kuffler,

1947; Hill, 1948; Hill, 1949). Moreover, there was a causal

relationship because the kinetics of the contractile responses

were modulated by the excitation (Kuffler, 1947; Sandow, 1952;

Huxley and Taylor, 1958; Caputo, 2011). The activation seemed

not to follow directly the excitation, because a longitudinal

current and its associated electric field failed to induce a

contractile response (Kuffler, 1947; Sten-Knudsen, 1954). An

“inward acting link” (Sandow, 1952) between both, the excitation

and the contraction, seemed thus necessary for many authors

(Kuffler, 1947; Hill, 1948), mainly because they happen in parts

of the cell separated by microns. Also, relevant information about

a sizeable, yet manipulable, milliseconds delay between excitation

and contraction, when several phenomena could be measured

(Hill, 1949; Sandow, 1952; Weber and Portzehl, 1954), further

suggested that a real link should exist. The duration of that

window time was temperature-dependent, for instance, and there

was a heat associated to activation which appeared after that

latent period, before the shortening heat itself was measured

(Hill, 1949; Sandow, 1952). A chemical or energetical link seemed

feasible, but “to resolve its occurrence in times of the order of a

fewmilliseconds would be one of fantastic difficulty” (Hill, 1949).

Simple ionic, radial diffusion from the sarcolemma caused by

the longitudinal field of the action potential was not the link

responsible for the activation of the whole fibre (Hill, 1948; Sten-

Knudsen, 1954). Hill did his calculations with Ca2+ probably

influenced by the results of Heilbrunn and Wiercinski

(Heilbrunn and Wiercinski, 1947), who were “interested in

knowing which substances will cause a shortening or

contraction of the living protoplasm inside the muscle cell”

(Heilbrunn and Wiercinski, 1947). According to their results,

Ca2+ but neither Na+, K+, nor Mg2+, induced a notable muscle

shortening when injected (Heilbrunn and Wiercinski, 1947).

It then became obvious that the link and its working

mechanism was something else than the simple diffusion of a

“contractile substance” released from the sarcolemma. Since the

activation followed the points where the action potential passed

(Sandow, 1952; Sten-Knudsen, 1954), the link should be a more

complex process or may have a structural component. As most of

the study models employed by that time were not mammalian,

that structural element was associated to the Z lines at the I bands

(Huxley and Taylor, 1958). Finishing the 50 s, and before the

T-tubules (TT) and the triads were fully acknowledged (they

were not unambiguously defined in the first images, and

sometimes were thought to be part of the sarcoplasmic

reticulum -SR-), the ECC was proposed to involve the

excitation at the sarcolemma, then somehow the excitation

penetration radially along a structure that, like the SR, should

have a network nature mainly located at the Z lines. The resulting

changes of charge density in those periodic places would lead to

the release of Ca2+ from unknown resources (Csapo and Suzuki,

1957; Porter and Palade, 1957; Huxley and Taylor, 1958). This

decade confirmed that Ca2+ was the activator of the contraction
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(Heilbrunn and Wiercinski, 1947; Weber and Portzehl, 1954;

Niedergerke, 1955; Ebashi and Endo, 1968), probably by

modulating the adenosine triphosphatase (ATPase) activity of

the contractile machinery (Weber, 1959), but did not make clear

what its origin was.

The latter model proved to be, in general terms, qualitatively

correct when the 60 s well recognized the TT and its continuity

with the sarcolemma (Endo, 1964; Franzini-Armstrong and

Porter, 1964; Huxley, 1964) and the inward spread of the

action potential through them (Ebashi and Endo, 1968). Also,

the triad evolved from “two vesicles with the intervening space”

(Porter and Palade, 1957) to the complex formed when the “T

system is bordered on both sides by the terminal sacs of the SR”

(Franzini-Armstrong and Porter, 1964). Subsequent work

unveiled the main intracellular reservoir of Ca2+ and

evidenced that the diffusion of Ca2+ starts when released from

such reservoirs at periodic places which coincided with the

terminal cisternae of the triadic regions (Hasselbach and

Makinose, 1962; Huxley, 1964; Winegrad, 1965; Jöbsis and

O’Connor, 1966; Ridgway and Ashley, 1967; Ashley and

Ridgway, 1968; Ebashi and Endo, 1968; Winegrad, 1968;

Winegrad, 1970), although the exact release mechanism was

not fully understood. Huxley envisioned this in 1964 as: “It

seems much more likely that the depolarization of the central

element of the triad triggers off the release of calcium from the

side elements . . . and that the specialized junctional regions seen

are involved in this transmission process” (Huxley, 1964). The

inward spread of excitation and the transient apparition of Ca2+

in the sarcoplasm constituted the long sought “inward acting

link”. The discovery of a dual effect of adenosine triphosphate

(ATP), which led to the proposal of a relaxing, “Marsh-Bendall”

factor in muscle homogenates, and demonstrated to be the non-

soluble, vesicle-located, ATP-Mg2+ activated sarcoendoplasmic

reticulum Ca2+ pump (SERCA) (Kielley and Meyerhof, 1948;

Marsh, 1951; Weber and Portzehl, 1954; Kumagai et al., 1955;

Ebashi and Lipmann, 1962; Hasselbach and Makinose, 1962;

Hasselbach, 1964; Ebashi and Endo, 1968; Caputo, 2011), closed

the basic cycle of release and reuptake of Ca2+ from and to the SR.

Finally, Ebashi and Endo (Ebashi and Endo, 1968), who

identified the molecular link between the sarcoplasmic Ca2+ and

the activation of the contractile machinery, and also participated

in the “relaxing factor” work, delineated the basic ECC sequence

pretty much as we know it now: “The processes which would

bring the contractile elements to the active state may be listed as

follows: Action potential and its inward spread through the

T-system . . . the sarcoplasmic reticulum is the site of linkage

between excitation and contraction, i.e., Ca ion associated with a

certain part of the sarcoplasmic reticulum is released by the

influence of the electrical current field, induced by depolarization

of the surface membrane, and Ca ion thus released subsequently

activates the contractile system”, then, the “sarcoplasmic

reticulum, exerts its relaxing effect by removing Ca ion from

the contractile system in vivo”. Saul Winegrad complemented: “it

is likely that . . . the longitudinal tubules and the intermediate

cisternae . . . contain the calcium-sequestering system that is

believed to operate during relaxation. The calcium taken up by

these structures presumably then moves more slowly to the

terminal cisternae, the main storage site in the muscle which

has completely recovered from mechanical activity” (Winegrad,

1968).

Successive research enriched that sequence with structural

and functional details, mainly pertaining to the specific issue of

the Ca2+ release from the triad and added regulators and more

precise quantitative data to the whole process. Also,

demonstrated that all these events are extremely coupled. The

readers are referred to the Historical Compendium of Muscle

Physiology, for further historical details (Caputo, 2011).

2.2 The sequence of events and the molecular
machinery involved in the
excitation–contraction coupling

The ECC mechanism in skeletal muscle depicts a fast

communication between electrical events taking place in the

sarcolemma and the muscle contraction, through a cascade of

global and locally restricted Ca2+ transients. The sequence of

events entails: 1) initiation and propagation of an action potential

(AP) along the plasma membrane, 2) inward, radial spread of the

depolarization along the tubular system, 3) dihydropyridine

receptors (DHPR)-mediated sensing of changes in the

membrane potential, 4) allosteric interaction of the DHPR

with the SR Ca2+ release channels (ryanodine receptors, RyR),

5) rapid release of Ca2+ from the triadic regions of the SR and

transient increase of Ca2+ concentration ([Ca2+]) in the

myoplasm, 6) transient activation of the contractile apparatus

and the myoplasmic Ca2+ buffering system, 7) activation of the

membranous-linked Ca2+ buffering and transporting system,

which comprises the SERCA and the Na+/Ca2+ exchanger

(NCX), and 8) appearance of the cascade of secondary

mitochondria-restricted and tubular-restricted Ca2+ transients,

the latter reflecting the recycling of Ca2+ through the store-

operated Ca2+ entry (SOCE) mechanism.

Physiologically, the activation of the muscle fibre is

modulated by the depolarization of the sarcolemma, including

the tubular system (Kuffler, 1947; Hodgkin and Horowicz,

1960a). Under resting conditions, the fibre is polarized

between –70 (Head, 1993) and –83 mV (Luff and Atwood,

1972; Wang et al., 2022), at 22 and 37°C, respectively. Upon

binding of acetylcholine (ACh) to the motor end plate, the

inward sarcolemmal conductance to Na+ rapidly increases,

bringing about an AP. In most experiments, performed

between 15 and 30°C, the AP depolarizes the fibre and then

slightly polarizes it to positive values between +25 and +35 mV,

which seems to be a safety factor for a successful AP conduction

and SR Ca2+ release (Wang et al., 2022). The AP spike has

1.5–2.5 ms of duration at half-maximum amplitude and spreads

along the sarcolemma over both sides of the motor plate with a
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propagation velocity of 0.4–1.9 m/s, depending on the

measurement technique, the temperature of the experiment

and the muscle studied (Luff and Atwood, 1972; Delbono and

Stefani, 1993; DiFranco et al., 2008; Pedersen et al., 2011; Banks

et al., 2018). The tension-sarcolemmal potential relationship is

sigmoidal, with a threshold for activation at about −54–58 mV

(Hodgkin and Horowicz, 1960a; Caputo, 2011).

During its sarcolemmal travel, the AP enters sarcolemmal

invaginations known as TT. These are periodic, radially (on a

transversal section) or transversally (on a longitudinal section)

oriented membranous structures (80–100 × 35–40 nm wide),

which conduct the AP at about 1 cm/s in a Na+ dependent,

regenerative way (Huxley, 1964; González-Serratos, 1971;

Bezanilla et al., 1972; Edwards et al., 2012). The so-called TT

are actually a tubular network which comprises transverse

(~75%), diagonal (~10%) and longitudinal (~15%) tubules

(Huxley, 1964; Jayasinghe et al., 2013; Jayasinghe and

Launikonis, 2013). This structural arrangement, as well as its

electrical properties, secures the rapid delivery of the AP to the

interior of the fibre (Bezanilla et al., 1972; Fraser et al., 2011;

Pedersen et al., 2011; Edwards et al., 2012), a crucial step for the

uniform release of Ca2+ and the subsequent rapid contraction.

The incoming excitation reaches the triadic regions, where a

TT is surrounded by two radially dilated portions of the SR,

called “terminal cisternae” (Porter and Palade, 1957; Franzini-

Armstrong and Porter, 1964; Huxley, 1964). The junctional parts

of the terminal cisternae (jSR), and the TT, of the triadic regions,

house a bunch of proteins involved in the regulation of the release

of Ca2+ from the SR. The central actors in this process are the

DHPR anchored to the TT and the RyR1 anchored to the SR

membrane, which constitute the Ca2+ release units (CRU). DHPR

(L-type Ca2+ channel, CaV1.1) are heteropentamers formed by

subunits α1 (transmembrane), γ (transmembrane), β1
(intracellular), α2 (extracellular), and δ1 (extracellular), whose

function is regulated by the membrane potential. The

cryoelectron microscopy (cryo-EM) reconstructions at 2.7–3.6

Å confirmed that the α1 subunit of the channel has the typical 6 ×
4 structure of many voltage-gated channels, i.e., four homologous

domains (DI-IV), each with six transmembrane helices (Wu

et al., 2016; Zhao et al., 2019). The α1 subunit houses the dome,

the pore domain (PD), the selectivity filter (SF), and the voltage-

sensing domain (VSD). The dome is a negatively charged,

progressively narrowing region mainly shaped by extracellular

loops above the SF of the PD, to which it guides Ca2+. The PD is

made up of the S5, S6 and P helices of each domain, and several

loops stabilized by multiple disulfide bonds, which create a

permeation path for Ca2+ of about 60 Å in length. The SF is a

specialized, narrow region, predominately formed by negatively

charged aminoacids: E292 and G293 of DI, E614 and D615 of

DII, E1014 and G1015 of DIII, and E1323 and A1324 of DIV.

Since N617 of DII seems also to be particularly important for

Ca2+ permeation (Dayal et al., 2017; Idoux et al., 2020; Dayal

et al., 2021), the SF is likely more complex than initially proposed

(Wu et al., 2016). The auxiliary subunits have a regulatory role on

the expression, localization and function of the channel (Gregg

et al., 1996).

Since the DHPR carries a Ca2+ current under voltage-clamp

protocols in intact fibres (Skoglund et al., 2014; Dayal et al.,

2017; Banks et al., 2021), it is expected to function the same as a

response to an AP, highlighting its nature as a voltage-gated

channel. The activated Ca2+ inward current is slower, and with a

slightly lower amplitude compared to the Cav1.2 present in the

heart, however, the influx of Ca2+ through this channel is not

necessary for the skeletal muscle ECC and contraction (Caputo

and Gimenez, 1967; Armstrong et al., 1972; Dayal et al., 2017;

Idoux et al., 2020). Instead, the ability of the DHPR to sense the

AP is particularly important for the skeletal muscle ECC. The

S4 transmembrane helices of the α1 subunit constitute the

voltage sensors (VSDI to VSDIV), which decode the

information of the tubular excitation and translates it into a

signal for the RyR1. The voltage sensing function depends on the

S4 enrichment in the positively charged aminoacids arginine

and lysine. Their movement during the VSD operation produces

a small, yet measurable, voltage-dependent intramembrane

charge movement, i.e., a current, which precedes the

activation of the Ca2+ release from the SR (Schneider and

Chandler, 1973; Rios and Brum, 1987; Banks et al., 2021).

The peak of the charge movement time course follows the

peak of the AP by 1.5 ms (Banks et al., 2021). It is intriguing

why there are sizeable differences in the amplitudes, voltage-

dependence and time courses of the VSDI-IV movements

(Banks et al., 2021; Savalli et al., 2021), and whether they

actually tune in any way the Ca2+ release from the SR. For

instance, the VSDII and VSDIV seem to be the first ones

activated, but the VSDI is so slowly activated that it seems

not to be directly involved in the Ca2+ release activation;

contradictory results have been reported regarding the

activation kinetics of VSDIII (Banks et al., 2021; Savalli et al.,

2021). In any case, the activation of either one or several of the

DHPR´s VSD likely leads to a conformational change that gates

the opening of the RyR1 in a cooperative way (Schneider and

Chandler, 1973; Rios and Brum, 1987; Ríos et al., 1993).

Functional experiments with molecularly engineered DHPR

suggested that its loop DII-III, close to the VSDII, is fundamental

to ECC (Tanabe et al., 1990). However, the 3D structures

available just lack the region between residues 687–789 (Wu

et al., 2016; Zhao et al., 2019), which corresponds to the loop DII-

III, precluding a conclusion about if it is long enough to clearly

reach and interact with the RyR. If not directly, this loop may still

interact with the RyR through the SH3 and cysteine-rich domain

containing (STAC3) protein (Rufenach and Van Petegem, 2021;

Shishmarev et al., 2022), something which awaits to be confirmed

as a step to prove if STAC3 mediates the DHPR-RyR coupling

relevant for a successful ECC.

Alternatively, the loop I-II-AID-β1 complex (Wu et al.,

2016), also close to the VSDII, protrudes from the DHPR to
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the myoplasm andmay directly or indirectly (i.e., the discovery of

accessory β1-binding proteins such as Rem opens this possibility)

interact with the RyR, explaining early functional observations

according to which the absence of the β1 subunit eliminates the

ECC (Gregg et al., 1996; Beqollari et al., 2015).

The history has shown that solving this issue is particularly

difficult, but to fully understand the ECC mechanism, it is

necessary first to make clear if, and how, the DHPR gates the

RyR1 through a direct DHPR-RyR interaction or requires one or

several accessory proteins (e.g., STAC3, Rem). Afterwards, it is

crucial to have the complete, atomic resolution structure of the

DHPR-RyR or DHPR-accessory proteins-RyR complexes under

different conformations, to unambiguously assign the domains

that mediate their interaction and shed light on the gating

mechanism. Using purified complexes or native membranes

would be, at least theoretically, possible approaches to address

this problem.

Supramolecularly, the DHPR are arranged in groups of four,

called tetrads, which alternately face the highly ordered RyR1,

filling the 15–25 nm TT-SR gap (Huxley, 1964; Block et al., 1988;

Franzini-Armstrong and Jorgensen, 1994; Franzini-Armstrong

et al., 1998; Franzini-Armstrong, 1999).

The RyR1 are mushroom-like (from its lateral view), four-

leaf clover shaped (from the sarcoplasmic view), Ca2+ channels

with a big cytoplasmic moiety and a transmembrane region,

inserted in rows in the jSR (Fleischer et al., 1985; Imagawa et al.,

1987; Block et al., 1988; Saito et al., 1988). The effort of many

laboratories worldwide, and the gain in resolution in cryo-EM

recent reconstructions (between 3.8 and 6.1 Å) (Efremov et al.,

2015; Yan et al., 2015; Zalk et al., 2015), compared to the first

structures (over 9 Å) (Block et al., 1988; Saito et al., 1988;

Wagenknecht et al., 1989; Ludtke et al., 2005; Samsó et al.,

2005), reached a point at which a model of six

transmembrane segments for each of the four monomers (6 ×

4) that ensemble the functional channel appears reasonable.

Thus, the transmembrane region of each monomer looks alike

other ion channels: four transmembrane α-helices (S1 to S4)

surround the S5 and S6 pore-forming helices. The luminal loops,

the S6 and the P-segments constitute an extended permeation

pathway of about 80 Å in length, which includes a 10 Å long SF,

which drains into a 15 Å long hydrophobic cavity. A motif

enriched in glycine residues of the S6 along this pathway is

particularly important for gating and Ca2+ permeation in this

channel (Efremov et al., 2015; Mei et al., 2015; Yan et al., 2015;

Zalk et al., 2015).

The cytoplasmic moiety comprises about 80% of the bulk of

the protein and is a complex network of tens of α-helices,
surrounding one central spot (SPRY domains) enriched in β-
sheets, which conform up to 20 domains (Efremov et al., 2015;

Chen and Kudryashev, 2020), mainly involved in binding and

transducing the signaling of many ligands to the pore region.

Among those domains rich in α-helices, the EF-hand motifs, and

the repeat 3-4 highlight: the EF-hands are in the lower face of the

cytoplasmic moiety, while the repeats 3-4 are on top and at the

corners of the cytoplasmic moiety, where they are involved in

Ca2+ sensing and DHPR-RyR interaction, respectively. These

structures seem to be the responsible for two putative modes

of activation of the RyR1: mediated by the DHPR in those

RyR1 coupled to tetrads, and by Ca2+ in those RyR1 not

coupled to tetrads. From the nice images published (Samsó

et al., 2009; Efremov et al., 2015; des Georges et al., 2016), we

can say that the conformational change observed during opening

of the channel resemble the flowering of a rose: a central twist and

dilation, accompanied by a notorious change in the periphery of

the structure which move outwards and downwards. This seems

to be associated with an increase in curvature in the SR

membrane when observed in native membranes by cryo-

electron tomography (Chen and Kudryashev, 2020).

Upon opening, the RyR1 allows a rapid, massive, highly

regulated release of Ca2+ from the SR to the myoplasm. From the

peak of the AP, the peak of the release of Ca2+ is delayed by about

2–3 ms in most experiments performed between 15 and 25°C

(Delbono and Stefani, 1993; Banks et al., 2021). This time

window encompasses the charge movement in the DHPR, the

RyR1 gating and opening, and the Ca2+ diffusion from the

terminal cisternae to the myoplasm. Although differences

among fibre types have been recognized (Section 3.1), the

peak of the release of Ca2+ is attained within 1.8 ms in most

fibres (Calderón et al., 2009; Calderón et al., 2010; Calderón et al.,

2014a; Calderón et al., 2014b; Rincón et al., 2021). Beyond the

DHPR, a handful of endogenous regulators of the Ca2+-release

function of the RyR1, acting either from the myoplasmic or the

SR luminal side, have been described: ATP and other purines,

Ca2+, Mg2+, reactive oxygen species (ROS) and reactive nitrogen

species, redox state, phosphorylation/dephosphorylation status,

calmodulin, S100A1, FK 506 binding protein 12 (FKBP12 or

calstabin-1), triadin (Trisk-95 and Trisk-51), junctin, homer-1,

calumenin-2 and calsequestrin (CASQ) (Imagawa et al., 1987; Lai

et al., 1988; Hidalgo et al., 2005; Butanda-Ochoa et al., 2006; Jung

et al., 2006; Wei et al., 2006; Goonasekera et al., 2007; Feng et al.,

2008; Prosser et al., 2008; Wei et al., 2009; Boncompagni et al.,

2012; Wium et al., 2012; Marty, 2015; Meissner, 2017; Ogawa

et al., 2021; Woll and Van Petegem, 2022).

Although the SR protein-27 (SRP-27) and junctophilin (JPH)-

1 interact with the RyR1 (Phimister et al., 2007; Bleunven et al.,

2008), it is not clear yet if they actually regulate the channel. There is

debate on whether JPH-2 interacts or not with RyR1 (Phimister

et al., 2007; Nakada et al., 2018). The ability of JPH-1 and -2 to

regulate Ca2+ release in myotubes likely relies on their DHPR-

binding ability and their TT-jSR tethering properties, which also

mediate the precise localization of CRU (Nakada et al., 2018; Perni,

2022).

First isolated from rabbit muscle, CASQ is a ~44-kDa Ca2+

binding protein highly expressed in the lumen of the jSR

(MacLennan and Wong, 1971; Franzini-Armstrong et al.,

1987; Perni et al., 2013), where it undergoes a [Ca2+]-
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dependent cooperative and reversible polymerization, forming

oligomers with both low and high affinity sites for Ca2+ (Park

et al., 2003; Sanchez et al., 2012). When [Ca2+] approaches 1 mM,

the three thioredoxin-similar domains which surround a

hydrophilic core fold, exposing numerous negatively charged

aspartate and glutamate residues, that stack front-to-front

forming dimers, which in turn stack back-to-back and

continue stacking as [Ca2+] increases, to form a ribbon-like

polymers that can ramify as a tree, finally forming a mesh

with multiple nodes (Wang et al., 1998; Park et al., 2003; Park

et al., 2004; Sanchez et al., 2012; Kumar et al., 2013; Perni et al.,

2013; Wang and Michalak, 2020). Those “branches” anchor

directly, or through triadin and junctin, to the RyR1, forming

a complex that modulates the SR Ca2+ release (Guo and

Campbell, 1995; Zhang et al., 1997; Wei et al., 2006;

Goonasekera et al., 2007; Wei et al., 2009; Boncompagni et al.,

2012; Sanchez et al., 2012; Wang and Michalak, 2020). Its ability

to bind up to 80 ions per molecule explains why CASQ1 keeps the

total SR Ca2+ as high as 35–175 mM (Royer and Ríos, 2009;Wang

and Michalak, 2020). The electrostatic binding of Ca2+ to CASQ,

together with its low affinity sites, favors the rapid unbinding and

release of Ca2+.

The apparition of Ca2+ in the myoplasm shows

microdomains with an up to 20-fold gradient of [Ca2+], which

depends on the distance of a subcellular region from the CRU

(Escobar et al., 1994; Baylor and Hollingworth, 2007; DiFranco

et al., 2008; Hollingworth et al., 2012; Holash and MacIntosh,

2019). The average of those variable Ca2+ microdomains

generates a global, positive, myoplasmic Ca2+ transient. The

amount of Ca2+ released from the SR is enough to rise the

resting cytoplasmic free [Ca2+] from 45–106 nM (Williams

et al., 1990; Westerblad and Allen, 1991; Head, 1993; Konishi,

1998) to a fibre-type dependent averaged value of 7–30 μM

(Hollingworth et al., 1996; Baylor and Hollingworth, 2003;

Baylor and Hollingworth, 2007; Hollingworth et al., 2012;

Milán et al., 2021; Rincón et al., 2021) (Section 3.1). In turn,

this global, master Ca2+ transient associates to a cascade of locally

restricted Ca2+ transients, from which a diversity of phenomena

is activated (contraction, metabolism, heat, etc), such as the

positive mitochondrial Ca2+ transients, and the negative SR

and tubular Ca2+ transients. Also, as soon as the Ca2+ appears

in the myoplasm, several Ca2+ buffering mechanisms are

activated. Troponin C (TnC), parvalbumin (PV), ATP and the

Ca2+ indicators rapidly bind Ca2+. Each of these Ca2+ binding

mechanisms produces its own Ca2+ transient. Subsequently, the

NCX, the mitochondria and the SERCA deal with Ca2+ with

slower kinetics and the SOCEmachinery recycles part of the Ca2+

extruded through the NCX. Each mechanism will be further

developed in the coming paragraphs.

Troponins are a family of proteins attached to the thin

filaments, from which TnC binds several Ca2+ ions with

moderate affinity and are the molecular link between the

cytosolic Ca2+ raise and the activation of the contraction

(Ebashi et al., 1969). The beginning of the contraction shows

a delay of 2–3 ms with respect to the beginning of the Ca2+

release, at room temperature, reflecting the diffusion time and the

binding to TnC.

Muscle PV is a low molecular weight protein of the ɑ-

sublineage (ɑ-PV), particularly abundant in muscle fibres type

II, in which it can reach ~1,000 μM. Two, high affinity, EF-hand,

Ca2+ binding sites, are the responsible for its role as a Ca2+ buffer

important in muscle relaxation, as it was recognized long time

ago (Gillis et al., 1982; Heizmann et al., 1982; Leberer and Pette,

1986; Füchtbauer et al., 1991; Permyakov and Uversky, 2022).

The binding of Ca2+ to TnC and PV explains most of the heat

produced during muscle activation but is PV the responsible of

the heat absorption observed several milliseconds after the Ca2+

release (Barclay and Launikonis, 2021). Given its differential

concentration, and its high affinity when present, PV also has an

important role in shaping the different morphologies of the single

and tetanic Ca2+ transients obtained in different fibre types

(Calderón et al., 2014a) (Section 3.1).

ATP reaches concentrations even higher than PV, which give

it importance as a Ca2+ buffer, however, its lower Ca2+ affinity

gives it less total capacity for Ca2+ binding than TnC and PV

(Baylor and Hollingworth, 2003; Rincón et al., 2021). Under

experimental conditions, the Ca2+ dyes also buffer Ca2+, within a

variable range of kinetics that depend on the concentration and

the intrinsic properties of the indicator molecule (Section 3.1).

Once the unbound Ca2+ returns to the myoplasm, relaxation

proceeds. Ca2+ is definitively removed by the mechanisms

responsible to extrude it from the myoplasm. The first

mechanism activated is the NCX. This protein is located

mainly in the tubular network, where it extrudes Ca2+ from

the sarcoplasm, with a low total capacity and rapid saturation.

Given this kinetics, its role is more evident during tetanic than

during single stimulation (Balnave and Allen, 1998; Calderón

et al., 2014a; Rincón et al., 2021). Part of this extruded Ca2+ is

recycled back to the myoplasm during and after each twitch

through Orai1 and likely the transient receptor potential

canonical (TRPC) channels, reflecting a phasic activation of

the SOCE mechanism (Section 3.3). This NCX-SOCE

coupling likely reflects part of the bidirectional SR-TT

exchange of Ca2+ proposed back in the 70 s of the last

Century (Winegrad, 1968; Winegrad, 1970).

The uptake of Ca2+ by the mitochondria also removes Ca2+

from the myoplasm. The mitochondrial Ca2+ transients follow

the cytosolic one with a ~10 ms delay. Actively studied during the

last two decades, at least two lines of evidence suggest that its

sizeable buffering capacity shapes the cytosolic Ca2+ transient

helping the muscle relax, further carrying metabolic

consequences. On one side, dual mitochondrial and

myoplasmic Ca2+ measurements demonstrated larger cytosolic

Ca2+ transients in regions with polarized vs. depolarized

mitochondria in intact flexor digitorum brevis (FDB) fibres

during a single twitch, which allowed to estimate a rather
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large capacity of 10–18% to buffer the cytosolic Ca2+ transient (Yi

et al., 2011). On the other side, poisoning different fibre types

with FCCP (Section 3.4) induced a reversible lengthening of the

decay phase of single and tetanic Ca2+ transients (Caputo and

Bolaños, 2008; Calderón et al., 2014a). Recent knowledge about

the fine structure of the molecular machinery involved in Ca2+

transport into the mitochondria, as well as the determination of

the precise amount of Ca2+ released from the SR and the peak

Ca2+ concentration reached in the sarcoplasm, allows us now to

describe how and how much Ca2+ enters the mitochondria

during ECC in different fibre types (Section 3.2).

The final mechanism responsible for restoring the

sarcoplasmic resting [Ca2+] and keeping it low is the SERCA.

SERCA is a high molecular weight, highly regulated pump,

enriched in the longitudinal region of the SR and the non-

junctional membrane of the terminal cisternae, which

transports Ca2+ into the SR against its concentration gradient

(Hasselbach, 1964; Jorgensen and Jones, 1986; Hasselbach, 1998;

Odermatt et al., 1998; Periasamy and Kalyanasundaram, 2007;

Rathod et al., 2021). This protein has three large cytoplasmic

domains, N, P and A, attached to a domain consisting of

10 hydrophobic trans-SR-membrane helices (M1 to M10)

FIGURE 1
Structural and functional comprehensive model of the Ca2+ handling machinery and Ca2+ fluxes of the mammalian skeletal muscle ECC.
Constructed at scale based on microscopy and protein measurements, the cartoon considers many current observations and addressed the
question if there is space for all ECC proteins in the triadic space. For instance, JPH-1 coprecipitates with RyR1 more than JPH-2, also, super-
resolution observations suggest that JPH-1 locates more closely to RyR1 than JPH-2. Regarding the SOCE machinery, some TRPC members
have been shown to precipitate with DHPR and Orai. The model shows that a TRPC-Orai-TRPC cluster explaining these observations fits among
DHPR-RyR1-empty squares. STIM location and size enables its binding to the TRPC-Orai-TRPC cluster. Also, this patternmay explain how TRPCmay
be a mediator of the RyR1 involvement in SOCE regulation. It is clear that preassembled STIM-Orai clusters present a solution to the problem of
severe movement restrictions in this region. Arrows indicate Ca2+ fluxes. The internal equilibrium of Ca2+ entails short (on the right: sarcoplasmic
reticulum (SR) release, myoplasmic buffering and SERCA reuptake) and long (on the left: SR release, myoplasmic and mitochondrial (Mito) buffering
and activation, and SERCA uptake) routes. The external equilibrium entails the Ca2+ exit through the NCX and the entry through the SOCE channels,
located in the transverse (TT), and probably in the longitudinal tubules (LT). Questionmarks indicate probable routes ormechanisms, which have not
been “seen” yet. Although the high amount of PV was meant to represent a type II fibre, in general terms, the structure and the direction of the fluxes
presented remain qualitatively the same in all fibre types. In the few cases in which the structure of the muscle isoforms have not been determined,
homologouswere used (e.g., non-mammalian NCX or STIM1 were used instead of NCX1-3 or STIM1L). Key to the figure: ECC: excitation-contraction
coupling; SOCE: store-operated Ca2+ entry; SERCA: sarcoendoplasmic reticulumCa2+ adenosine triphosphatase; TRPC: transient receptor potential
canonical; NCX: Na+/Ca2+ exchanger; MCU: mitochondrial Ca2+ uniporter; PV: parvalbumin; STAC: SH3 and cysteine-rich domain containing
protein; CASQ: calsequestrin; DHPR: dihydropyridine receptor; RyR: ryanodine receptor; JPH: junctophilin; STIM: stromal interaction molecule.
Protein data bank structures: 1RTP, 1VFP, 2K60, 2MAJ, 3J8H, 3TEQ, 5GJV, 5JDG, 5KN1, 5ZBG, 6BBF, 6K7Y, 6UY7, 7RW4, 7RXQ. Red calibration bar:
10 nm.
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(MacLennan et al., 1985; Toyoshima and Mizutani, 2004). ATP

and Mg2+ binding to the more peripheral N domain activates its

large movement towards the more central P domain and the

turning of the A domain over itself. The resulting movements of

some transmembrane helices, particularly M1, M2 and M4,

occlude two Ca2+ ions within the transmembrane region and

then release them inside the SR (Toyoshima andMizutani, 2004).

Even when a single Ca2+ transient is only ~4–12 ms width,

depending on the type of the fibre, SERCA pumping remains

active for more than 60 ms, while dealing with the Ca2+ 1) being

unbound from the TnC and PV, 2) leaving the mitochondria and

3) entering the fibre via SOCE.

The last decade was particularly fruitful to take to the next

level observations performed in the “old”, past century: 1)

researchers finally obtained structures of the DHPR and RyR

at near-atomic resolution, helping explain the gating of both

channels and mapping several regulators; 2) the structural and

functional importance of the new main triadic regulators

(JPH, triadins, junctin and STAC3) was acknowledged; 3)

the peak myoplasmic [Ca2+] was reliably quantified (Section

3.1); 4) evidence consolidated the importance of mitochondria

in Ca2+ handling in skeletal muscle (Section 3.2); 5) the ECC is

ultimately a cascade of global and restricted Ca2+ transients

associated to the fibre excitation whose concerted action

activates the contractile machinery and other functions of

the skeletal muscle. Figure 1 presents a complete, updated

structural and functional model of the ECC in mammalian

skeletal muscle.

3 Focus on

Here, we will focus on selected topics which have received

particular attention during the last decade and whose results can

be articulated with previous observations to reach stronger

conclusions.

3.1 Assigning reliable numbers to the Ca2+

fluxes and concentrations in mammalian
muscle fibres

How much Ca2+ is released from the SR and with which

kinetics? Which free [Ca2+] is reached in the myoplasm? Is this

Ca2+ enough to activate contraction? What is the kinetics of the

Ca2+ reuptake? These questions have been addressed for at least

5 decades, when pioneer work demonstrated the transient

increase in myoplasmic Ca2+ associated to the membrane

depolarization in amphibia and arthropods muscles using

murexide and aequorin as Ca2+ indicators (Jöbsis and

O’Connor, 1966; Ridgway and Ashley, 1967; Ashley and

Ridgway, 1968; Ebashi and Endo, 1968). The researchers then

focused on amphibia until the early 90 s (Gillis et al., 1982; Baylor

and Hollingworth, 1988; Caputo and Bolaños, 1994; Escobar

et al., 1994), and finally moved to mammalian muscles.

Three attainments coincided at the time at which the field

focused on Ca2+ measurements in mammalian muscle models: 1)

availability of relevant biochemical information on the ECC and

fibre types, 2) the outburst of fluorescent Ca2+ indicators and 3)

improvements in calibration, mathematical and computational

modelling.

Here, we will focus on how researchers integrated these three

attainments to finally find a solution to the challenge of putting

reliable numbers to the ECC Ca2+ fluxes and concentrations in

mammalian muscle, especially considering the existence of at

least four fibre types.

3.1.1 Biochemical information relevant to
the mammalian excitation–contraction
coupling in fibre types

The existence of muscles with different biochemical and

dynamic properties was formally acknowledged long time ago

(Ranvier, 1873; Close, 1972). The study of their particularities

first focused on the biochemical differences of their fibres

(Dubowitz and Pearse, 1960; Engel, 1962; Brooke and Kaiser,

1970; Barnard et al., 1971; Peter et al., 1972). By the 90s, a wealth

of information confirmed the presence of at least four

phenotypes in the muscles of the mammalian extremities, as

recognized by the presence of the isoforms of the myosin heavy

chain (MHC): I (slow twitch), and IIA, IIX/D and IIB (fast

twitch) (Schiaffino and Reggiani, 2011).

Soon after the ECC phenomenon was demonstrated to be

mediated by Ca2+, many researchers presented data concerning

biochemical differences in the molecular machinery involved in

Ca2+ release and reuptake using the dichotomic model of slow-

twitch vs. fast-twitch fibres. Later, the studies were extended to

the four fibre types. Details about the molecular and biochemical

differences that underlie the quantitative differences in ECC

among fibre types have been presented previously and we

refer the readers to those papers and the literature cited

therein (Bottinelli and Reggiani, 2000; Calderón et al., 2010;

Calderón et al., 2014b; Rincón et al., 2021).

We can summarize the most relevant information as

follows: 1) there are between twofold and threefold more

CRU in the fast, compared to the slow fibres, with no

difference in the isoforms. There are only about 1.5 times

more triadic accessory proteins (e.g., triadin, JPH) in the fast

compared to the slow muscles. Fast fibres only express CASQ1,

while slow fibres have both CASQ1 and CASQ2 at a 3:1 ratio,

but with a total amount of CASQ, and a total Ca2+ buffering

capacity, somewhat lower than in fast fibres. Despite this, there

seems to be only a ~10% difference in SR free Ca2+ content

between both types of fibres; 2) TnC isoforms differ between

slow and fast fibres, explaining the presence of almost twofold
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TABLE 1 Best Ca2+ dyes to study ECC in skeletal muscle, with their affinity and rate constants relevant for calibration of their fluorescence signals.

Dye Kd

(µM)
kon
(µM−1

s−1)

koff
(s−1)

Kd

(µM)
kon
(µM−1

s−1)

koff
(s−1)

Cellular
model

T
(°C)b

Comments References

In vitro In situa

High affinity Ca2+ dyes (Kd in vitro < 1 μM)c

Calcium
Green-1

0.19 0.93 HeLa cells 20–22 In vitro and in situ
Kd were measured

Thomas et al. (2000)

Calcium
Orange

0.19 1.10 HeLa cells 20–22 In vitro and in situ
Kd were measured

Thomas et al. (2000)

Fluo-3 0.33–0.51 920 424 0.81–4.00 13.1–15 33.5–60 Frog intact
muscle fibres,
HeLa cells

16–22 In vitro values were
measured. In situ
values were either
measured using
55 mg/ml of aldolase
to simulate
intracellular
conditions or
estimated.

Minta et al. (1989),
Hollingworth et al.
(1990), Lattanzio
and Bartschat,
(1991), Harkins et al.
(1993), Caputo and
Bolaños, (1994), Gee
et al. (2000), Thomas
et al. (2000)

Oregon
Green
488 BAPTA-1

0.16–0.17 0.43 HeLa cells 20–22 In vitro and in situ
Kd were measured

Thomas et al. (2000),
Woods et al. (2004)

Fluo-4 0.345 1.00 HeLa cells 20–22 In vitro and in situ
Kd were measured

Gee et al. (2000),
Thomas et al. (2000)

Fura-2 0.14–0.24 270–760 65–109 0.23 100 23 Frog intact
muscle fibres

16–24 In vitro Kd was
measured, kon and
koff values were
either measured or
estimated. In situ
values were
estimated

Grynkiewicz et al.
(1985), Baylor and
Hollingworth,
(1988), Lattanzio
and Bartschat,
(1991), Berlin and
Konishi, (1993)

Intermediate affinity Ca2+ dyes (1 μM < Kd in vitro < 2 μM)

Fura-4F 1.16 20–21 In vitro Kd was
measured

Wokosin et al. (2004)

Rhod-2 1.00 22 In vitro Kd was
measured

Minta et al. (1989)

Low affinity Ca2+ dyes (Kd in vitro > 2 μM)

Calcium
Green 5N

63–85 156 6.4 1,000 Frog intact
muscle fibres

16–22 In vitro Kd was
measured. In situ
values were
estimated

Zhao et al. (1996)

Calcium
Orange 5N

53–55 87 12 1,040 Frog intact
muscle fibres

16–22 In vitro Kd was
measured. In situ
values were
estimated

Zhao et al. (1996)

Fluo-5N 90 350 Rat skinned
muscle fast
fibres

21–24 In vitro and in situ
Kd were measured

Cully et al. (2016),
Gee et al. (2000)

Mag-Fura-2 44–58.5 125–233 5,875–11,416 100 >50 >5,000 Mammalian
and frog
skeletal muscle
fibres

16–24 In vitro Kd was
measured, kon and
koff were estimated.
In situ values were
estimated from frog
data.

Berlin and Konishi,
(1993), Delbono and
Stefani, (1993), Zhao
et al. (1996),
Wokosin et al.
(2004), Baylor and
Hollingworth, (2011)

(Continued on following page)
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more Ca2+ binding sites in fibres types IIA, IIX/D and IIB,

compared to type I; 3) there is a continuum increase in PV

content across the four fibre types such that the fastest fibres

(type IIB) have up to 300 times more than the slowest fibres

(type I). Fibres IIA have about tenfold more PV than type I; 4)

the differential ATP content explains the about 50% higher

amount of ATP Ca2+ binding sites in the fast fibres compared to

slow ones; 5) SERCA different isoforms and content among

fibres result in a twofold (for IIA) or up to fivefold (for IIX/D

and IIB) larger maximum Ca2+ reuptake flux rate in fast fibres

compared to fibres type I; 6) up to twofold higher mitochondrial

volume and a larger maximum flux rate of the mitochondrial

Ca2+ uniporter (MCU) explain the threefold to fourfold higher

capacity of this mechanism in fibres type I compared to fibres

type II; 7) NCX1 is more abundant in fibres type I, but the

capacity of the NCX3, present in fibres type II, is slightly higher;

8) STIM1 is about 1.5 times more abundant in slow compared

to fast fibres, however, the SOCE total capacity seems to be

higher in the latter.

Short (FDB) and large (extensor digitorum longus, EDL,

and soleus) fibres, either in fascicles, manually isolated or

enzymatically dissociated, intact or nude, have been the most

used models to study Ca2+ kinetics in different fibre types.

Dynamical and molecular markers have been used to

identify different fibre types in those preparations (Baylor

and Hollingworth, 2003; Calderón et al., 2009; Calderón

et al., 2010; Hollingworth et al., 2012; Calderón, 2013;

Calderón et al., 2014a).

TABLE 1 (Continued) Best Ca2+ dyes to study ECC in skeletal muscle, with their affinity and rate constants relevant for calibration of their fluorescence
signals.

Dye Kd

(µM)
kon
(µM−1

s−1)

koff
(s−1)

Kd

(µM)
kon
(µM−1

s−1)

koff
(s−1)

Cellular
model

T
(°C)b

Comments References

In vitro In situa

Mag-Fluo-4d 7.25 ×
103 μM2

1.65 ×
105 μM2

5.28 μM−2 s−1 8.72 ×
105

Type II FDB
intact muscle
fibres from
mouse

20 In vitro and in situ
Kd were measured.
In situ kon and koff
were estimated. In
vitro kon and koff
were not estimated
since they are
irrelevant for
calibration of in situ
Ca2+ fluorescence
signals.

Milán et al. (2021)

Mag-Fura-5 23–31 >5,000 Rat cut fast
muscle fibres
and frog
muscle fibres

16–22 In vitro Kd was
measured. In situ koff
was estimated

Delbono and Stefani,
(1993), Zhao et al.
(1996), Szentesi et al.
(1997)

Mag-
Fura-red

55 242 >21 >5,000 Frog intact
muscle fibres

16–22 In vitro Kd was
measured. In situ
values were
estimated

Zhao et al. (1996)

Magnesium
Green

7 1,750 19 90 1,750 Frog intact
muscle fibres

In vitro Kd was
measured. In situ
values were
estimated

Zhao et al. (1996)

Oregon
Green
488 Bapta-5N

48 1.57 7,520 22 In vitro values were
measured

Woods et al. (2004)

Rhod-5N 800 6.25 >5,000 Rat skinned
fast fibres

21–24 In situ Kd was
measured, kon and
koff were estimated

Cully et al. (2016)

aAlthough in vitro and in situ values are given for comparative purposes, only in situ values should be used for calibration of sarcoplasmic Ca2+ signals. The “Cellular model” column applies

only to in situ values.
bTemperature applies to both in vitro and in situ values.
cAllKd values are for the Ca2+─dye reaction. High and intermediate affinity dyes should only be used for qualitative studies (e.g., the phenomenon is present or not), relative and comparative

studies (e.g., a percentage change compared to a control condition) or resting Ca2+ assessment. Low affinity dyes can be used for absolute quantifications of Ca2+ transients, comparative

measurements, and gathering data for feeding mathematical models.
dSince Mag-Fluo-4 has a 2:1 (dye:Ca2+) stoichiometry, the units of the Kd and kon are different from the other dyes, as indicated in the table. Regrettably, due to a typing error, the Kd in vitro

was originally reported as 7.25 × 105, being 7.25 × 103 the correct number. FDB: flexor digitorum brevis.
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3.1.2 Using Ca2+ dyes that reliable track the
Ca2+ transients

Foremost researchers popularized the use of fluorescent

intracellular dyes for determining the dynamic concentration

of intracellular Ca2+ in different cell types (Tsien, 1980; Tsien

et al., 1982; Grynkiewicz et al., 1985; Minta et al., 1989). A variety

of dyes was then developed and many used in skeletal muscle

(Raju et al., 1989; Delbono and Stefani, 1993; Hollingworth et al.,

1996; Gee et al., 2000; Katerinopoulos and Foukaraki, 2002;

Woods et al., 2004) (Table 1). It became clear soon that slow

dyes well measured resting Ca2+ but did not render trustable

measurements of peak [Ca2+] and Ca2+ kinetics (Baylor and

Hollingworth, 1988; Berlin and Konishi, 1993; Hollingworth

et al., 1996; Wokosin et al., 2004). This is because of their

slow rate of detachment from Ca2+ and their low Ca2+ Kd

(below 1 μM in vitro), limiting the range of concentrations at

which the dye responds before significantly buffering Ca2+ and

becoming saturated. Moreover, the calibration of non-

ratiometric, slow dyes is fraught with difficulties, for instance,

large errors in the Fmin estimations are common, and they may

induce up to a 17% error in the [Ca2+] (Mejía-Raigosa et al.,

2021). As a result, a wealth of qualitatively relevant information

was generated by using these slow dyes, however, quantitative

reliable information was still lacking.

Fast Ca2+ dyes such as Fluo-5N, Mag-Fluo-4, Mag-Fura-2

(Furaptra) and Rhod-5N, typically have an in vitro Kd between

20 and 100 μM, which rise to about 700–1,000 μM in situ, i. e, in

the myoplasm or in a medium resembling the myoplasm. This

very low affinity in situ is the property that makes them reliably

track Ca2+ kinetics in skeletal muscle, as demonstrated because

these dyes resolve every single peak of a high-frequency tetanus,

and their fluorescence signals superimpose the actual Ca2+

transients (Baylor and Hollingworth, 2003; Baylor and

Hollingworth, 2007; Calderón et al., 2014a; Rincón et al.,

2021). Moreover, this property makes them be far from

saturation, be less prone to buffer the Ca2+ transients, and

during calibration, their Fmin is less susceptible to errors

because their fluorescence in presence of the resting [Ca2+] is

already very low (Hollingworth et al., 1996; Baylor and

Hollingworth, 2003; Milán et al., 2021).

Of the above mentioned, polycarboxylate, fast dyes Mag-

Fura-2 and Mag-Fluo-4 are the most trustable to gain

quantitative insight into the ECC in different fibre types

(Table 1). Mag-Fura-2 was originally developed as a

ratiometric Mg2+ dye, with a similar spectra as that of Fura-2,

but it also binds Ca2+ with low affinity, and a 1:1 (Ca2+:dye)

stoichiometry (Raju et al., 1989). For Ca2+ measurements, it has

been typically excited between 350 and 430 nm, and its emission

has been collected over 480 nm, either as ratiometric or as non-

ratiometric (Hollingworth et al., 1996; Baylor and Hollingworth,

2003). An in situ Kd of 98 μM was estimated at 16°C

(Hollingworth et al., 1996; Zhao et al., 1996), but

experimental measurements in mammalian fibres are pending.

Mag-Fluo-4 is a Fluo-4 derivate, with a 1:2 stoichiometry, with

excitation and emission peaks at 493–494 and 515–516 nm,

respectively, and a good dynamic range (Gee et al., 2000;

Milán et al., 2021). The Mag-Fluo-4 in situ Kd is 1.65 ×

105 μM2, measured in fast mice fibres at 20°C, which ensures

that, even under short loading times (10 min), less than 5% of the

dye is bound to Ca2+ during a twitch, thus being far from

saturation (Milán et al., 2021). This dye binds more heavily

than Mag-Fura-2 (74 vs. 54% of the indicator molecules bound)

to intracellular components.

Given their structure, an apparent drawback of both dyes is

the possibility of contamination of the Ca2+ signals with Mg2+.

With a KdMg in vitro of 5,300 μM for Mag-Fura-2, and a range of

KdCa of 44–58.5 μM (Table 1) at ~20°C, a KdMg/KdCa ratio of

~90–120 is obtained (Hollingworth et al., 2009). Assuming a

KdMg of 6,500 μM (Baylor and Hollingworth, 2011) and a half-

fluorescence concentration for Ca2+ of 31.5 μM (Milán et al.,

2021), the KdMg/KdCa for Mag-Fluo-4 at ~20°C is ~200. Since

similar ratios may apply to in situ conditions, and given a resting

free [Mg2+] below 1 mM (Westerblad and Allen, 1992), a

significant contamination of the Ca2+ signals with Mg2+ in

muscle fibres can be ruled out.

3.1.3 Employing a trustable calibration
method

The truthful conversion of fluorescence signals into Ca2+

comprises the use of equations and values for parameters of

affinity and fluorescence acquired in situ at similar temperatures

(Table 1). Several equations have been published for ratiometric

and non-ratiometric dyes, as well as for 1:1 or 1:2 stoichiometry

(Grynkiewicz et al., 1985; Hollingworth et al., 1996; Zhao et al.,

1996; Mejía-Raigosa et al., 2021), including the calibration of

Mag-Fura-2 (Hollingworth et al., 1996; Baylor and Hollingworth,

2003) and Mag-Fluo-4 (Milán et al., 2021). For calibrating fast

dyes, saponin is a better membrane permeabilizer than

ionomycin (Milán et al., 2021).

3.1.4 Then, how much Ca2+ do muscle
fibres move?

Two different groups have been devoted to put numbers to

the mammalian ECC regarding fibre types, satisfactorily taking

into account the three aspects discussed above, and have obtained

similar results (Hollingworth et al., 1996; Baylor and

Hollingworth, 2003; Baylor and Hollingworth, 2007; Calderón

et al., 2009; Calderón et al., 2010; Baylor and Hollingworth, 2011;

Calderón et al., 2011; Hollingworth et al., 2012; Calderón et al.,

2014a; Calderón et al., 2014b; Milán et al., 2021; Rincón et al.,

2021). Their data, acquired using Mag-Fura-2 and Mag-Fluo-4,
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can be pooled, and presented as the following statements: 1)

fibres type I and IIA share the Ca2+ transient kinetics called

morphology type I (MT-I), while the fibres IIX/D and IIB share

the morphology type II (MT-II); 2) single twitch MT-I signals

have rise times between 1.2 and 1.8 ms and decay times of up to

80 ms. They release Ca2+ at rates between 50 and 150 μM/ms, and

their peak sarcoplasmic free [Ca2+] ranges from 7 to 13 μM; 3)

single twitch MT-II signals typically have rise times between 1.0

and 1.3 ms, with decay times ranging from 13 to 25 ms, being

~3–4 times narrower than the MT-I signals; 4) MT-II fibres

release Ca2+ at a huge rate of 200–250 μM/ms, and their peak

sarcoplasmic free [Ca2+] ranges from 15 to 30 μM. For the sake of

comparison, the peak SR release rate in mammalian

cardiomyocytes ranges from 2.0 to 4.2 μM/ms (Song et al.,

1998; Shannon et al., 2000); 5) the total amount of Ca2+

released from the SR in the MT-II is about 350 μM,

~2.7 times higher than the amount released by the MT-I and

about 5 times the amount released in cardiomyocytes (Song et al.,

1998). The differential kinetics of the Ca2+ release partially

explain the differential kinetics of the contraction in all fibre

types (Calderón et al., 2010).

The variability in the values presented above reflects the

inherent variability of the skeletal muscle biochemistry and

function (Bottinelli and Reggiani, 2000; Bottinelli, 2001), its

plasticity, as well as temperature (usually between 16 and

23°C) and sarcomere length differences between papers.

Importantly, MT-I values almost never overlap with those of

MT-II. Furthermore, these numbers reflect that the skeletal

muscle fibre is the cell that deals with the largest and fastest

release and reuptake of Ca2+, which, instead of its shortening

ability, can be considered its main specialization.

The above numbers have fed increasingly complex

mathematical models which have allowed to assign numbers

to different compartments and Ca2+ binding mechanisms. A

recent comprehensive model simulated the changes in Ca2+

concentrations and fluxes through the sarcomere of the four

fibre types, considering classical (Tn, PV, ATP, SERCA, and

dye) and new (mitochondria, NCX, and SOCE) Ca2+ binding

sites, during single and tetanic stimulation, using Mag-Fluo-

4 data (Rincón et al., 2021). The magnitudes of change of the

Ca2+-bound forms of the Ca2+ buffers studied follow the order

IIB ≥ IIX > IIA > I, except for the mitochondrial peak [Ca2+],

which showed the pattern I >> IIA >> IIX ≥ IIB. The kinetics

for fibres IIA and IIX proved to be intermediate between I and

IIB fibres, supporting dynamic data (Bottinelli et al., 1991;

Bottinelli and Reggiani, 2000; Bottinelli, 2001; Rincón et al.,

2021).

An important issue is that the peak [Ca2+] described above

agree well with several previous observations. For instance, the

pCa50 of the Ca2+-induced superprecipitation reactions usually

ranged from 5.9 to 5.1 at 23°C, i.e., ~1–10 μM, in presence of

physiological [Mg2+]. Similar observations were done regarding

the tension-pCa relationship in skinned fibres, in which the

maximum tension required a pCa ~5.5─5.0, i.e., 3.2─10 μM in

all fibre types (Ebashi and Endo, 1968; Bottinelli and Reggiani,

2000). Furthermore, the full activation of the contractile

machinery and the appearance of mitochondrial Ca2+

transients in vivo requires [Ca2+] about one order of

magnitude higher than 1–2 μM, which is the [Ca2+] that gives

the 50% activation of these mechanisms (Ebashi et al., 1969;

Sembrowich et al., 1985). The Ca2+ release from loaded SR

vesicles, the open probability of the RyR1 and the ryanodine

(Ry) binding kinetics, consistently show that the RyR1 half-

activates at ~1–5 μM and peaks between 10 and 30 μM Ca2+ at

room temperature (Nagasaki and Kasai, 1983; Fill et al., 1990;

Meissner, 2017). Finally, Ca2+ releases and fluxes as large as those

reported above are required to account for the heat released

during muscle activation, as recently demonstrated (Barclay and

Launikonis, 2021).

In conclusion, although a differential biochemical data

suggested different Ca2+ transient kinetics for the fibre types,

and although biophysical evidence suggested an expected

value for the peak sarcoplasmic [Ca2+] over 5 μM, it took a

long way to finally assign reliable numbers to this issue: fibres

type I and II have peak sarcoplasmic [Ca2+] between 7 and

13 μM, while fibres type IIX/D and IIB have values between

15 and 30 μM. The release rate and the total amount of Ca2+

released in fibres type IIX/D and IIB is ~2–3 times larger than

in fibres type I and IIA. Articulation of old data with data

gathered during the last decade has made that coherence

becomes now evident across biochemical (e.g., protein

isoforms, reaction rates, dependence on Ca2+), dynamical

(e.g., tension-pCa relationships) and biophysical (e.g.,

fluorescence, Ca2+ concentrations and fluxes)

measurements and estimations.

3.2 Mitochondria in
excitation–contraction coupling

Mitochondria are double membrane organelles, important

regulators of cellular Ca2+ homeostasis, signaling, metabolism

and energy production in the form of ATP, for which they have

been named “the powerhouse of the cell” (Siekevitz, 1957) and

“the hub of cellular Ca2+ signaling” (Szabadkai and Duchen,

2008). Moreover, they are highly dynamic, forming networks

inside the cells and remodeling their morphology and activity

(Anderson et al., 2019).

Recently, several reviews on the skeletal muscle mitochondria

dynamics, with strong structural approaches have been published

(Anderson et al., 2019; Bloemberg and Quadrilatero, 2019; Li

et al., 2020; De Mario et al., 2021; Gherardi et al., 2021;

Garbincius and Elrod, 2022). We also reviewed previously

their importance for skeletal muscle (Calderón et al., 2014b).

However, recent estimates of the rate of increase of Ca2+ and

mitochondrial Ca2+ transients in different fibre types provide
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novel interesting quantitative information, not acknowledged in

previous reviews, that fosters us to contribute this section. Thus,

here we will center on the research relevant to understand the

Ca2+ movements and concentrations into the skeletal muscle

mitochondria and their relationship with ECC.

3.2.1 Location and dynamics
The mitochondria inside the mammalian skeletal muscle

fibre can be classified as: subsarcolemmal, intermyofibrillar

and perinuclear. While the subsarcolemmal and perinuclear

have certain mobility, the movements of the intermyofibrillar

are more restricted. The first are clustered and less ordered,

whilst the latter are packed between the contractile proteins

and the SR membranes, or highly ordered within the I-bands

by pairs at either side of the Z line, close to the terminal

cisternae of the triads, forming a quasi-crystalline

structure (Ogata and Yamasaki, 1997; Vendelin et al.,

2005; Kuznetsov et al., 2006; Bolaños et al., 2009; Franzini-

Armstrong and Boncompagni, 2011; Boncompagni et al.,

2020) (Figure 2).

Tethers anchor the outer mitochondrial membrane (OMM)

to the terminal cisternae opposite to the jSR (Bolaños et al., 2008;

Dirksen, 2009b; Boncompagni et al., 2009; Pietrangelo et al.,

2015). Those tethers, previously found in liver cells (Mannella

et al., 1998; Csordás et al., 2006), are 10 nm long electron-dense

structures (Dirksen, 2009b; Boncompagni et al., 2009;

Pietrangelo et al., 2015), whose nature remains under debate.

They may correspond to the ERMES (Endoplasmic Reticulum-

Mitochondria Encounter Structure) complex found in budding

yeast (Kornmann et al., 2009), formed by four components

(Mmm1, Mdm10, Mdm12, and Mdm34) and several

accessory proteins (e.g., Emr1), whose malfunction affects

mitochondrial morphology (Rasul et al., 2021). They have also

been associated with Mitofusin2 (Mfn2) (de Brito and Scorrano,

2008), whose absence reduces mitochondrial Ca2+ uptake

(Ainbinder et al., 2015). This topic awaits further research.

Although previously considered isolated organelles,

mitochondria can communicate among them in different cell

types (Huang et al., 2013; Lavorato et al., 2017; Vincent et al.,

2017; Lavorato et al., 2020). In skeletal muscle by means of

fusion-fission, remodeling events or “kissing junctions”, they

form elongated structures with narrow connecting ducts, and

less frequently nanotunnels, acting as an independent and highly

dynamic network which connects the matrixes of non-adjacent

FIGURE 2
Mitochondria location and distribution in muscle fibres. Confocal images of adult mouse FDB fibres loaded with Di-8-Anneps (red) and
Mitotracker Green (green) to stain membranes and mitochondria, respectively. The fibre end in (A) shows the T-tubules and intermyofibrillar
mitochondria, either paired at both sides of the Z line near the center of the fibre (white squares) or forming elongated structures, which are much
more evident in (B), and look like columns parallel to the long axis of the fibre. The arrows in (A) and (B) point to typical clustered, less ordered,
subsarcolemmal mitochondria. The mitochondrial network appearance is clearer under the 3D reconstruction shown in (C). Calibration bar: 10 µm,
applies to all panels.
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mitochondria (Vincent et al., 2016; Vincent et al., 2017; Vincent

et al., 2019; Lavorato et al., 2020; Rahman and Quadrilatero,

2021). There has also been described synapses-like structures

between adjacent mitochondria (Picard, 2015) that would help

integrate information about the network (Picard et al., 2015).

Those synapses, connecting ducts and nanotunnels will favor the

communication between mitochondria anchored to the SR and

the whole network in skeletal muscle and may also provide the

structural basis to support the idea of enhanced propagation of

intracellular signals (Díaz-Vegas et al., 2019). The “Excitation-

Metabolism Coupling” (EMC) term has been put forward to

integrate the coupling between the depolarization and the

metabolic signaling through the mitochondrial network

interconnexions (Díaz-Vegas et al., 2019). If these connecting

structures and network somehow directly feedback the ECC,

besides having a metabolic role, is an avenue that should be

studied in the future.

In a different context, the EMC was previously used referring

to the bidirectional communication between SR and

mitochondria. Orthograde when the Ca2+ influx activates ATP

synthesis and metabolism. Retrograde given that the ATP is also

used for the SERCA to reuptake Ca2+ into SR as well as for the

inhibition of local SR Ca2+ release regulation. EMC would be

more important in mitochondria-enriched slow- and fast-twitch

oxidative muscle than in fast-twitch glycolytic muscle (Dirksen,

2009b; Rossi et al., 2009).

Although the structural evidence of the mitochondrial

network seems convincing, functional studies demonstrating

their importance for the ECC are still lacking.

3.2.2 How and how much Ca2+ enters the
mitochondria?

The intermyofibrillar mitochondrial distribution confers

them with a privileged position within ~150 nm from the

CRU of the jSR (Boncompagni et al., 2009) (Figure 2). Even

in the case of a single twitch or caffeine exposure, mitochondrial

Ca2+ can follow, with a short delay, the time course of the

cytoplasmic Ca2+ increase (Rudolf et al., 2004; Shkryl and

Shirokova, 2006; Bolaños et al., 2009; Yi et al., 2011; Karam

et al., 2017), demonstrating that the myoplasmic Ca2+ increase

observed during ECC is sensed by the mitochondria.

Given that the mitochondrial affinity for Ca2+ is intermediate,

1.2 μM for slow-twitch and 2 μM for fast twitch fibres

(Sembrowich et al., 1985), and the first reported sarcoplasmic

peak [Ca2+] were misleadingly low (even below 2 μM), it seemed

difficult to explain how Ca2+ entered the mitochondria. However,

as discussed (Section 3.1), during the last decade it became clear

that all fibres reach between 7 and 30 μM free myoplasmic [Ca2+]

just after excitation, making obvious that these values are at least

one order of magnitude over the affinity of the mitochondria.

Moreover, in compartmentalized models, larger free [Ca2+]

between 40 and 60 μM can be attained just between the triads

and the Z lines (Baylor and Hollingworth, 2007). This sizeable

increase in Ca2+ close to the mitochondria, the higher sensitivity

given by the skeletal muscle MICU1.1 variant (Section 3.2) and

the large negative mitochondrial potential (ΔΨm, −180 mV)

generate a strong electrochemical gradient which favors the

diffusion and the Ca2+ transport into the mitochondrial

matrix. The maximum flux rate was lately estimated to be

18.2 μM/s for fast and 74.3 μM/s for slow fibres (Rincón et al.,

2021). A recent model showed for the first time that the

mitochondrial Ca2+ transients reach 0.3 μM in fibres IIX/D

and IIB, 0.5 μM in fibres IIA and 1.2 μM in fibres type I

(Rincón et al., 2021).

The Ca2+ increase in the mitochondrial matrix enhances the

ATP production necessary for muscle contraction, by activating

the ATP synthase and enzymes of the tricarboxylic acid cycle and

the oxidative phosphorylation (Kavanagh et al., 2000; Finkel,

2011). It also helps shaping the decay phase of the sarcoplasmic

Ca2+ transient (Calderón et al., 2014a), likely speeding up the

muscle relaxation. Depending on its kinetics, the excess of

accumulated Ca2+ can also activate excessive ROS production

and programmed dead of the cell through the opening of the

mitochondrial permeability transition pore (mPTP) (Biasutto

et al., 2016; Li et al., 2020).

3.2.3 Recent advances in Ca2+ handling
machinery in mitochondria

The Ca2+ influx from the cytoplasm to the mitochondrial

intermembrane space (IMS) occurs through the porine-like,

voltage-dependent anion channels (VDAC) placed in the

OMM (Colombini, 1980; Colombini, 1983; Colombini, 2012;

Shoshan-Barmatz and De, 2017; Shoshan-Barmatz et al., 2018).

Out of the three isoforms present in mammalian cells (VDAC1,

2, 3) (Shoshan-Barmatz et al., 2010; Messina et al., 2012;

Shoshan-Barmatz and De, 2017), VDAC1 is the most

expressed in skeletal muscle (Massa et al., 2000). At low

transmembrane voltage the channel is open with high

conductance for anions allowing the diffusion of anionic

metabolites and adenine nucleotides, being selective for ATP.

However, at higher transmembrane voltage the channel close for

anions and becomes selective for Ca2+.

From de IMS to the mitochondrial matrix the Ca2+ goes

through channels inserted in the inner mitochondrial membrane

(IMM): the MCU complex (Kirichok et al., 2004), the Rapid

mode (RaM) (Sparagna et al., 1995) and the mRyR1 (Beutner

et al., 2001; Ryu et al., 2011).

The MCU is a highly Ca2+ selective channel holocomplex at

IMM (Baughman et al., 2011; De Stefani et al., 2011; De Stefani

et al., 2016; Mammucari et al., 2016). This complex contains the

MCU, the EF-hand Ca2+-binding proteins Mitochondrial

Calcium Uptake 1 (MICU1) and MICU2 forming dimers and

the Essential MCU Regulator (EMRE) (Sancak et al., 2013).

MICU1 acts as a Ca2+-sensing gatekeeper, keeping the channel

closed when Ca2+ levels are low and allowing the channel to open

in response to transient rises (Perocchi et al., 2010;
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Mallilankaraman et al., 2012; Csordás et al., 2013; Plovanich

et al., 2013; Sancak et al., 2013). In addition, MICU1 is also

involved in maintaining the cristae structure and IMM

anchorage of MCU (Gottschalk et al., 2019). The MCUb

subunit acts as a dominant-negative subunit that reduces the

MCU activity (Raffaello et al., 2013).

In skeletal muscle, MICU1.1, a spliced variant of MICU1,

forms the heterodimersMICU1.1-MICU2 giving a higher affinity

for Ca2+ (Vecellio Reane et al., 2016; Gherardi et al., 2021).

Normally, MCU current densities in skeletal muscle reach up to

58 pA/pF (Fieni et al., 2012).

The third channel-forming subunit recently described is

EMRE, a transmembrane protein of 10 kDa with a single

IMM transmembrane domain (Sancak et al., 2013). EMRE is

required for the interaction of MCU with MICU1.1 in skeletal

muscle and MICU2. It is essential for in vivo uniporter current

given that MCU oligomers alone are not sufficient for in vivo

uniporter activity (Sancak et al., 2013). EMRE-dependent

regulation requires MICU1.1, MICU2, and cytoplasmic Ca2+;

its acidic C-terminal domain functions as a matrix Ca2+ sensor

that regulates the MCU activity (Vais et al., 2016). Thus, EMRE

acts together with MICU1 as a gatekeeper complex regulating the

Ca2+ movements through MCU, able to sense Ca2+ at both sides

of IMM and preventing mitochondria both from Ca2+ depletion

and overload (Vais et al., 2016).

The Ca2+ release from the mitochondria is under the control

of the mitochondrial Na+/Ca2+ exchanger (mNCX, NCLX) (Palty

et al., 2010; Palty and Sekler, 2012; Garbincius and Elrod, 2022),

the Ca2+/H+ antiporter (mNCH or LETM1 or mHCX) (Jiang

et al., 2009; Tsai et al., 2014) and the mPTP (Li et al., 2020;

Bernardi et al., 2021). The first two mechanisms, present in the

IMM, are capable of reverse function (Garbincius and Elrod,

2022). The Ca2+ efflux by NCLX is slower than the Ca2+ influx by

MCU (Rudolf et al., 2004) which may favor Ca2+ overload if

cytoplasmic Ca2+ is much increased or NCLX diminished. The

nature of the third mechanism, the mPTP, is still unknown,

though recently it was proposed to be formed by a Ca2+-

dependent conformation of the F-ATP synthase (Li et al.,

2020; Bernardi et al., 2021). Physiologically, through transient

short openings (flickerings), mPTP may regulate Ca2+ in the

mitochondrial matrix (Hüser and Blatter, 1999; Petronilli et al.,

1999; Li et al., 2020; Bernardi et al., 2021). Mitochondrial Ca2+

overload, likely reflecting an imbalance between the Ca2+ uptake

and release mechanisms, triggers uncontrolled mPTP opening

causing the loss of ΔΨm, impairing ATP production, increasing

ROS and eventually leading to cell apoptosis (Biasutto et al., 2016;

Li et al., 2020; Bernardi et al., 2021), an effect also seen with some

protonophores which release mitochondrial Ca2+ (Bolaños et al.,

2008; Caputo and Bolaños, 2008). A physiological ECC,

associated to regular mitochondrial Ca2+ transients, is essential

to keep mPTP closed, preventing these deleterious events (Li

et al., 2020). Unfortunately, despite this interesting finding, the

topic of the Ca2+ release from muscle mitochondria remains

largely unaddressed. The kinetics of this phenomenon, its

relationship with the whole ECC machinery, and eventual

quantitative or qualitative differences among fibre types

should be addressed in the future.

It is satisfactory to see that the last decade finally unveiled the

structure of the molecular machinery and the mechanisms

involved in the substantial transport of Ca2+ to the skeletal

muscle mitochondria and allowed us to estimate the [Ca2+]

reached inside their matrix even considering differences

among fibre types. Research may now be focused on the

mechanisms of muscle mitochondrial Ca2+ exit.

3.3 Store-operated Ca2+ entry in skeletal
muscle

SOCE refers to a Ca2+ influx activated in response to the SR

depletion and functions in most cells to refill these stores. Since

skeletal muscle ECC is independent of extracellular Ca2+ (Section

2.2), the interest in SOCE was low for more than 15 years after its

discovery.However, the demonstration of aCa2+ influx in response to

acute SR depletion (Kurebayashi and Ogawa, 2001) independent of

any ICa, opened a bulk of work addressing the question of the nature

and physiological role of this Ca2+ influx in skeletal muscle. It was

proposed that its function could be important in muscle growth,

development and contractile function, as well as SR refill to delay

fatigue (Stiber et al., 2008; Wei-LaPierre et al., 2013; Sztretye et al.,

2017; Michelucci et al., 2018). However, a great depletion of SR may

not be necessary to activate SOCE, since it is rapidly activated in

response to a single AP (Koenig et al., 2018). Here we will present the

main facts that conducted to these conclusions and a brief historical

description of this mechanism, to understand its relevance in skeletal

muscle.

3.3.1 Basic concepts
SOCE was first described in non-muscle cells, where the

depletion of intracellular Ca2+ stores in the continuous

presence of inositol triphosphate induced the so called

“capacitative Ca2+ entry” (Putney, 1986). That entry was a

small rectifying highly Ca2+ selective current, not affected by

Ca2+ channel blockers (Hoth and Penner, 1992) called Ca2+

Release Activated Ca2+ Current (ICRAC). Two research groups

then identified in 2005 the Stromal Interacting Molecule

(STIM) as a single-pass transmembrane EF-hand protein

that acts as Ca2+ sensor in the endoplasmic reticulum

lumen of many cells with a low affinity of ~200–600 μM

(Liou et al., 2005; Roos et al., 2005; Zhang et al., 2005;

Stathopulos et al., 2006; Canato et al., 2010; Friedrich et al.,

2010). In 2006 it was confirmed the interaction of STIM with a

protein in the plasma membrane called Orai, which

constitutes the transmembrane pore of the CRAC complex

(Vig et al., 2006b, 2006a; Feske et al., 2006; Prakriya et al.,

2006; Soboloff et al., 2006; Hou et al., 2018). STIM-Orai
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complexes constitute the Ca2+ entry units (CEU). In

mammals, two STIM genes, STIM1 and STIM2, and three

Orai genes, ORAI1, ORAI2 and ORAI3, have been identified

(Zhang et al., 2005; Vig et al., 2006b; Feske et al., 2006). More

details about SOCE in non–excitable cells are given elsewhere

(Prakriya and Lewis, 2015; Putney, 2017).

3.3.2 Is Store-operated Ca2+ entry relevant to
skeletal muscle?

Skeletal muscle highly expresses STIM1 and Orai1 (Stiber et al.,

2008; Vig et al., 2008). Both can interact with other channels such as

TRPC1 and RyR1 and form complexes that act as the store operated

channels complex (Stiber et al., 2008). Also, a longer spliced variant

of STIM1, STIM1L, is highly expressed in skeletal muscle, where it

colocalizes with Orai1 and binds to actin, forming permanent

clusters (Darbellay et al., 2011). The presence of this molecular

machinery explains the existence of functional SOCE in adult fibres

from skeletal muscle, as first described in mouse EDL bundles after

depletion of the SR by repetitive exposure to high K+ in the presence

of SERCA inhibitors (Kurebayashi and Ogawa, 2001).

The presence of SOCE in skeletal muscle was also confirmed in

myotubes (Pan et al., 2002; Shin et al., 2003; Cherednichenko et al.,

2004; Lyfenko andDirksen, 2008; Stiber et al., 2008), inmechanically

skinned rat EDL and soleus fibres (Launikonis et al., 2003;

Launikonis and Ríos, 2007; Cully et al., 2016) and in mouse FDB

enzymatically dissociated fibres (González Narváez and Castillo,

2007; Bolaños et al., 2009).

The presence of a permanent, actin stabilized coupling of

STIM1-Orai1 at the triad may be puzzling, since it may not be

necessary for the activation of a classical SOCE in skeletal muscle.

Instead, this organizationmay be relevant to explain the SOCE rapid

activation and deactivation associated with every single AP, which

has been more recently characterized (Launikonis and Ríos, 2007;

Edwards et al., 2010; Koenig et al., 2018; Koenig et al., 2019). This

molecular organization may sense RyR-associated SR depletion

microdomains, even when the bulk of the SR is not depleted.

Neither ICa blockers nor Ca
2+ buffers affect that rapid Ca2+ influx

(Koenig et al., 2018). This fast-activated SOCE was named as phasic

SOCE (pSOCE) to distinguish it from the slower activated, chronic

SOCE (cSOCE) (Koenig et al., 2018; Koenig et al., 2019).

Other authors proposed that a triad SOCE pool permits the

pSOCE and a second pool at the level of the longitudinal SR activates

the cSOCE (Darbellay et al., 2011; Michelucci et al., 2019). This pool

would activate slower after acute SR depletion under SERCA

blocking and it could be involved in the CEUs formation after

strenuous exercise (Boncompagni et al., 2017; Michelucci et al.,

2019). It is still possible that the Orai in the elongated TT or the

largely ignored longitudinal tubules, interact with the actin

associated STIM1L at the I bands, accounting for the

longitudinal SR activating slower SOCE. Another, controversial

possibility, for the fast activation is that Orai1 would be activated

by a direct conformational coupling to RyR and not to STIM1

(Lyfenko and Dirksen, 2008; Dirksen, 2009a).

In this context, Reddish and coworkers (Reddish et al., 2021)

were able to follow local RyR1 Ca2+ release events at level of the

jSR in mice FDB fibres expressing the low affinity genetically

encoded Ca2+ dyes G-CatchER+ and/or CatchER + -JP45. They

found that the jSR local Ca2+ release at RyR1 microdomains was

2.1-fold greater than global SR release with much faster kinetics

than the depletion in the bulk SR and that if sensed by STIM1,

could quickly activate SOCE locally (Reddish et al., 2021).

The existence of small, fast, repetitive tubular Ca2+ transients

associated to SOCE is now convincing. However, its relevance to

skeletal muscle function is not clear yet. Based on experimental

data previously published, the maximum capacity of this

mechanism was recently estimated to be between 3 and

70 nM Ca2+ for fibres type I and IIB, respectively, during a

single twitch (Rincón et al., 2021). Remembering that the

peak sarcoplasmic Ca2+ ranges from 7 to 30 μM and that the

free SR Ca2+ is over 1 mM (Section 3.1), it is difficult to assess

what the function of this negligible amount of Ca2+ would be: it is

neither relevant for refilling the SR nor for sustaining the

sarcoplasmic [Ca2+]. One possible explanation is that some

errors in the quantitation of the process have arisen because

of underestimation of [Ca2+]. For instance, as discussed (Section

3.1), a peak [Ca2+] of 0.2–1 μM in mammalian fibres (Launikonis

et al., 2009; Koenig et al., 2018) is untrue, and an inaccurate TT

[Ca2+] calibration was acknowledged when we compare papers in

which estimated values of 100 μM (Launikonis et al., 2009) were

updated to be over 1 mM (Cully et al., 2016). Another option, if

all mentioned SOCE estimates turn true (then, ruling out any role

in SR refilling or sarcoplasmic [Ca2+] maintenance), and that the

rate of exchange of Ca2+ with the tubules is low (Lamboley et al.,

2021), is that SOCE in skeletal muscle may be, under certain

conditions, a custodian of the fibre total amount of Ca2+.

Although complete models considering the internal

equilibrium of Ca2+ have already been presented (Section 3.1),

models regarding its external equilibrium remain a pending task.

Thus, more quantitative efforts should be done to complement

structural studies to better understand the role of SOCE in

skeletal muscle. Also, some observations should be reproduced

in more physiological models, such as intact fibres, before

stronger conclusions about the importance of SOCE in

skeletal muscle can be drawn.

The apparent small capacity of this mechanism may explain

why, in contrast to non-muscle cells, it has not been possible to

electrophysiologically record Icrac in intact skeletal muscle fibres

(Allard et al., 2006). The expected small size of the currents and

the complex structure and electrical properties of the skeletal

muscle fibres further complicate this approach.

Two conditions may highlight the importance of SOCE in

intact fibres, the exercise, and the absence of CASQ. Mice

subjected to treadmill exercise showed tubule remodeling

which helped the SOCE machinery assemble following acute

exercise and disassemble during recovery (Boncompagni et al.,

2017; Michelucci et al., 2019). Preassembled CEUs are

Frontiers in Physiology frontiersin.org16

Bolaños and Calderón 10.3389/fphys.2022.989796

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.989796


occasionally observed in non-exercised muscle, about 2/100 μm2

in EDL and FDB fibres, while in calsequestrin-null or knockout

fibres (nCASQ1), increased to 40 and 17/100 μm2 respectively,

probably to compensate the reduced store Ca2+ content due to the

absence of CASQ. The associated increase in Ca2+ influx by SOCE

observed in these fibres, seems to maintain contractile activation

in response to repetitive high frequency stimulation and

resistance to fatigue (Michelucci et al., 2020). Unfortunately,

the Ca2+ signals in these works were not calibrated, avoiding

estimating the quantitative importance of SOCE in those results.

An increased SOCE during exercise, a condition expected to

increase the exchange of Ca2+ with the exterior, is compatible

with the hypothesis according to which SOCE may be a keeper of

the total amount of Ca2+ inside the fibre. Also, since CASQ null

fibres show a reduced amount of total Ca2+ content (Lamboley

et al., 2021), an increased SOCE activation can be reexplained as

trying to avoid a further reduction of the fibre’s Ca2+ content.

It has been remarked that there may not be enough space at

the triad to accommodate STIM1-Orai1 aggregates together with

DHPR, RyR1, plus junctophilin, triadin, calsequestrin, etc.

However, the fast activation and deactivation previously

shown is consistent with preformed complexes STIM1-Orai1

at the triads, close to the RyR1 release channel, and with limited

mobility. Also, given the RyR distribution, at least 40% of the

space is free of RyR in the jSR (see for instance (Block et al., 1988;

Saito et al., 1988; Chen and Kudryashev, 2020)), which may be

occupied by the STIM1-Orai1 clusters, i.e., the latter being

surrounded by DHPR-RyR clusters as we propose in Figure 1.

Our model shows that the movement restrictions imposed by

DHPR-RyR to STIM-Orai explain why the CEU have to be

preassembled, and fixed, in the jSR-TT membranes. Future

super-resolution studies may shed some light on the actual

distribution of all these proteins in the triadic space.

Proteins located at the triadic region are known regulators of

SOCE. RyR1 and STIM1 colocalize and Ca2+ microdomains close

to it regulate the activation of SOCE locally at jSR level (Stiber

et al., 2008; Reddish et al., 2021). Removal of the cytoplasmic

amino terminal region of the foot portion of the RyR1 abolishes

SOCE (Sampieri et al., 2005). Under resting conditions, healthy

muscle fibres show a low RyR1 leak but increased RyR1 leak

augments the bidirectional Ca2+ exchange with the TT and

mitochondrial metabolism to preserve normal contractile

function (Lamboley et al., 2021). This is supported by the fact

that SOCE-dependent Ca2+ influx is diminished or inhibited in

myotubes lacking RyR1 or blocking the Ca2+ release with 100 μM

Ry or azumolene (Pan et al., 2002; Zhao et al., 2006; Yarotskyy

and Dirksen, 2012). However, in acute or partial SR-Ca2+

depleted intact dissociated FDB fibres, the pretreatment with

50 μM Ry, prior to SOCE activation, enhanced and maintained

SOCE activated and only stopped by removing extracellular Ca2+

or applying SOCE blockers such as 2-APB (Bolaños et al., 2013).

It is possible that this apparent contradiction early highlighted

the existence of different roles of RyR1 in SOCE. Differential RyR

conformational changes may confer it a function either as leak

sensor or SR depletion sensor. These changes may be inhibited,

potentiated or somehow modified by large concentrations of Ry,

as shown in other contexts (Paolini et al., 2004). In any case,

RyR1 participates Ca2+ influx by SOCE, an observation which

deserves further study.

Given its role inside the SR, CASQ1 is a straightforward

candidate to be a SOCE regulator. FDB CASQ1 knock down

(CASQ1-null) skeletal muscle fibres diminish SR Ca2+ content,

favoring the formation of STIM1 aggregates and their interaction

with Orai1 that significantly enhanced SOCE (Zhao et al., 2010;

Michelucci et al., 2020). On the other hand, the interaction of

STIM1 with CASQ1 prevents its association to Orai1 thus

limiting SOCE (Zhang et al., 2016). On the contrary,

overexpression of the full length CASQ1 reduced SOCE in

myotubes (Shin et al., 2003; Zhao et al., 2010), confirming

CASQ as a direct modulator of SOCE.

Triadin and junctophilins could also participate in SOCE

regulation, as their knockout or knockdown present alterations

in the triad structure and an increase in the TT-SR distance,

which could diminish STIM1-Orai1 interaction and SOCE

(Hirata et al., 2006; Oddoux et al., 2009; Li et al., 2010; van

Oort et al., 2011). Indeed, FDB fibres exposed to hypotonic

solutions that could increase that distance show SOCE

inhibition (Bolaños et al., 2013).

The TRPC channels subfamily consists of seven isoforms

(TRPC1-7), which are expressed in skeletal muscle, though there

is controversy about TRPC5-7 (Vandebrouck et al., 2002; Krüger

et al., 2008; Zanou et al., 2010; Saüc and Frieden, 2017). TRPC1,

TRPC3 and TRPC4 reside in the sarcolemma, where they have

been reported to associate with RyR1, STIM1, STIM1L, or Orai1,

forming ternary or heteromeric complexes (Vandebrouck et al.,

2002; Liao et al., 2007; Ong et al., 2007; Liao et al., 2008; Ong et al.,

2016; Antigny et al., 2017; Choi et al., 2020).

TRPC1 was the first and most consistently found to somehow

participate in SOCE (Ong et al., 2007). In fact, other authors as well

proposed that the influx of Ca2+ through Orai1 channels depends

on the recruitment of TRPC1 into the plasma membrane where it

is activated by STIM1 (Oláh et al., 2011; Ambudkar et al., 2017). In

human skeletal myotubes, TRPC1, TRPC4 and STIM1L interact to

sustain Ca2+ entry via SOCE that helps to maintain repetitive Ca2+

transients and differentiation (Antigny et al., 2017). Also,

TRPC1 would be important as mediator of the RyR

involvement in SOCE regulation (Sampieri et al., 2005).

However, opposite evidence has also been provided, since

TRPC1−/− mice presented almost normal SOCE, but with a

decreased resistance to fatigue and lower Ca2+ transients than

TRPC1+/+ fibres (Zanou et al., 2010) and contradictory outcomes

about the effect of the overexpression of TRPC1 on SOCE have

been observed (Ong et al., 2007; Oláh et al., 2011). The

colocalization of TRPC members to the SOCE machinery is

acknowledged. However, a precise mechanism by which TRPC

members regulate SOCE is still lacking, they may constitute a Ca2+
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TABLE 2 Pharmacology of the ECC in skeletal muscle.

Compound Concentration Mechanism of action Comments References

DHPRa, Cav 1.1 antagonists

D-600 10–50 μM Blocks ICaL and ECC Favors contractile inactivation. Use
dependent. Reversible.

Caputo and Bolaños, (1987), Caputo and
Bolaños, (1989), Carney-Anderson et al.
(1997)

Nifedipine 0.01–200 μM Blocks ICaL, allosteric inhibitor,
reversible

Blocks charge movement and SR Ca2+

release. Membrane voltage dependent
effect. Different effects on twitches and
K+-contractures, concentration
dependent. At >20 μM is less specific
and blocks other voltage-gated channels
such as K+ channels.

Rios and Brum, (1987), Dulhunty and
Gage, (1988), Zhao et al. (2019)

Nitrendipine 0.1–1 μM Less effect on ICaL. Reversible Blocks K+-contractures, not twitches,
releases Ca2+ from RyR.

Frank, (1987), Lüttgau et al. (1987)

Diltiazem 1–100 μM Blocks ICaL, pore blocker, reversible.
Also blocks SERCA

Potentiates the twitch, lowers the
mechanical threshold potential, causes
paralysis

Walsh et al. (1986), Walsh et al. (1988),
Lüttgau et al. (1987), Zhao et al. (2019)

Verapamil 1–100 μM Blocks ICaL, pore blocker, reversible Blocks twitches, contractures, and AP Walsh et al. (1986), Frank, (1987), Zhao
et al. (2019)

Cd2+, Ni3+ 0.2–2 mM Block ICaL Walsh et al. (1986), Lüttgau et al. (1987),
Mould and Dulhunty, (1999)

DHPR, Cav 1.1 agonists

Bay K 8644 1–10 μM Enhances ICaL Potentiates the twitch Oz and Frank, (1994), Weigl et al. (2000)

<20 μM (↑) Increases (↑) or decreases (↓) twitch The effect on the twitch depends on
concentration and activation pattern.
Increases the mean open time of the Ca2+

channel.

Dulhunty and Gage, (1988), Williams
and Ward, (1991), Zhao et al. (2019)

>50 μM (↓)

RyR antagonists

Ryanodine <10 μM Induces SR Ca2+ release and a channel
subconductance state

Binds to the RyR with very high affinity.
Its binding to the RyR is increased in
presence of Ca2+ (μM) and ATP.
Prolongs the relaxation phase of twitch.

Meissner, (1986), Imagawa et al. (1987),
Lattanzio et al. (1987), Lai et al. (1988),
Xu et al. (1998), Bolaños et al. (2013), des
Georges et al. (2016)

≥50 μM Inhibits the SR Ca2+ release and the
channel open probability

Completely blocks the channel

Ruthenium Red 5–30 μM Inhibits the SR Ca2+ release and the
channel open probability

Potentiates the twitch, prolongs the AP,
locks the channel in the closed state,
inhibits the Ca2+ loading of SR vesicles,
inhibits the binding of ryanodine to the
RyR. Inhibits mitochondrial Ca2+ uptake
(see below).

Fleischer et al. (1985), Imagawa et al.
(1987), Lai et al. (1988), Delbono and
Kotsias, (1989), Xu et al. (1998)

Dantrolene 10–50 μM Inhibits the SR Ca2+ release and reduces
the open probability of the channel,
only in presence of cofactors

Requires Mg2+, ATP and probably
calmodulin as cofactors to directly
inhibit the RyR. More effective in
presence of low Ca2+ (<1 μM). Reduces
twitch tension itself, also increases INa.

Ebashi, (1976), Moulds, (1977), Caputo,
(1983), Caputo and Bolaños, (1987),
Krause et al. (2004), Oo et al. (2015),
Diszházi et al. (2019), Sarbjit-Singh et al.
(2020)

Tetracaine 0.2–1 mM Inhibits the SR Ca2+ release and the
channel open probability

Abolishes QὙ component of charge
movement, blocks Na+ channels

Caputo, (1983), Xu et al. (1993), Xu et al.
(1998), Csernoch et al. (1999)

Procaine 3–10 mM Reduces the SR Ca2+ release and the
channel open probability

Does not shift sensitivity of the RyR to
Ca2+. Reduces the AP, blocks Na+

channels. Reduces the contraction.
pH dependent

Caputo, (1983), Xu et al. (1993), Ogawa
et al. (1999)

(Continued on following page)
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TABLE 2 (Continued) Pharmacology of the ECC in skeletal muscle.

Compound Concentration Mechanism of action Comments References

RyR1 agonists

Caffeine μM to 10 mM Increases the open probability of the
channel and the SR Ca2+ release

Makes the Ca2+ release more sensitive to
Ca2+ (μM). Lowers the mechanical
threshold. Potentiates twitch.
Downregulates murine skeletal muscle
Nav1.4 function. Reversible. Its analog
pentifylline is more potent.

Axelsson and Thesleff, (1958), Caputo,
(1983), Xu et al. (1998), des Georges et al.
(2016), Liu et al. (2021), Reggiani, (2021)

4-CmC 0.05–1 mM Increases the open probability of the
channel and the SR Ca2+ release

Potent and reversible Herrmann-Frank et al. (1996),
Westerblad et al. (1998), Bolaños et al.
(2009)

4-CEP 20–500 μM Increases the SR Ca2+ release More potent than 4-CmC and Caffeine.
Reversible

Westerblad et al. (1998)

Doxorubicin 1–100 μM Increases the SR Ca2+ release Used in skinned fibres. Zorzato et al. (1985)

Imperatoxin A 10–50 nM Opens the RyR in a long
subconductance state

Increases the duration of sparks. Tripathy et al. (1998), Shtifman et al.
(2000), Dulhunty et al. (2004)

SERCA blockers

Cyclopiazonic Acid 1–10 μM Reversible SERCA blocker Upregulates murine skeletal muscle
Nav1.4 function

Seidler et al. (1989), Capote et al. (2005),
Calderón et al. (2014a), Liu et al. (2021)

Thapsigargin 0.1–10 μM Irreversible SERCA blocker Potent SERCA inhibitor by favouring
the E2 conformation, which reduces the
affinity for Ca2+

Kijima et al. (1991), Wictome et al.,
1992a, 1992b

BHQ, also known
as TBQ

0.1–30 μM Reversible SERCA blocker SERCA inhibitor by favouring the
E2 conformation, which reduces the
affinity for Ca2+. Does not alter the Ca2+

sensitivity of the contractile apparatus.
In heart, BHQ at >10 μM affects Ca2+

and K+ currents, but this has not been
investigated in skeletal muscle.

Wictome et al. (1992b), Westerblad and
Allen, (1994), Miller et al. (2015)

Mitochondria

FCCP 0.2–2 μM Proton ionophore which collapses the
mitochondrial potential

Inhibits mitochondrial Ca2+ uptake.
Induces concentration and time-
dependent cell death.

Bolaños et al. (2008), Bolaños et al.
(2009), Caputo and Bolaños, (2008),
Zhou et al. (2010), Calderón et al.
(2014a)

Ru360 200 nM-30 μM Specific blocker of the MCU Inhibitor of mitochondrial Ca2+ uptake Emerson et al. (1993), Matlib et al.
(1998), Zhou et al. (2010), Calderón et al.
(2014a), Kirichok et al. (2004)

Ruthenium red 200 nM-50 μM Inhibitor of mitochondrial Ca2+ uptake Also, inhibitory effects on RyR1 and
other cellular processes (see above).

Matlib et al. (1998), Kirichok et al. (2004)

NCX blockers

KB-R7943 10–20 μM Reverse NCXmode blocker. Reversible,
non-specific.

Also inhibits SOCE, RyR and MCU.
Reduces fibre excitability and reduces
Ca2+ transients amplitude (see below).

Iwamoto et al., 1996, 2007, Iwamoto and
Shigekawa, (1998), Arakawa et al. (2000),
Niu et al. (2007), Santo-Domingo et al.
(2007), Barrientos et al. (2009), Calderón
et al. (2014a)

SN-6 2–10 μM Reverse NCX mode blocker. Reversible It seems not to alter fibre excitability.
Reversible

Iwamoto et al. (2007), Niu et al. (2007),
Barrientos et al. (2009), Calderón et al.
(2014a)

DCB 10–30 μM Forward NCX mode inhibitor.
Reversible

Curtis, (1988), Calderón et al. (2014a)

(Continued on following page)
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TABLE 2 (Continued) Pharmacology of the ECC in skeletal muscle.

Compound Concentration Mechanism of action Comments References

Contraction uncouplers

BDM 2–20 mM Contraction uncoupler by affecting the
force generating step in the crossbridge
cycle.

May affect Ca2+ transients amplitude
and reduce the Ca2+ sensitivity of the
contractile apparatus

Fryer et al. (1988), Horiuti et al. (1988),
Mckillop et al. (1994), Lyster and
Stephenson, (1995), Capote et al. (2005),
Iwamoto, (2018)

BTS 20–50 μM Inhibits myosin ATPase activity and
weakens actomyosin interaction,
affecting the force generating step of
the crossbridge cycle

Specific to the skeletal myosin heavy
chain II. Eliminates movement artifacts
in Ca2+ transients. Does not affect
fluorescence transients amplitude

Cheung et al. (2002), Caputo and
Bolaños, (2008), Calderón et al. (2009),
Iwamoto, (2018)

Blebbistatin 0.5–5 μM Inhibits myosin II ATPase by affecting
the force generating step of the
crossbridge cycle

Acts on cardiac, skeletal, and smooth
muscle and non-muscle myosin II. Light
sensitive and phototoxic

Limouze et al. (2004), Iwamoto, (2018),
Roman et al. (2018)

Contractile potentiators Type A (Lower the contractile threshold)

SCN− 20 mM Potentiates twitch Lowers the contractile threshold.
Prolongs the AP

Hodgkin and Horowicz, (1960b),
Mashima and Matsumura, (1962),
Moulds, (1977), Caputo, (1983),
Calderón et al. (2014b)

NO3
− Substitutes Cl− Potentiates twitch Prolongs the mechanically effective

period. Reduces the contractile
threshold.

Hodgkin and Horowicz, (1960b),
Mashima and Matsumura, (1962),
Caputo, (1983), Calderón et al. (2014b),
Caputo et al. (2016)

ClO4
− 10 mM Potentiates twitch Shifts the activation curve towards more

negative potentials. Lowers the AP
threshold.

Gomolla et al. (1983), González and
Ríos, (1993), Calderón et al. (2014b),
Caputo et al. (2016)

Contractile potentiators Type B (Prolong the action potential)

Zn2+ 0.05–1 mM Potentiates twitch Increases the AP duration Isaacson and Sandow, (1963), Taylor
et al. (1972), Caputo, (1983), Caputo
et al. (2016)

Cd2+ 1–1.5 mM Potentiates twitch Increases the AP duration and
overshoot. Blocks ICaL

Mould and Dulhunty, (1999)

Mn2+ 1 mM Potentiates twitch Increases AP threshold. Prolongs the
AP. Alters mechanical threshold.

Chiarandini and Stefani, (1973), Ebashi,
(1976), Caputo, (1983)

≥10 mM Decreases twitch and K+-contractures

Contractile potentiators (Others)

DES 5–10 μM Potentiates twitch Does not affect AP. Blocks SERCA.
Slows rise and decay phase of twitch and
tetanus

Khan, (1979), Caputo et al. (2016)

DAP 0.3–1 mM Highly potentiates twitch Blocks K+ channels. Slows the AP
repolarization. Slows rise and decay
phase of twitch and tetanus

van Lunteren et al. (2001); Ionno et al.
(2008), Bolaños et al. unpublished results

Adrenaline,
Terbutaline,
Isoprenaline

0.1–30 μM β-agonists, increase SR Ca2+ release Positive inotropic and lusitropic effects Cairns and Borrani, (2015)

SOCE blockers

2-APB ≥30 μM Blocks SOCE by inhibiting Orai1 and
STIM-Orai interaction. Reversible,
non-specific

Also inhibits IP3 receptor and other
channels depending on concentration.
Reduces QὙ component of charge
movement. Inhibits ICaL. At <20 μM can
enhance Orai3 function

Bolaños et al. (2009), Olivera and
Pizarro, (2010), Putney, (2010), Wei
et al. (2016)

DPB162-AE 40–200 nM Blocks SOCE. Reversible More specific 2-APB analog Goto et al. (2010), Putney, (2010)

SKF-96365 100 μM Non-specific SOCE inhibitor Inhibits SR Ca2+ release, ICaL and charge
movement. Reversible

Jan et al. (1999), Olivera and Pizarro,
(2010)

KB-R7943 10 μM Non-specific SOCE inhibitor Also inhibits NCX and affects other
cellular processes (see above)

Arakawa et al. (2000)

(Continued on following page)
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permeable pathway activated by STIM in parallel to Orai, may be

regulators of Orai-mediated Ca2+ entry, or both.

In summary, the current renaissance of SOCE studies

doubtlessly demonstrated its existence in skeletal muscle and its

activation under several conditions. Preassembled complexes and

rapid responses are in tune with the main muscle specialization,

i.e., its very fast Ca2+ handling ability. As in other subfields of the

ECC, such as the sarcoplasmic peak [Ca2+](Section 3.1) or the

mitochondria (Section 3.2), putting reliable numbers to SOCE

and SOCE-associated phenomena, would help to better

understand its relevance in situ. Given its apparent low

importance as keeper of the SR and sarcoplasmic [Ca2+], the

possibility that it is a guardian of the total Ca2+ inside a muscle

fibre arises. Also, clarification of the mechanism of regulation by

neighbor proteins (e.g., RyR, TRPC) is pending. Making clearer the

structural organization of the SOCE core and accessory machinery

would benefit from super-resolution techniques.

3.4 Pharmacology of the
excitation–contraction coupling

Table 2 presents details about the most important molecules

that have allowed to study mechanisms relevant to the ECC. It

highlights the fact that many of them came out to be less specific

than initially thought, making some conclusions in several papers

untrustworthy. The search for new, better (e.g., highly specific,

less toxic) compounds with ECC applications is utterly

encouraged.

3.5 Emerging topics

3.5.1 Super-resolution advances and
excitation–contraction coupling pioneering
studies

Including stimulated emission depletion (STED), structured

illumination microscopy (SIM), photo-activated localization

microscopy (PALM), stochastic optical reconstruction

microscopy (STORM) and their modifications, super-resolution

is a novel technique with enormous potential to study skeletal

muscle and help solve some issues in ECC. Membrane

rearrangements and clustering of proteins, under different

experimental conditions, would suitably be studied with up to a

20 nm lateral resolution in fixed and living cells (Jayasinghe et al.,

2015; Mishin and Lukyanov, 2019). However, it has been

underexploited, probably because of the high costs and still low

availability of super-resolution equipment in muscle laboratories.

Monitoringthemorphologyoftheneuromuscular junctionusing

SIM and STORMallowed to propose a newmodel inwhich theACh

receptor(AChR)isnotlocatedalloverthepostsynapticmembranebut

restricted to the area surrounding the opening of junctional folds

TABLE 2 (Continued) Pharmacology of the ECC in skeletal muscle.

Compound Concentration Mechanism of action Comments References

BTP2 5–10 μM Orai1 inhibitor Indirectly affects electrically evoked SR
Ca2+ release in skinned fibres, an effect
not seen in intact FDB fibres exposed to
10 μM for up to 25 min, demonstrating a
limited diffusion to the myoplasm.

Li et al. (2010), Meizoso-Huesca and
Launikonis, (2021), Wei-LaPierre et al.
(2022)

La3+ 0.1–1 μM Potent and relatively specific Blocks also ICa, and ECC Bird et al. (2008), Putney, (2010)

Gd3+ ≤5 μM SOCE inhibitor Specific at low concentration, if ≥
100 μM blocks ICa and PMCA

Bird et al. (2008), Putney, (2010)

Others

Tetrodotoxin 1–100 nM Blocks Na+ channels and AP Ebashi, (1976), Catterall, (1980)

Heparin 0.1–0.2 mg/ml Potentiates twitch and tetanic tension Prolongs the AP Lamb et al. (1994), Martínez et al. (1996)

High K+ >50 mM Depolarizes the sarcolemma Activates the ECC Hodgkin and Horowicz, (1959),
Hodgkin and Horowicz, (1960a),
Winegrad, (1970), Caputo and Bolaños,
(1994)

Digoxin and
Ouabain

0.05–1 μM and
0.1–1 μM

Na+/K+ ATPase blockers Increase Ca2+ transients and tension.
Potentiate SR Ca2+ release.

Sárközi et al. (1996)

aAP: action potential; 2-APB: 2-aminoethyldiphenyl borate; ATP: adenosine triphosphate; BDM: 2,3-butanedione 2-monoxime; BHQ: 2,5-di(tert-butyl)-1,4-benzohydroquinone; BTS:

N-benzyl-ptoluene sulphonamide; BTP2: N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide; 4-CEP: 4-chloro-3-ethylphenol; 4-CmC: 4-

Chloro-m-Cresol; CICR: Ca2+-induced Ca2+ release; DAP: 3,4-diaminopyridine; DCB: 2´-4´ dichlorobenzamil hydrochloride; DES: diethylstilbestrol; DHPR: dihydropyridine receptors;

DPB162-AE: diphenyl borate 162-AE; ECC: excitation-contraction coupling; FCCP: Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone; ICaL: L-type Ca2+ current; KB-R7943: 2-[4-[(4-

nitrophenyl)methoxy]phenyl]ethyl ester carbamimidothioic acid methanesulfonate; MCU: mitochondrial Ca2+ uniporter; NCX: Na+/Ca2+ exchanger; PMCA: plasma membrane Ca2+

adenosine triphosphatase; Ru360: Oxo-bridged dinuclear ruthenium amine complex; RyR: ryanodine receptor; SKF-9635: 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-

1H-imidazole hydrochloride; SN-6: 2-[[4-[(4-Nitrophenyl)methoxy]phenyl]methyl]-4-thiazolidinecarboxylic acid ethyl ester benzyloxyphenyl; SOCE: store-operated Ca2+ entry; SR:

sarcoplasmic reticulum: STIM-Orai: store operated machinery.
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(York and Zheng, 2017). Also, STED images showed that width of

crests anddistancebetween themwithAChRbecomealtered in some

neuromuscular diseases (Marinello et al., 2021).

The studyof the subsarcolemmal tubular systemwith STORM

revealed an enrichment in longitudinal tubules and branches in

different directions (Jayasinghe et al., 2015), being the structural

basis of the synchronization of membrane excitation with Ca2+

release from the SR with a safety factor, and probably supporting

part of the remodeling potential of the tubular system involved in

SOCE. Resolution and quality improvements for STORM images

acquisition and ensemble allow to see the boundary membranes

and the lumen of the TT (Sun et al., 2014), opening the door for

future functional studies restricted to nanoregions.

The approach of pioneers using STORM to see the nanoscale

organization of the RyR and CASQ triadic proteins (Jayasinghe

et al., 2014), may be extended to simultaneously observe the

DHPR-RyR and the STIM-Orai-TRPC clusters. Calculating

distances and protein densities in nano- or micro-areas in

situ, in different fibre types, would generate a more

comprehensive picture of the triadic space. Also, increases in

temporal resolution are expected to join the high spatial

resolution of nanoscopy to see Ca2+ microdomains, useful for

instance in SOCE and mitochondria studies.

3.5.2 Excitation–contraction coupling in
induced pluripotent stem cells-derived muscle
cells

Notable work demonstrated that mature mammalian cells

can be dedifferentiated to render induced pluripotent stem cells

(iPSC), which in turn could be redifferentiated to almost any cell

of the three germ layers (Takahashi and Yamanaka, 2006;

Takahashi et al., 2007). As an example of the potential of

iPSC to be differentiated to mesodermic cell types, the authors

demonstrated for the first time the generation of iPSC-derived

muscle tissue (Takahashi et al., 2007).

iPSC-derived skeletal myocytes obtained in 2D cultures

have AP with pretty much the same kinetics as mature

muscle fibres. However, although responsive to K+

depolarization in a way non-dependent on external Ca2+,

their ECC is very immature, from structural and functional

points of view (Skoglund et al., 2014; Lainé et al., 2018).

Improved, 3D cultures of induced skeletal muscle bundles

showed a greater degree of ECC differentiation, with sizable

Ca2+ transients in response to electrical or ACh stimulation

(Rao et al., 2018). Nevertheless, the fact that these signals are

very slow suggests that the ECC machinery does not reach the

maturity of adult muscle fibres in these preparations.

This knowledge, along with its associated technical

developments, generates a model suitable for multiple

applications in biomedical studies (Andrysiak et al., 2021).

Envisioned applications include the understanding of

physiological and pathophysiological events and search for

new drugs tackling muscle diseases. Although great advances

in the methodological protocols have generated quasi-mature

muscle cells from iPSC, work is still needed to have fully

differentiated fibres to exploit its potential for ECC studies.

Also, efforts should be done to have absolute, rather than

qualitative (presence or not) or relative (fold change), values

of Ca2+ and ECC related variables in iPSC-derived muscle fibres.

4 Conclusion

We have presented the most complete picture of the ECC up

to now. Seven decades of exciting research have identified a lot of

proteins involved in ECC and a plenty of Ca2+ routes generated

by those proteins. Assigning reliable numbers to some of those

routes has also been successful. Nonetheless, as of today, two big

issues await clarification: what is the exact mechanism of DHPR-

RyR coupling and what are the details of the external equilibrium

of Ca2+ during ECC. Quantitative approaches, emerging

techniques such as super-resolution and iPSC, and finer

pharmacology through more specific drugs, may help

audacious researchers obtain the answers, hopefully sooner

than later.
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