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Abstract
Reverse-engineering of biological networks is a central problem in systems biology. The

use of intervention data, such as gene knockouts or knockdowns, is typically used for teas-

ing apart causal relationships among genes. Under time or resource constraints, one needs

to carefully choose which intervention experiments to carry out. Previous approaches for

selecting most informative interventions have largely been focused on discrete Bayesian

networks. However, continuous Bayesian networks are of great practical interest, especially

in the study of complex biological systems and their quantitative properties. In this work, we

present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian

networks (GBNs), which serve as important models for gene regulatory networks. In addi-

tion to providing linear-algebraic insights unique to GBNs, leading to significant runtime

improvements, we demonstrate the effectiveness of our method on data simulated with

GBNs and the DREAM4 network inference challenge data sets. Our method generally

leads to faster recovery of underlying network structure and faster convergence to final dis-

tribution of confidence scores over candidate graph structures using the full data, in compar-

ison to random selection of intervention experiments.

Introduction
Molecules in a living cell interact with each other in a coordinated fashion to carry out impor-
tant biological functions. Building a rich network of these interactions can greatly facilitate our
understanding of human diseases by providing useful mechanistic interpretations of various
phenotypes. Recent advances in high-throughput technologies have given rise to numerous
algorithms for reverse-engineering interaction networks from molecular observations, as they
provide an efficient and systematic way of analyzing the molecular state of a large number of
genes. One class of such interaction networks that has generated much interest in recent years
is transcriptional gene regulatory networks, which specify the set of genes that influence a
given gene’s expression level. This type of pattern can be naturally modeled in a causal graph
or Bayesian network.

PLOSONE | DOI:10.1371/journal.pone.0150611 March 1, 2016 1 / 15

a11111

OPEN ACCESS

Citation: Cho H, Berger B, Peng J (2016)
Reconstructing Causal Biological Networks through
Active Learning. PLoS ONE 11(3): e0150611.
doi:10.1371/journal.pone.0150611

Editor: Holger Fröhlich, University of Bonn, Bonn-
Aachen International Center for IT, GERMANY

Received: November 23, 2015

Accepted: February 16, 2016

Published: March 1, 2016

Copyright: © 2016 Cho et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement:We provide the
simulation data and an implementation of our
algorithm in Supporting Information. Sachs et al. data
is available as Supporting Online Material of their
paper. DREAM4 data sets are publicly available at
http://dreamchallenges.org.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0150611&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dreamchallenges.org


Bayesian networks provide a compact way of representing causal relationships among ran-
dom variables [1]. Given a directed acyclic graph (DAG) over the variables of interest, an edge
X! Y encodes a causal influence of X on Y. However, when the given data consists of only
passive observations of the underlying system, the causal structure is only identifiable up to
Markov equivalence classes. To overcome this limitation, intervention experiments, in which
some variables are controlled to take specific values, can be used to guarantee full identifiability
given enough data [2]. For example, intervention on X only affects the behavior of Y in X! Y,
but not in X Y; otherwise, if given only observational data for X and Y, these two graphs are
indistinguishable. The importance of interventions for inferring biological networks has been
noted in numerous studies [3–6]. In practical settings, interventions are typically performed
via gene knockouts or knockdowns, i.e., by completely or partially reducing the expression
level of one or more genes using experimental perturbations.

A key insight behind active learning is that not every variable is equally informative when
intervened. For instance, if X does not have any children in every graph of a Markov equiva-
lence class, perturbing X will not lead to any visible impact that can further distinguish the
graphs. Thus, when the number of experiments that can be performed is limited, it is important
to choose interventions which are most informative. In particular, it is generally not feasible to
perform all possible interventions when joint interventions of multiple variables are
considered.

Several researchers have developed active learning frameworks for causal structure learning
during the last decade. In the Bayesian setting, Tong and Koller [7] and Murphy [8] both pro-
posed decision-theoretic frameworks based on the expected reduction in uncertainty over edge
directions and the expected change in posterior distribution over graph structures, respectively.
While these approaches have been shown to be effective, they have been studied only in the
context of discrete Bayesian networks. However, most molecular measurements are continu-
ous, and hence they are more naturally described using continuous Bayesian networks. Based
on this motivation, there have been a number of papers in the network inference literature
which use Gaussian Bayesian networks (GBNs) as the underlying model, in which each vari-
able is continuous and is modeled as a function of its parents with added Gaussian noise [9–
12]. We contribute to this line of work by deriving the first Bayesian active learning algorithm
for GBNs, where the informativeness of each candidate intervention is estimated via Bayesian
inference, treating the graph as a latent random variable, and the most informative intervention
is chosen. In the non-Bayesian setting, Hauser et al. [13], Eberhardt [2], and He and Geng [14]
proposed active learning algorithms based on graph-theoretic insights, where the goal is to ori-
ent the most number of undirected edges in a Markov equivalence class with an intervention.
Notably, these approaches aim only to determine the direction of edges in a given undirected
graph (skeleton) estimated from observational data, and thus cannot handle errors already
incorporated into the skeleton as a result of limited sample sizes and noisy observations. In this
regard, our approach makes more effective use of intervention data by using it to improve the
skeleton in addition to determining causal directions.

In this paper, we derive an efficient active learning algorithm for biological networks based
on the framework of Murphy [8]. In addition to introducing an optimization technique unique
to GBNs that leads to significant runtime improvement, we empirically validate the effective-
ness of our algorithm on two data sets. Our results support the potential of active learning for
uncovering casual structure in continuous-valued biological networks. Furthermore, our work
enables researchers to effectively prioritize higher order joint perturbation experiments in a
principled manner. This ability has the potential to accelerate the discovery of causal interac-
tions between proteins, which are fundamental to advancing translational medicine and refin-
ing our understanding of biological systems.
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Methods

Learning Gaussian Bayesian networks with interventions
Gaussian Bayesian networks. Let X ¼ fX1; � � � ;Xng be a set of random variables and

G ¼ ðX ; EÞ be a directed acyclic graph (DAG) over X , where ði; jÞ 2 E if and only if there is a
directed edge from Xi to Xj. Let PaGðjÞ ¼ fi j ði; jÞ 2 Eg be the parent set of Xj in G. In a Gauss-
ian Bayesian network (GBN), the conditional probability distribution (CPD) of each variable
given the parents is defined to be a linear Gaussian distribution:

XjjXPaGðjÞ � N mj þ
X

i2PaGðjÞ
wijXi; s

2
j

 !

where XS≔ {Xi}i 2 S. Notemj and s2
j represent the base level and conditional variance of Xj,

respectively, and wij represents the weight of causal effect along the edge (i, j). For compactness,
we denote the set of parameters {mj}, {wij}, and fs2

j g for a particular graph G as ΘG. A GBN

modelM = (G, ΘG) fully defines a joint probability density function (PDF) over X as a product
of Gaussian PDFs, and the set of independence assumptions that the joint PDF satisfies is
encoded in the structure G. Furthermore, it can be shown that the joint PDF defined byM is, in
fact, multivariate normal.

Structure learning with observational and intervention data. A standard approach to
inferring Bayesian network structure from data involves defining a score that reflects how well
a given graph explains the data and searching for high-scoring graphs in the space of DAGs or
causal node orderings. Typically, a Markov chain Monte Carlo (MCMC) method based on ran-
dom walks is used to explore the space of candidate graph structures and to select the highest-
scoring graph structure. In this section, we describe a Bayesian scoring function, which evalu-
ates the posterior probability of a structure given the data. This scoring function constitutes an
important component of the active learning algorithm we will develop next.

Given an instance of observational data where every variable is observed, x = (x1, . . ., xn),
the likelihood p(x|G,ΘG) of a GBN modelM = (G, ΘG) can be expressed as

Yn
j¼1

N xj;mj þ
X

i2PaGðjÞ
wijxi; s

2
j

 !
; ð1Þ

where N(�; μ, σ2) is the normal PDF with mean μ and variance σ2.
Under an intervention (e.g., gene knockout or RNAi), a subset of random variables in X are

clamped at specific values and the remaining variables are assumed to be jointly sampled from
a modified graph where the incoming edges of the clamped nodes are removed. Intuitively, this
ensures that the nodes upstream of the clamped nodes are unaffected by the intervention. Let I
denote the setup of an intervention experiment and x = (x1, . . ., xn) be the outcome. For each
(i, ci) 2 I, the value of Xi is clamped at a constant ci (i.e., xi = ci). The likelihood function p(x|I,
G, ΘG) for an intervention data instance (x, I) is given by

Y
ðj;�Þ=2I

N xj;mj þ
X

i2PaGðjÞ
wijxi; s

2
j

 !
: ð2Þ

The only difference from the observational case is that the product is now only over the nodes
that are not clamped. When no variables are clamped (I = ;), the above expression is consistent
with Eq (1).
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Now, let D be a sequence ofm data instances, x(1), . . ., x(m), and I be the sequence of corre-
sponding experimental setups, I(1), . . ., I(m). This can be viewed as a collection of both observa-
tional (I = ;) and intervention (I 6¼ ;) experiments. The complete likelihood function

pðDjI ;G;YGÞ for the data set is given by

Ym
k¼1

Y
ðj;�Þ=2IðkÞ

N xðkÞj ;mj þ
X

i2PaGðjÞ
wijx

ðkÞ
i ; s2

j

 !
:

By arranging terms for each family (i.e., a node and its parents) across data instances, this
can be rewritten as

Yn
j¼1

Y
k:ðj;�Þ=2IðkÞ

N xðkÞj ;mj þ
X

i2PaGðjÞ
wijx

ðkÞ
i ; s2

j

 !
:

The fact that the likelihood over intervention data still decomposes into family-specific
terms (each over a mutually exclusive set of parameters) enables the use of a conjugate prior
similar to the one introduced by Geiger and Heckerman [15] that gives us a closed-form
expression for the posterior. Here we impose an independent normal-inverse Gamma prior

over each set of family-specific parameters,YG
j , which consists ofmj, {wij}i 2 PaG(j), and s

2
j . An

advantage of this representation is that we are now able to compute the complete posterior
scoring function by simply calculating the posterior for each family and multiplying them
together.

Specifically, for each node j, let θj be a column vector (mj, wp1 j, . . ., wpd j) where p1, . . ., pd is
an enumeration of elements in PaG(j). Let k1, . . ., kt be an enumeration of {k : j =2 I(k)} (i.e.,
instances where Xj is not clamped). We define a family-specific data set (Xj, yj) for node j as

Xj ¼
1 xðk1Þp1

� � � xðk1Þpd

..

. ..
. . .

. ..
.

1 xðkt Þp1
� � � xðkt Þpd

2
6664

3
7775; yj ¼

xðk1Þj

..

.

xðkt Þj

2
6664

3
7775 ;

which depends on G, D, and I . Now, if we assume the following prior distribution forYG
j :

s2
j � Inv-Gammaðaj; bjÞ

θjjs2
j � N ðμj; s

2
j ðΛjÞ�1Þ

with hyperparameters αj, βj, μj, and Λj, then the posterior distribution pðYG
j jD; I ;GÞ has the

same form as the prior, with the following updated parameters:

Λ0j :¼ XT
j Xj þ Λj; ð3Þ

μ0j :¼ ðΛ0jÞ�1ðΛjμj þ XT
j yjÞ; ð4Þ

a0j :¼ aj þ
jDj
2

; ð5Þ

b0j :¼ bj þ
1

2
yTj yj þ μT

j Λjμj � ðμ0jÞTΛ0jμ0j
� �

: ð6Þ
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Moreover, themarginal likelihood function pðDjI ;GÞ, which usually requires a challenging
step of integrating out the model parameters ΘG to compute, can now be analytically obtained
as

ð2pÞ�cðD;IÞ=2
Yn
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðΛjÞ
det ðΛ0jÞ

s
� ðbjÞaj
ðb0jÞa

0
j
� Gða

0
jÞ

GðajÞ
; ð7Þ

where cðD; IÞ ¼ njDj �PI2I jIj is the sum of the number of unclamped variables in each data
instance.

Since pðGjD; IÞ / pðDjI ;GÞpðGÞ, given the analytical expression for marginal likelihood,
one can explore the posterior distribution over the space of candidate graph structures using
the Metropolis-Hastings (MH) algorithm [16, 17]. Unfortunately, an in-depth discussion of
different ways in which one can set up various components of this procedure, including the
design of search space, prior over graphs, and proposal distribution, is out of the scope of this
paper. The output of this algorithm is a set of sampled graph structures drawn from the poste-
rior pðGjD; IÞ, which intuitively represents how strongly we believe each candidate graph
structure to be the underlying model for the given data. This output can be summarized in a
number of ways to construct the finalized model. The most common approach is to employ
Bayesian model averaging, in which a feature of interest f (e.g., presence of edge) is averaged
over all graph samples to obtain E½f jD; I �.

Prioritizing interventions via active learning
Most network inference methods, including the one presented in the previous section, assume
that the data set is obtained and fixed prior to learning. However, in a real world setting, one
can perform additional intervention experiments and combine them with existing data to
improve the quality of learned networks. An active learning framework allows us to reason
about how informative each candidate experiment is, thus enabling a more efficient design of
intervention experiments when subjected to time or resource constraints.

Here, we present our active learning algorithm for inferring the structure of GBNs. We
adopt the information-theoretic framework developed by Murphy [8] and introduce an opti-
mization based on linear-algebraic insights unique to GBNs which serve to improve the overall
complexity of the algorithm over a naive implementation.

Greedy selection. Let C be the set of candidate intervention experiments. Following Mur-
phy [8], we define the I? to be the optimal experiment which maximizes themutual informa-
tion (MI) between the resultant outcome X and G, given the current data set ðD; IÞ. In other
words,

I? ¼ arg max I2CcðIÞ;

where the objective function cðIÞ :¼ MIðG;X jD; IÞ can be alternatively expressed in two dif-
ferent ways as

EX�pð�jI;D;IÞ½KLðpðGjX ; I;D; IÞ k pðGjD; IÞÞ� ð8Þ

and

EG�pð�jD;IÞ½KLðpðX jG; I;D; IÞ k pðX jI;D; IÞÞ�: ð9Þ

KL(�k�) denotes the Kullback-Leibler divergence. Eq (8) provides a useful insight that the opti-
mal intervention is the one that is expected to cause the largest change (measured by diver-
gence) in our belief over the candidate graph structures. On the other hand, Eq (9) turns out to
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be easier to compute. In particular, based on Eq (9), ψ(I) can be expressed as

EG�pð�jD;IÞ½EX�pð�jG;I;D;IÞ½DðG;XÞ��; ð10Þ

where

DðG;XÞ ¼ log
pðX jG; I;D; IÞ

EG�pð�jD;IÞ½pðX jG; I;D; IÞ�

 !
: ð11Þ

Apart from the expectations, the only term that needs to be evaluated is the marginal likelihood
pðX jG; I;D; IÞ, for which we have an analytical expression as given in Eq (7) (with pðGjD; IÞ
as the new prior).

Computing expectations over G and X are both intractable, so we replace them with
approximations based on random samples. Let G1, . . ., GS be random samples from the poste-
rior distribution pðGjD; IÞ, which can be obtained using an MCMCmethod as previously
described. To avoid drawing separate samples of X for each graph sample for computational
reasons, we use importance sampling for the inner expectation over X with a sampling distri-
bution qðX jI;D; IÞ that is independent of G. In our experiments, we used q :¼
pðX jG�; I;D; IÞ where G� is the graph with no edges where every variable is independent. Let-
ting x1, . . ., xR be random samples from q, Eq (10) can be approximated as

1

S

XS

s¼1

XR
r¼1

vrs log
pðxrjI;Gs;D; IÞ

1
S

PS
s0¼1 pðxrjI;Gs0 ;D; IÞ

 !
; ð12Þ

where vrs ¼ ~vrs=
PR

r0¼1 ~vr0s with

~vrs :¼
pðxrjI;Gs;D; IÞ
qðxrjI;D; IÞ

:

The overall active learning procedure, with the optimization technique discussed in the fol-
lowing section, is outlined in Algorithm 1 and Fig 1. We provide a MATLAB implementation
of our algorithm in S1 Code.

Algorithm 1 Active learning for GBN

Require: Candidate graph structures G, prior over graphs p(G), initial data

set ðDð0Þ; I ð0ÞÞ, candidate interventions C, number of nodes n, number of addi-
tional experiments to perform T, number of graph samples S, number of samples
for experimental outcome R

Sample Gð0Þ1 ; � � � ;Gð0ÞS � pðGjDð0Þ; I ð0ÞÞ via MCMC
for t = 1 to T do
for all I 2 C do

Sample x1, . . ., xR from qðxjI;Dðt�1Þ; I ðt�1ÞÞ
for s = 1 to S do

for j = 1 to n do

Using Eqs (3)–(6), compute αj, βj,μj, and Λj of pðYGðt�1Þs
j jDðt�1Þ; I ðt�1Þ;Gðt�1Þs Þ

Compute Λ�1j and det(Λj)

end for
for r = 1 to R do
Using Eqs (7), (13) and (14), compute pðxrjI;Gs;D

ðt�1Þ; I ðt�1ÞÞ
end for

end for
Using Eq (12), estimate ψ(I)

Reconstructing Causal Biological Networks through Active Learning
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end for
I? ( argmaxI2CcðIÞ
Perform experiment under I?, record the outcome x
D(t)( (D(t−1),x), I ðtÞ ( ðI ðt�1Þ; I?Þ
Sample GðtÞ1 ; � � � ;GðtÞS � pðGjDðtÞ; I ðtÞÞ via MCMC, initialize with Gðt�1Þ1 ; � � � ;Gðt�1ÞS

end for

return averaged model of GðTÞ1 ; � � � ;GðTÞS

Efficient calculation of marginal likelihood. The computational bottleneck of our algo-
rithm is in the evaluation of pðxrjI;Gs;D; IÞ for every combination of I, r, and s. This involves
calculating the posterior parameters for Gs given ðD; IÞ and also the updated posterior after
observing (xr, I). The former need only be computed once for each Gs. For the latter, the fact

that only a single instance is added to the data set allows a more efficient computation of ðΛ0jÞ�1
in Eq (4) and det ðΛ0jÞ in Eq (7). In particular, an application of the Sherman-Morrison formula

and the matrix determinant lemma gives us:

ðΛ0jÞ�1 ¼ ðΛj þ vvTÞ�1

¼ Λ�1j �
Λ�1j vvTΛ�1j

1þ vTΛ�1j v
;

ð13Þ

det ðΛ0jÞ ¼ det ðΛj þ vvTÞ
¼ ð1þ vTΛ�1j vÞ det ðΛjÞ;

ð14Þ

Initial data
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candidate interventions
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Perform optimal
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Fig 1. Active learning framework for network reconstruction.We first estimate our belief over candidate
graph structures based on the initial data set that contains observational and/or intervention samples. Then,
we iteratively acquire new data instances by carrying out the optimal intervention experiment predicted to
cause the largest change in our belief (in expectation) and updating the belief. The final belief is summarized
into a predicted network via Bayesian model averaging.

doi:10.1371/journal.pone.0150611.g001
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where vT is the row of the family-specific data set Xj that corresponds to the new outcome xr.
Essentially, by saving the inverse and determinant of Λj for each Gs, one can reduce the com-
pute time of pðxrjI;Gs;D; IÞ from O(md2) to O(d2) wherem is the number of samples in the
data and d is the upper bound on the number of parents each node can take.

Evaluation of network reconstruction performance. We assessed the performance of our
learning algorithm in several different ways. To analyze how accurately we learned the underly-
ing causal structure, we followed the evaluation scheme used in the DREAM4 challenge [18]
and calculated the area under receiver operating characteristic curve (AUROC) and the area
under precision recall curve (AUPRC) based on a ranked list of edges. The absolute value of
the expected maximum a posteriori (MAP) edge weight E½ŵMAP

ij jD; I �, approximated using

graph samples from the posterior, was used as the score for each edge. On our simulated data,
we also calculated the mean-squared error (MSE) of the expected MAP edge weights (over n(n
− 1) possible edges) since we have access to the true parameters.

In addition to analyzing the trajectory of different accuracy measures over the course of the
iterative learning procedure where one intervention experiment is added at a time, we also
looked at a metric that is agnostic to whether we have access to the ground truth network.
When we are given a data set with pre-generated interventions and their outcomes, we can ret-
roactively evaluate, given any subset of the data set, how close we are to the final belief over
candidate graph structures obtained using the whole data set. The final belief is expected to bet-
ter reflect the ground truth, and thus faster convergence to the final belief is desirable in most
cases. Intuitively, this evaluates how much information we lose if we only had enough resources
to perform a small subset of the intervention experiments provided. We measure this by calcu-
lating the KL divergence of the final belief from the current belief over 5000 randomly chosen
candidate graphs.

Results

GBNs can capture causal relationships in biological data
We first set out to test whether the model assumptions of GBNs (acyclicity and Gaussianity)
are too restrictive to be effectively applied to real biological data. We ran our algorithm on gene
expression data collected by Sachs et al. [5], which consists of 7,466 single cell expression pro-
files of 11 phosphorylated proteins involved in a signaling pathway of human primary T cells.
A subset of measurements were taken from cells under perturbation induced by different
reagents that activate/inhibit a particular protein in the pathway. We applied the same Bayesian
structure learning algorithm for GBNs used in our framework to recover the ground truth sig-
naling pathway (adopted from Sachs et al. [5]), and were able to predict causal links among the
proteins with reasonable accuracy (0.65 AUROC and 0.30 AUPRC, averaged across five runs
of MCMC). This shows that GBNs can detect edges in a real network despite the model
assumptions. In addition, our inference algorithm outperformed GIES, a state-of-the-art non-
Bayesian approach [19] for learning GBNs, providing further support for our Bayesian learning
approach (Fig 2). Notably, the inclusion of intervention samples did not improve prediction
accuracy on this data set. As previously pointed out by Mooij et al. [20], this odd behavior is
likely due to the fact that the experimental perturbation employed by Sachs et al. [5] modifies
the activity of the target protein instead of its abundance, which is the intended setting of our
method. It is worth noting that, while Sachs et al. [5] reconstructs the ground truth network
with greater accuracy, this is likely dependent on a carefully chosen discretization of the input
data [19, 20], which is precisely the type of tuning we aim to avoid by using continuous Bayes-
ian networks.
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Active learning accelerates network reconstruction on simulated data
To demonstrate the effectiveness of our active learning algorithm, we randomly generated a
GBN with 10 nodes (Fig 3) as ground truth and generated a collection of observational and
intervention samples from the model. Given this simulated data, we set out to compare the
reconstruction performance of an active learner with that of a random learner, which selects
intervention experiments uniformly at random.

The parameters of the ground truth GBN are generated as follows. Each edge weight wij is
uniformly sampled from (−1,−.25) [ (.25,1). The base levelmj of each node is sampled from
N ð0; 1Þ, and the noise level σj is set to 0.05 for all nodes. After populating the parameters, we
sampled 10 observational instances to be used as the initial data set and ran both active and
random learners until they iteratively selected 20 additional intervention experiments. Here,
we only consider single variable knockout (clamping at zero) as possible interventions. For the
convergence analysis, two instances of each knockout were pre-generated and the learners
were limited to using them without replacement.

For the MH algorithm used for sampling graphs from the posterior distribution at each iter-
ation, we used a proposal distribution that assigns uniform weight to each DAG in the neigh-
borhood that is reachable by a single-edge insertion, deletion, or reversal, following the
suggestions of Giudici et al. [21]. Also, p(G) was set to be uniform over DAGs with maximum
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Fig 2. Reconstruction performance on single cell gene expression data.We applied our Bayesian
structure learning algorithm based on GBNs to uncover the signaling pathway of 11 human proteins from
expression data provided by Sachs et al. [5]. MAP estimates of edge weights calculated using 1,000 posterior
graph samples are used to generate a ranked list of (directed) edges for evaluation of accuracy. The data
points for GIES are taken from Hauser and Bühlmann [19] for comparison. The result suggests GBNs can
uncover causal edges in real biological networks, and that our approach is more effective than GIES.

doi:10.1371/journal.pone.0150611.g002

Reconstructing Causal Biological Networks through Active Learning

PLOS ONE | DOI:10.1371/journal.pone.0150611 March 1, 2016 9 / 15



in-degree of five; imposing a limit on the number of parents is a commonly used heuristic in
the literature [22]. On the initial data set, we used a burn-in of 10,000 steps and thinning of 100
steps to obtain the first batch of graph samples. For the subsequent belief updates, we propa-
gated each graph sample by 100 steps to obtain the new batch. Note that the change in poste-
rior distribution after each iteration is relatively small because only one additional data
instance is added. We used 1,000 graph samples and 100 experimental outcome samples (i.e.,
S = 1000, R = 100).

The results are summarized in Fig 3. We observe that our active learning algorithm achieves
consistently higher accuracy than random learner across all three metrics (MSE, AUPRC,
AUROC) after the first few iterations, leading to higher final accuracy overall. We also observe
a faster convergence rate for our method. In particular, our algorithm achieved a belief that is
close (divergence< 1) to the final belief after seven interventions, while random learner
reached the same level only after almost twice as many interventions.

Active learning accelerates network reconstruction on DREAM4
benchmark data
We next asked whether we can achieve a similar improvement on a data set that more closely
resembles biological data. To this end, we tested our method on data from the DREAM4
10-node in-silico network reconstruction challenge [18], which is a commonly used bench-
mark data for network inference algorithms. They provide five networks with different struc-
tures, all chosen to reflect common topological properties of real gene regulatory networks in
E. coli or S. cerevisiae, which include feedback loops. Stochastic differential equations and a
realistic noise model of microarray data sets are used to generate expression data from each
network. We jointly considered the wild type and 10 multifactorial perturbation data as the ini-
tial observational data set (11 instances total), and ran active and random learners to prioritize
20 intervention samples, which consist of one knockout and one knockdown per gene. We
made a simplifying assumption that the learner knows the resulting expression level of the tar-
get gene in a knockdown experiment. It is straightforward to properly address this uncertainty
in a practical setting by taking the expectation with respect to the target variable using a sam-
pling approach.
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Fig 3. Reconstruction performance on simulated data from a GBN.We compared edge prediction performance between active and random learners,
summarized over five trials. The dotted lines are drawn at one standard deviation from the mean in each direction. Active learner achieves higher accuracy
and faster convergence than random learner.
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The results from the DREAM4 analysis are summarized in Fig 4. Since our method is based
on acyclic graphs, we focused our analysis on data sets 4 and 5, which are generated from net-
works that contain fewer and weaker (i.e., longer) cycles than the remaining data sets. We
observe a clear performance improvement by our active learning algorithm in terms of the
speed at which we recover the underlying causal structure. Furthermore, the convergence rate
of our method was consistently and significantly faster on both data sets. Note that the final
accuracy of our method is comparable to earlier work that also applied GBNs to analyze the
DREAM4 data set [12]. The results on data sets 1–3 along with their ground truth networks are
provided in S1 Fig. In the case where the model assumption is heavily violated (i.e., there are
relatively numerous and short cycles), our method still achieves significantly faster conver-
gence to the final belief. However, due to the cyclic nature of these data sets, our method
achieves generally lower final accuracies on these data sets and does not show a clear improve-
ment over the random learner.

He and Geng [14] previously proposed an algorithm that prioritizes interventions to maxi-
mally orient the edges with ambiguous direction in a Markov-equivalence class, estimated by a
standard network inference algorithm, PC [23]. Given enough observational samples, the PC
algorithm recovers the graph structure up to Markov-equivalence based on conditional inde-
pendence tests. We wish to emphasize that our Bayesian inference framework, unlike He and
Geng’s approach, takes advantage of intervention samples not only for determining edge direc-
tions but also for refining the undirected skeleton of the graph. Such an approach is essential in
a practical setting where the observational data is limited in both quantity and quality, which
can lead to numerous incorrect or missing edges in the skeleton. We empirically observed in
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Fig 4. Reconstruction performance on DREAM4 benchmark data. The results are summarized over five trials. The dotted lines are drawn at one
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the DREAM4 data sets that our active learning method predicts the ground truth skeleton with
higher accuracy than PC (Fig 5). Moreover, our method outperformed GIES [19] when applied
to the full DREAM4 data (without prioritization). GIES employs a greedy search over candi-
date graphs taking both observational and intervention data into account. These results suggest
that our learning approach more effectively uncovers the true graph structure than other meth-
ods developed for network inference based on intervention data.

Lastly, we tested the extent to which our optimization based on rank-one updates to the
matrix inverse and determinant improves the runtime of our algorithm. The cumulative run-
time of the iterative learning procedure on our simulated data is shown in Fig 6. Overall, our
optimization is accountable for*30% reduction in runtime. We expect the improvement to
be even more significant on data sets with more samples. Note that this analysis was conducted
using a single 3.47 GHz Intel Xeon X5690 CPU for fairness of comparison even though our
algorithm easily lends itself to parallelism and one can obtain significantly faster runtimes with
multiple CPUs. However, despite our runtime improvement, we note that our method is cur-
rently intended only for small-scale networks (e.g.,<30 nodes), as is the case for most Bayesian
network inference algorithms due to the super-exponential growth of the number of candidate
graphs with respect to the number of nodes. We expect our method to be most effective for
studies where practitioners aim to tease apart causal influences among a small set of genes or
proteins of interest, such as a group of genes that belong to a specific biological process.

Discussion
In this paper, we derived an efficient active learning algorithm for Gaussian Bayesian networks
and demonstrated its effectiveness on several data sets. We showed that our algorithm achieves
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a clear improvement in uncovering the true network as long as the underlying causal structure
does not significantly violate the acyclicity assumption inherent in the GBN models. Even
under violation of model assumption, we were able to observe superior convergence rate of the
active learner, which further supports the effectiveness of our method.

There are several important ways in which this work could be improved for better applica-
bility in systems biology in the future. First, we could develop a systematic way of selecting a
batch of intervention experiments to be performed simultaneously, which is a more suitable
setup for high-throughput assays. Second, we could further adopt our method to support per-
turbation experiments in which we only observe the response of a single reporter gene, whose
phenotype (e.g., luminescence) is easier to quantify than systematic expression profiling.
Third, it would be interesting to look for better ways to find optimal intervention other than
exhaustive enumeration followed by linear search for the optimal solution. This capability is
especially of interest as we consider higher-order interventions of multiple variables, in order
to counter the combinatorial explosion in the number of candidate interventions to consider.

Supporting Information
S1 Fig. Reconstruction performance on DREAM4 data sets 1–3. Even when the ground
truth network contains numerous short cycles, our method still achieves significantly faster
convergence to the final belief. However, due to the violation of model assumption, our method
achieves generally lower final accuracies than those of data sets 4 and 5 and does not clearly
outperform random learner. The results are summarized over five trials. The dotted lines are
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drawn at one standard deviation from the mean in each direction.
(EPS)

S1 Code. MATLAB implementation of our algorithm with an example data set.
(ZIP)
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