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Abstract

Direct reprogramming of non-neuronal cells to generate new neurons is a promising approach to 

repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is 

poorly understood. Here we show that regional differences and injury conditions have significant 

influence on the efficacy of reprogramming and subsequent survival of newly generated neurons 

in the adult rodent brain. A combination of local exposure to growth factors and retrovirus-

mediated overexpression of the neurogenic transcription factor Neurogenin2 (Neurog2) can induce 

new neurons from non-neuronal cells in the adult neocortex and striatum where neuronal turnover 

is otherwise very limited. These two regions respond to growth factors and Neurog2 differently 

and instruct new neurons to exhibit distinct molecular phenotypes. Moreover, ischemic insult 

differentially affects differentiation of new neurons in these regions. These results demonstrate 

strong environmental impact on direct neuronal reprogramming in vivo.
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Introduction

The discovery of induced pluripotent stem (iPS) cells has transformed our view on the cell 

type specificity in the animal body1. Combinatorial overexpression of just a few regulatory 

molecules can covert fully differentiated cells into most primitive pluripotent stem cells, 

demonstrating that cell type specification is reversible and reprogrammable1,2. Recent 

studies have further demonstrated that fully functional mature cells with particular cell types 

such as neurons and cardiac muscle cells can be directly generated in vitro from other cell 

types without passing through the stage of iPS cells3. Generation of tissue-specific stem/

progenitor cells such as neural stem cells from fibroblasts has also been reported3. This 

direct reprogramming is a promising approach to obtain new functional cells and replace 

those lost to insults, the ultimate goal in regenerative medicine2,3. Most studies so far 

reported, however, have utilized in vitro culture to convert one cell type to the other, and 

some studies4-10 have shown that direct reprogramming is also possible in vivo in adult 

organs, including the brain8-10. Yet, little is known thus far about the environmental 

influences on such in vivo reprogramming events. Cell reprogramming involves extensive 

epigenetic modifications2,3, and therefore, the complex in vivo environment is likely to have 

substantial influences on the process. Currently, little is known about the environmental 

impact on direct reprogramming.

In the adult mammalian brain, neurogenesis persists only in a few restricted regions, 

including the subventricular zone (SVZ) lining the lateral ventricle and the hippocampal 

dentate gyrus (DG)11. In these so-called neurogenic regions, adult neural stem/progenitor 

cells (here in collectively called NPCs) serve as the source of new neurons11. Whether the 

production of new neurons also occurs in other regions of the intact brain remains 

controversial12,13. Nevertheless, recent studies have demonstrated that various insults induce 

new neurons in normally non-neurogenic regions14-16. These newly generated neurons in the 

injury site, however, are relatively small in number and survive only for a short period15,16. 

Given such a limited regenerative capacity, approaches alternative to the mobilization of 

endogenous NPCs need to be pursued, and cell reprogramming is one of such promising 

strategies.

In this study, we show that a combination of growth factors (GFs) and the neurogenic 

transcription factor (TF) Neurogenin2 (Neurog2)17 induces new neurons from non-neuronal 

cells in situ in the adult rodent neocortex and striatum where neuronal turnover is otherwise 

restricted. We found that these two brain regions respond to GFs and Neurog2 differently 

and instruct new neurons to exhibit distinct phenotypes. Moreover, ischemic insult 

differentially modulates differentiation of new neurons in these regions. These results 

highlight strong environmental impact on direct neuronal reprogramming in vivo.
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Results

In vivo manipulations using GFs and retroviruses

Previous studies have demonstrated that a combination of a few TFs can directly convert 

non-neuronal cells to functional neurons18-26. Although much attention has been focused on 

how these TFs modify the epigenetic landscape of target cells, an often-ignored condition is 

that reprogrammed cells are exposed to various growth stimuli and undergo multiple cell 

divisions in culture. Thus, we sought to test if an exposure to a high dose GFs augments cell 

reprogramming in vivo. As the means to genetically manipulate cells, we took advantage of 

the fact that retroviruses selectively infect proliferative cells, but not postmitotic neurons. To 

minimize false labeling of postmitotic cells and cell fusion between virus-infected cells and 

pre-existing neurons27, we used the non-pseudotyped vector pMXIG expressing enhanced 

green fluorescent protein (GFP)9,17.

We created stab wound at defined locations in the striatum and neocortex of the adult rat 

brain by focal injection of high-titer viruses, with or without a cocktail of fibroblast growth 

factor 2 (FGF2) and epidermal growth factor (EGF). Target areas were chosen to avoid 

labeling of endogenous NPCs and their progeny in the nearby SVZ and rostral migratory 

stream (RMS) (Fig. 1a-c). In fact, virus-infected cells were found as a cluster of GFP+ cells 

confined to the area around the injected site at day 3 after infection (DAI-3) (Fig. 1d-k), and 

pre-labeling of NPCs with 5-bromo-2′-deoxyuridine (BrdU) before virus infection yielded 

few, if any, GFP/BrdU double-labeled cells in the SVZ or RSM (Supplementary Fig. S1). A 

subset of GFP-labeled cells expressed GFAP, NG2, nestin, and Olig2, known markers for 

NPCs and glial progenitors (Supplementary Fig. S2). We also identified RECA1+ vascular 

endothelial cells and OX42+ microglia/macrophages among GFP+ cells. These populations, 

as a whole, however, comprised less than 50% of the total labeled cells. Importantly, no 

GFP+ cells co-expressed neuronal markers in either the striatum or neocortex at DAI-3 

(none among over 3,000 cells examined in each region). Thus, labeling of pre-existing 

neurons by GFP viruses was, if any occurred, below the detectable level. Even at later time 

points, few cells infected with control viruses alone expressed neuronal markers (2 GFP+/

NeuN+ cells out of 5,112 cells in the striatum and none out of 4,258 cells in the neocortex at 

DAI-14). These results are consistent with previous studies reporting limited neurogenesis 

after stab injury28,30.

GFs and Neurog2 promote neuronal reprogramming in vivo

We then asked if GFs and Neurog2 promote neurogenesis. We observed no significant 

change in the spectrum of cell types among virus-infected cells in GF-treated animals, and 

few GFP+ cells were Dcx+ or NeuN+ at DAI-3. Nonetheless, a small fraction of GFP+ cells 

expressing Dcx and NeuN were detected at DAI-7 and DAI-14, respectively, in the striatum 

(Fig. 1l-m). No such cells were detected, however, in the GF-treated neocortex. Given this 

limited action of GFs, we next used Neurog2 viruses. In the striatum, Neurog2 viruses alone 

and Neurog2 together with GFs significantly increased GFP+/Dcx+ and GFP+/NeuN+ cells 

(Fig. 1o-s) (for quantification, see Fig. 2). Neuronal differentiation of GFP+ cells was also 

demonstrated by co-labeling with TuJ1, MAP2, and HuC/D (Fig. 4a-e). Approximately 

three-fourth of these neuronal marker-positive GFP+ cells (72 ± 5%, n = 3 animals) were 
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Neurog2+ at DAI-7, but a much small fraction (17 ± 4%) retained Neurog2 expression at 

DAI28 or later despite the sustained GFP expression, suggesting that the transgene is 

silenced over time.

In the neocortex, Neurog2 robustly increased GFP+/Dcx+ cells at DAI-3 (Fig. 1t,u). Only a 

small fraction of GFP+ cortical cells, however, expressed NeuN at DAI-14 (Fig. 1v,w). We 

tested two other neurogenic TFs, Pax6 and Ascl1. Consistent with a previous report8, a 

small percentage of cells infected with Pax6 viruses became Dcx+ in the striatum and 

neocortex (0.1 and 0.5%, respectively) (Fig. 2a,b). Few GFP+/NeuN+ cells, however, were 

detectable at later time points. Ascl1 did not promote neurogenesis at a detectable level in 

either regions, in agreement with previous studies9,31 (Fig. 2a,b). Ascl1 alone is a potent 

inducer of neurogenesis in both NPCs32 and fibroblasts in vitro18-26, and can induce new 

neurons in vivo in combination with other TFs10. Thus, its inability to induce new neurons in 

vivo suggests a significant difference between in vivo and in vitro conditions.

We next asked whether GFP+ neurons are generated by cells that divide in situ. When BrdU 

was administered before stab wound, we did not detect any BrdU-labeled neurons around 

the stab wound (Supplementary Fig. S1). However, when BrdU was administered to animals 

twice a day for three days between DAI-0 and DAI-2, 18 ± 6% of GFP+/MAP2+ cells at 

DAI-7 and 12 ± 4% of GFP+/NeuN+ cells at DAI-14 (n = 3 animals) were co-labeled with 

BrdU in the Neurog2/GF-treated striatum (Fig. 4c,d). BrdU-labeled neurons were also found 

in Neurog2/GF-treated neocortex at DAI-14 (8 ± 3% of GFP+/NeuN+ cells examined, n = 

3). These results suggest that a significant fraction of GFP-labeled neurons originate from 

cells that proliferate after injury.

Several lines of evidence argue against the idea that GFP-labeled neurons result from 

infection of pre-existing neurons or cell fusion. First, it has been reported that NeuN+ 

neurons fused with vesicular stomatitis virus coat protein G (VSVG) pseudotyped 

retrovirus-infected microglia/macrophages are barely detectable in the adult neocortex 27. In 

fact, few cells infected with control viruses co-expressed Dcx or NeuN in our study. Second, 

such falsely labeled neurons, if ever exist, would emerge within a day after infection and do 

not survive longer than a week13,27. In our study, however, a relatively large number of 

labeled neurons emerged late after infection, and many of them remained weeks after 

labeling (see below). Finally, the aforementioned BrdU labeling demonstrates that GFP-

labeled neurons derive from cells that divide after injury. Together, these data support the 

idea that GFs and Neurog2 induce new neurons from non-neuronal cells in vivo.

Differential actions of GFs and Neurog2

To compare the environmental influence in the striatum and neocortex, we estimated the 

number of new neurons induced under various conditions based on the quantification of the 

total number of GFP+ cells and the percentage of cells expressing neuronal markers among 

them at different time points (Fig. 3a and Supplementary Table S1). In the striatum, stab 

wound alone induced few GFP+/Dcx+ or GFP+/NeuN+ cells, but GF treatment produced a 

small, but significant number of labeled neurons (Fig. 3b-d). Although GFs slightly 

increased the total number of GFP+ cells compared with control (1.2-fold), the net increases 

in the number of GFP-labeled neurons were much larger (> 20-fold), indicating that the 
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effect of GFs is not simply the expansion of virus-infected cells (Fig. 3d). Neurog2 

stimulated the generation of GFP+/NeuN+ cells despite a slight decrease in the number of 

infected cells (Fig. 3a,d). Moreover, the combination of GFs and Neurog2 led to a marked 

increase of GFP+/Dcx+ and GFP+/NeuN+ cells, demonstrating their synergistic actions. 

Importantly, GFP+/Dcx+ cells emerged between DAI-3 and DAI-7, but disappeared by 

DAI-14 (Fig. 3b). By contrast, GFP+/NeuN+ cells became detectable at DAI-7 onward, and 

over 60% of those detected at DAI-14 appeared to remain at DAI-84 (Fig. 3c). These results 

suggest that new neurons first emerge as Dcx+ immature cells and subsequently become 

NeuN+, reinforcing the idea that GFs and Neurog2 promote the de novo production of 

neurons, not the survival of falsely labeled pre-existing neurons.

Unlike in the striatum, neither stab wound nor GFs alone induced new neurons in the 

neocortex (Fig. 3e). Although Neurog2 induced a large number of GFP+/Dcx+ cells at 

DAI-3, only a few GFP+/NeuN+ cells were found at DAI-14 ((Fig. 3b,c,e). The addition of 

GFs increased GFP+/Dcx+ cells, but again, only a few GFP+/NeuN+ cells were found at 

DAI-28 (0.9% of GFP+/Dcx+ cells found at DAI-3) (Fig. 3e). Thus, the actions of GFs and 

Neurog2 differ in the neocortex and striatum, and the production and/or maturation of new 

neurons appears more restricted in the neocortex.

From the above data, we estimated the extent of neuronal replacement. Stab wound 

combined with GFs and Neurog2 viruses caused a loss of 3,836 ± 619 and 1,866 ± 129 

neurons in the striatum and neocortex, respectively (n = 3 animals). Thus, the estimated 

replacement rate was 4.6% in the striatum and 3.2% in the neocortex at DAI-28. Although 

these rates are not remarkable in light of neuronal replacement, they are comparable to those 

reported for other injury conditions15,16. Given the fact that GFP viruses infected only a 

small number of cells in a focal area in our study, the actual potential of neuronal 

replacement in vivo, if a large number of cells in a widespread region are targeted, could be 

much greater than this estimation.

Region-specific differentiation of new neurons

We next examined the molecular phenotypes of newly generated neurons. GFP-labeled 

striatal neurons were found in both the patch and matrix compartments (Fig. 4a-c,h-p) and 

surrounded by synaptophysin+ synaptic speckles similar to neighboring neurons (Fig. 4f,g). 

Many of them were immunopositive for γ-amino butyric acid (GABA) (76 cells/76 cells 

examined in 3 animals) and Isl1 (18 cells/36 cells), reminiscent of differentiating striatal 

projection neurons (Fig. 4h-m). Although Neurog2 drives differentiation programs of 

cortical neurons when robustly overexpressed in the developing ventral telencephalon33, it 

also supports the production of striatal neurons when expressed moderately34. One 

exceptional marker was DARPP32. Although many GFP+/NeuN+ cells expressed DARPP32 

in the control virus-infected striatum (22 cells/50 cells) (Fig. 4n-p), none of the Neurog2 

virus-infected cells were DARPP32+ (0/118 cells). Thus, Neurog2 appeared to bias the 

phenotype of new neurons toward DARPP32− cells. To examine the connectivity of these 

neurons, the axonal tracer FG was injected into the globus pallidus, one of the targets for 

striatal neurons at DAI-84. In these animals, punctuated FG labeling surrounded GFP+/

NeuN+ cells at DAI-91 (8 cells/19 cells examined) (Fig. 4z,a2). FG labeling was 
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predominantly associated with the soma (Fig. 4b2), demonstrating that labeling was due to 

retrograde labeling, but not passive diffusion.

In the neocortex, few GFP+ neurons were found in control virus-infected animals, and 

therefore, we focused on GF/Neurog2-treated animals. We detected GFP+/NeuN+ cells 

immunopositive for glutamate (Glu) (18 cells/18 cells), glutamate receptor subunits 2/3 

(GluR2/3) (13 cells/13 cells), and Bhlhb5 (17 cells/29 cells) in multiple layers at DAI-28 

(Fig. 4q-y). Unlike in the striatum, no GABA+ GFP+/NeuN+ cells were found in the 

neocortex. These features resembled those of glutamatergic cortical neurons. Neurog2 

viruses and GFs induced GFP-labeled neurons with similar phenotypes in the frontal, 

parietal, and occipital areas (Supplementary Fig. S3). Thus, although induced by the same 

manipulations, new neurons exhibit distinct molecular phenotypes in different environments.

Impact of ischemia on neuronal induction

In the above studies, stab would was the underlying injury condition. We next examined 

how ischemic injury affects neuronal reprogramming. We used a model that produces 

localized damage in the antero-lateral neocortex, leaving the striatum and other regions 

largely intact (Fig. 5a,d,g,k)35. Ischemia induced expansion of Dcx+ neurons in the SVZ 

beyond its normal boundary with the adjacent striatum15,16 (Supplementary Fig. S4). To 

distinguish SVZ- and striatal parenchyma-derived neurons, we first labeled SVZ cells with 

BrdU before ischemia, and subsequently labeled parenchymal cells with GFP viruses at 

DAI-0 (see Supplementary Fig. S2a). Few GFP-labeled neurons were detected in the control 

virus-infected striatum, indicating that the impact of ischemia alone was minimum (Fig. 5o). 

Neurog2 viruses and GFs induced a cluster of GFP+/Dcx+ and GFP+/NeuN+ cells around the 

injection site, but not near the LV (Fig. 5b,c,e,f), and ischemia modestly increased these 

cells (Fig. 5o). None of these cells were co-labeled with BrdU (Fig. 5c,f), indicating that 

SVZ NPCs and virus-infected striatal cells generated new neurons at distinct locations.

New neurons were barely detectable in control virus-infected, non-ischemic neocortex (Fig. 

5p). We found, however, a small number of GFP+ cells expressing Dcx and NeuN in the 

ischemic cortex (Fig. 5h-i). Co-treatment with Neurog2 viruses and GFs induced a larger 

number of GFP+ cells to express Dcx (1.5-fold) and NeuN (8.2-fold) (Fig. 5p). Moreover, 

more Dcx+ cells appeared to proceed to NeuN+ neurons between DAI-7 and DAI-14 after 

ischemia (5.1% versus 0.9%), suggesting that ischemia augments both the production and 

subsequent maturation/survival of new neurons. Interestingly, about a half of GFP+/NeuN+ 

cells in control virus-infected neocortex were GABA+ (12/23 cells), but none of them were 

Glu+ (0/28 cells) or GluR2/3+ (0/34 cells) (Fig. 5i). By contrast, all GFP+/NeuN+ cells 

examined were Glu+ (27/27 cells) and GluR2/3+ (15/15 cells) in Neurog2 virus-treated 

animals (Fig. 5n). Thus, Neurog2 appeared to promote differentiation of glutamatergic 

neurons in the adult neocortex as in embryos33,34.

GFs increase cells capable of forming neurospheres

Recent studies have shown that skin fibroblasts can be reprogrammed to become 

neurons18-26, as well as NPCs36-39. The aforementioned data also show that some GFP-

labeled neurons originate from cells that divide in situ. Such dividing cells could be either 
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NPCs or other cell types. To test the former possibility, we asked if cells labeled with GFP 

viruses in vivo are capable of forming neurospheres, a hallmark of NPCs in vitro. We 

administered GFs and control viruses to adult rats, and subsequently isolated small pieces of 

tissue around the injection sites at DAI-3. In the presence of FGF2 and EGF, 0.61 ± 0.26% 

of SVZ-derived cells formed neurospheres, whereas such cells was rare in the neocortex and 

striatum of uninjured brains (0.03 ± 0.02% and 0.09 ± 0.03%, respectively) (Fig. 6a-j and 

Table 1). The content of sphere-forming cells in the corpus callosum, which has been 

reported to contain NPC-like cells40, was also extremely low (0. 005 ± 0.001%) (Fig. 6j). 

However, tissues that received stab wound and GFs yielded many more neurospheres than 

control as reported in previous studies28-30 (Fig. 6c-e, Table 1). Most of these GFP+ spheres 

were composed entirely of GFP+ cells (355/362 striatum-derived spheres and 89/90 cortex-

derived spheres examined) (Fig. 6a,b), and conversely, the rest of the spheres contained few, 

if any, GFP+ cells, demonstrating the clonal expansion of GFP+ neurospheres. After 

passage, these primary spheres formed secondary spheres composed of cells incorporating 

BrdU, indicating that they were proliferating in vitro (Fig. 6f-h). Moreover, the frequency of 

cells forming secondary spheres within primary spheres was comparable between the three 

regions (Fig. 6j). When these secondary neurospheres were induced to differentiate in 

monolayer, the percentage of TuJ1+ neurons among total cells was also similar in the three 

cultures (Fig. 6i,m). The ratio of GFAP+ astrocytes, however, was about two-fold higher in 

the SVZ-derived culture, and the cortical culture contained a higher percentage of O4+ 

oligodendrocytes compared with the other two regions (Fig. 6k-m). These results support the 

idea that stab wound and GFs promotes the generation of NPC-like cells in vivo.

Distinct gene expression profiles of NPC-like cells

We next isolated similar NPC-like cells from the adult mouse brain and characterized their 

properties by microarray-based gene expression profiling. Among 41,170 probes covering 

the mouse genome, we identified 3,781 probes representing 3,003 genes that gave more than 

a 5.0-fold higher hybridization signal with one or more of the adult neurosphere-forming 

cells compared with the whole brain (Fig. 7a). Clustering analyses of three independent 

samples demonstrated a reproducible gene expression profile of cells derived from each 

region (Fig. 7b). Among these genes, 1,558 genes were common between cells from all 

three regions, whereas 435 and 58 genes were uniquely enriched in neocortical and striatal 

cells, respectively (Fig. 7a).

Many genes commonly expressed in embryonic and adult NPCs encode TFs41. We thus 

focused our initial analysis on this class of genes. Neurospheres isolated from the dorsal and 

ventral forebrains of E14.5 embryos (vFB and dFB, respectively) were included for 

comparison. Some TFs were expressed at similar levels (less than 2-fold difference) across 

adult cells, which included Sox2, Emx2, Gsx2, and Ascl1 (Fig. 7c-f). Sox2 is ubiquitously 

expressed in undifferentiated progenitors, whereas Emx2 is expressed in a forebrain-specific 

manner during development40. Their expression thus reflects their common properties as 

NPCs with a forebrain identity. Although the expression of Gsx2 and Ascl1 is mostly 

confined in the vFB in embryos42, we detected similar expression levels of these TFs across 

the adult and embryonic cells. By contrast, Pax6 and Neurog2 were expressed in higher 

levels in neocortical cells than SVZ and striatal cells, whereas Six3 was expressed in an 
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opposite manner (Fig. 7g-i). These patterns mirror the difference between the embryonic 

dFB and vFB, the primordia of the adult neocortex and striatum, respectively42. We 

confirmed the expression of some of these TFs at the protein level by immunostaining 

(Supplementary Fig. S5). These results demonstrate that NPC-like cells induced in the adult 

neocortex and striatum exhibit distinct molecular profiles in vitro. Although we examined if 

GFP-labeled cells express any of these TFs in stab-wounded animals in situ, we could not 

find such cells. It could be that such cells exist only transiently or in small number, or 

manifest unique molecular phenotypes after expansion in vitro. Thus, the biological 

relevance of each of these genes in the context of in vivo reprogramming remains to be 

further investigated.

Discussion

Recent studies have demonstrated that a variety of non-neuronal cells can be reprogrammed 

to become neurons and NPCs in vitro18-26,36-39,43-46. Other studies have also shown that 

fully differentiated cells acquire the properties of tissue-specific stem cells in vivo under 

certain circumstances4-7. In line with these emerging findings, we found that exposure to 

GFs and overexpression of the neurogenic TF Neurog2, in combination of stab wound, can 

induce new neurons in the adult neocortex and striatum where neuronal turnover is 

otherwise absent or extremely rare12,13. Stab wound or ischemia alone did not induce such 

neurogenesis at a significant level, indicating that GFs and Neurog2 exert unique actions to 

reprogram non-neuronal cells. In vivo treatment with GFs and Neurog2 also increased the 

frequency of cells that were capable of forming neurospheres in vitro, suggesting that the 

production of neurons occurs, at least in part, through the generation of NPC-like cells. 

Interestingly, such NPC-like cells derived from different regions exhibited distinct 

molecular profiles in vitro. Thus, reprogrammed cells in the adult brain appear to inherit 

distinct properties of the cells of their origin. Whether such differences are attributable to 

their intrinsic properties or the influence of their environment remains to be examined.

The retrovirus used in this study infected many different cell types in vivo, yet only a small 

fraction of infected cells were reprogrammed to become neurons. Thus, the identity of cells 

that retain a competency to become neurons in response to GFs and Neurog2 is currently 

unknown. Various cell types, including astrocytes and pericytes in the brain, have been 

shown to be reprogrammable to neurons and NPCs in vitro18-26,43-46. Recent studies also 

suggest that certain glial cells such as reactive astrocytes and NG2+ glial progenitors exhibit 

a capacity for neurogenesis in vitro28-30 and in vivo47,48. Thus, these glial cells may serve as 

the source of new neurons. In fact, a recent study has demonstrated the generation of new 

neurons by direct conversion of astrocytes in the striatum in vivo10. These cells, however, 

comprised a minor fraction of total virus-infected cells in our study. Thus, given the reported 

low efficiency of neuronal reprogramming of each of these cell types in vitro, it could be 

that GF/Neurog2-induced neurons originate from multiple non-neuronal cells rather than 

one specific cell type. Alternatively, the adult neocortex and striatum may contain cells that 

intrinsically retain the properties of NPCs but remain dormant in the intact brain. In this 

scenario, the action of GFs and Neurog2 is to mobilize them to differentiate into neurons. In 

fact, previous studies have reported the occurrence of such cells outside the known 

neurogenic niches28-30,49,50.
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An important finding in this study is that the in vivo environment affects many aspects of 

neuronal reprogramming in vivo. In the striatum, GFs or Neurog2 alone induced a small, but 

significant number of new neurons after stab wound, and their combination further 

stimulated local neurogenesis. In the neocortex, however, Neurog2 alone induced a large 

number of immature neurons, but only a small number of mature neurons remained at later 

stages. A previous study has also shown that overexpression of Pax6 and a dominant-

negative form of Olig2 induces immature, but not mature neurons in the adult neocortex8. 

Thus, neuronal reprogramming appears to be more restricted in the neocortex than in the 

striatum. Interestingly, both the production and subsequent maturation of new neurons were 

enhanced after focal ischemia in the neocortex. Thus, stab wound and ischemia modulate 

local neurogenesis in different manners. Our data have also demonstrated that the in vivo 

environment strongly influences the molecular phenotypes of newly generated neurons in 

vivo.

What mechanisms underlie these differences is currently unknown. It could be attributable 

to differences in the intrinsic properties of cells or environmental regulations, or both. 

Differential inflammatory and immune responses or expression of distinct GFs, cytokines, 

and morphogens could underlie the region- and injury-specific regulation of 

neurogenesis16,51. If reprogrammed neurons are to be utilized for brain repair, it is crucial to 

understand the nature of these environmental signals and their mechanisms of action. 

Whether new neurons generated in injured brains contribute to functional recovery also 

needs to be further investigated. Although our preliminary studies did not detect significant 

impact of neuronal reprogramming in vivo on behavioral recovery after stab wound or 

ischemic injury, it could be because of the relatively small number of new neurons induced 

by the method employed in this study. Yet, it is encouraging that recent studies have shown 

that exogenous NPC-derived or reprogrammed neurons, when transplanted in a large 

number, can be integrated into the existing circuitry and contribute to certain function, 

demonstrating that the adult mammalian brain is receptive to new neurons18-26,43-46,52-55. 

Further understanding of the environmental impact on neuronal reprogramming in vivo may 

lead to the development of new strategies to augment the latent regenerative potential of the 

adult brain.

Methods

Animals

Adult male Sprague-Dawley rats (10-12 weeks of age, 300-360 g) were used in all in vivo 

experiments. Adult male CD1 mice (10-12 weeks of age, 30-40 g) were used for gene 

expression profiling of neurospheres. All animal procedures were performed according to 

the guidelines of the Institutional Animal Care and Use Committee and the National Institute 

of Health.

Retrovirus infection and other in vivo manipulations

High-titer solutions (2×108 colony forming unit/ml) of recombinant retroviruses pMXIG and 

its derivatives expressing Neurog2, Pax6, and Ascl19,14,32 were prepared with artificial 

cerebrospinal fluid (124 mM NaCl, 5 mM KCl, 1.3 mM MgCl2, 2 mM CaCl2, 26 mM 
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NaHCO3, and 10 mM D-glucose, with the pH adjusted to 7.2 using aeration with 95% O2–

5%CO2) containing rat serum albumin (1 mg/ml, Sigma-Aldrich). In some experiments, the 

virus solution was supplemented with FGF2 (0.9 μg/ml; Peprotech) and EGF (0.9 μg/ml; 

Roche).

The virus solution was delivered into the brain through an infusion cannula with an external 

guide cannula (Plastic One) at a flow rate of 1 μl/min with an automated injection pump 

(BASi) attached to a stereotaxic injection device (Narishige, Tokyo, Japan)44. For injection 

into the striatum, the cannula was placed 0 mm anterior and 3.0 mm lateral from bregma, 

and the cannula tip was placed 4.0 mm deep from the skull surface. This stereotaxic 

coordinate targeted the middle of the dorsal aspect of the striatum of adult rats56. Injection 

into the frontal area of the neocortex was performed with the cannula placed 2.5 mm 

anterior and 2.0 mm lateral from bregma, and the depth was 2.0 mm. After injection, the 

cannula was left for additional 10 min before removing.

BrdU labeling

To label proliferating cells in the brain, BrdU (150 mg/kg of body weight, Sigma-Aldrich) 

dissolved in 0.9% sterile saline was injected intraperitoneally in two different paradigms. In 

the pre-labeling paradigm, BrdU was administered to animals twice a day for three 

consecutive days, and subsequently viruses were injected into the brain 24 hours after the 

last BrdU injection. In the post-labeling experiments, the first administration of BrdU was 

performed 2 hours after virus injection, and subsequently repeated every 12 hours for three 

days.

Retrograde axonal tracing

One μl of artificial cerebrospinal fluid containing 3% (w/v) FluoroGold (FG) was injected 

into the globus pallidus ipsilateral to the virus injection site57. The stereotaxic coordinates 

were 2.3 mm posterior and 4.0 mm lateral to bregma, and the cannula depth was 6.8 mm5. 

FG was injected 84 days after virus infection, and animals were sacrificed at day 91. Serial 

sections of the brain were examined to confirm that bulk labeling was confined to the globus 

pallidus without significant passive diffusion into adjacent regions.

Focal cortical ischemia

Rats were anesthetized with isoflurane [2.0% (v/v)] and maintained at the lateral position 

with mechanical ventilation (1% isoflurane in a mixture of 30% O2 and 70% N2O). The 

blood gas conditions were kept at the constant levels (PO2, 120±10 mm Hg; PCO2, 35±3 

mm Hg) and the rectal and temporal muscle temperatures were maintained at 37.5±0.2C and 

37.0±0.1C, respectively, throughout surgery. The distal branch of the middle cerebral artery 

(MCA) was exposed at its proximal trunk through the subtemporal approach, thermo-

coagulated with a bipolar coagulator (MIZUHO Co., Ltd., Tokyo, Japan), and severed with a 

microscissor at the position just distal to the lenticulostriate branch. This occlusion causes 

localized damage in the dorso-lateral neocortex, whereas the rest of the neocortex and other 

brain regions remain mostly intact35. After surgery, animals were maintained on a heating 

blanket to prevent hypothermia until they began spontaneous movement, and subsequently 
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returned to their home cages and individually housed. For subsequent 3 days, animals were 

inspected daily to ensure that they had access to food and water.

Histological analysis

For quantification of GFP- and BrdU-labeled cells, every 10 sections among serial coronal 

sections of the entire striatum (−0.3 to +1.6 mm from bregma, approximately 95 sections) or 

the anterior part of the neocortex (+3.2 to +4.7 mm from bregma, approximately 75 

sections) were subjected to immunostaining. Among all animals examined, the maximum 

dispersion of GFP+ cells was observed in an area of approximately 2.0 mm3 in volume 

(antero-posterior, 1.0 mm; dorso-ventral, 1.0 mm; and medio-lateral 2.0 mm) in both the 

striatum and neocortex, but in most cases, they were confined to a smaller area (< 1.0 mm3). 

Fifty to 500 GFP+ cells were detected per section depending on its distance from the 

injection site. The total number of GFP+ cells and the percentage of cells double stained for 

specific markers were estimated in each manipulated animal, and the results are expressed as 

mean ± standard deviation (S.D.) of the data obtained from 3 to 4 independent animals. To 

validate the co-staining of multiple markers in single cells, samples were examined by 

confocal Z-sectioning at an interval of 1.0 mm using LSM-510 (Carl Zeiss). Only cells that 

appeared to retain the intact soma and nuclei within a given section, which was judged 

according to the staining pattern of GFP and BrdU, were counted. At least 100 or more 

double-labeled cells were observed using confocal microscope in representative sections 

from animals treated under different conditions. Quantification of the number and density of 

BrdU-labeled cells in the SVZ and parenchyma was performed using 4 representative 

coronal sections from each animal in which a cluster of GFP+ cells were detected around the 

injection site. The SVZ was defined as the 100 μm-wide region lining the LV.

Immunostaining

Animals were euthanised with CO2 and fixed by intracardiac perfusion with 4% (w/v) 

paraformaldehyde (PFA; Acros Organics). Brains were collected and post-fixed with PFA 

for an additional 12 hours. Subsequently, the samples were cryoprotected with sucrose and 

embedded into OCT compound (Sakura Finetek U.S.A.). Twenty μm-thick sagittal or 

coronal sections were serially collected on slide glasses and subjected to 

immunostaining9,14. When staining was visualized with a colorimetric substrate for 

peroxidase (Pierce), sections were counter-stained with methylgreen (Sigma-Aldrich). 

Images were captured using the CCD camera Pixera Pro 600ES attached to the microscope 

BX-50 (Olympus). Images after staining with secondary antibodies conjugated with 

fluorescence probes were obtained with the Axiophoto2 (Carl Zeiss) equipped with the CCD 

camera C5810 (Hamamatsu Photonics) or with LSM-510 (Carl Zeiss). The antibodies used 

for immunostaining are listed in Supplementary Table S2.

Neurosphere culture

One mm-thick serial coronal slices of brains were prepared using the rodent brain matrix 

(ASI Instruments). The striatum and dorso-frontal cortex were microdissected under the 

binocular microscope SV-11 (Carl Zeiss). Rat brain tissues were isolated from the slices 

encompassing approximately +3.5 to +2.0 mm from bregma for the neocortex and −0.5 to 

+1.5 mm for the striatum using the optic chiasm as an anatomical landmark5. For mouse 
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brains, slices encompassing approximately +1.4 to +0.0 mm from bregma were used58. In 

both cases, incisions were placed at least 0.5 mm away from the visible borders of the LV 

and corpus callosum to avoid contaminations of the adjacent white matter and 

periventricular tissue. A stripe of tissue lining the LV (approximately 100 μm-thick) was 

collected as a specimen containing the SVZ. For gene expression profiling studies, the 

dorsal and ventral forebrains, which contain the embryonic primordia of the neocortex and 

striatum, respectively, were isolated from mouse embryos at embryonic day (E) E14.559.

Dissociated single cells were seeded at a density of 1×104 cells/ml in a growth medium [1:1 

mixture of Dulbecco’s modified Eagle’s medium and F-12 medium (Invitrogen) 

supplemented with B-27 and N2 supplements (Invitrogen), 20 ng/ml FGF2, 20 ng/ml EGF, 

20 ng/ml platelet-derived growth factor (Roche), 2 μg/ml heparin sulfate (molecular mass of 

3000; Sigma-Aldrich), 1 mg/ml bovine serum albumin (Sigma-Aldrich), and 100 μM 2-

mercaptoethanol (Sigma-Aldrich)9,14,32. Culture dishes were coated with 20 mg/ml poly [2-

hydroxy-ethyl methacrylate] (Sigma-Aldrich) to prevent cell attachment. At day 14 in vitro 

(DIV-14), the number of neurospheres with a diameter over 100 mm was counted. 

Subsequently, these primary neurospheres were subjected to serial passages under the same 

conditions. BrdU (0.5 μM; Sigma-Aldrich) was added to the culture of secondary 

neurospheres for 3 days between DIV-14 and DIV-17 to detect dividing cells in 

neurospheres. In some experiments, brains that received retrovirus infection in vivo (see 

below) were subjected to neurosphere culture. The site of virus injection in coronal slices 

was identified under the microscope, and small piece of tissue around the injection site was 

removed. A portion of the sample was subjected to immunostaining for GFP, and the 

number of GFP+ cells among total viable cells was quantified. The rest of the sample was 

subjected to neurosphere culture as described above.

To induce differentiation, primary or secondary neurospheres were seeded onto poly-D-

lysine (PDL; 100 μg/ml; Sigma-Aldrich)-coated 8-well chambers (Nalge Nunc), either as 

cell aggregates (approximately 20 spheres per well) or at a density of 2×104 cells per well 

after dissociation. The resultant cells were further cultured in a growth medium without GFs. 

The cells were subjected to immunostaining for β-tubulin type III (TuJ1), glial fibrillary 

acidic protein (GFAP), and O4 at DAI-10. Immunoreactive cells were visualized with 

secondary antibodies conjugated with Alexa Fluor dyes (1:200; Invitrogen). To count cell 

numbers, cell nuclei were stained with 1 μg/ml Hoechst 33258 (Invitrogen).

Gene expression profiling

Secondary neurospheres derived from different brain regions were subjected to gene 

expression profiling studies using microarrays. Three sets of adult mouse brain-derived cells 

were obtained from independent culture experiments. Freshly isolated tissues and 

neurospheres derived from the dorsal and ventral forebrains of E14.5 mice were used for 

comparison. RNeasy mini kit (QIAGEN) was used for isolation and purification of total 

RNAs. The concentration of RNA was measured using RNA Assay Nanoprep Chip 6000 

and Bioanalyzer (Agilent). To compare the expression profiles across the samples, 

Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform (total 41,170 probes) was 

used, and the data were analyzed using Silicon Genetics GeneSpring Software GX7.3.1. To 
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identify genes enriched in NPCs and NPC-like cells, we used a data set of the whole brain of 

adult mice that were obtained using the same microarray platform and made available by the 

Gene Expression Omnibus Project on the website of the National Center for Biotechnology 

Information (accession number GDS592: http://www.ncbi.nlm.nih.gov/geo/gds/

gds_browse.cgi?gds=592). The data was normalized to median settings across the entire 

probe set and samples, and transcript levels 5.0-fold or higher than those in the adult brain 

were taken as significant enrichment. The relative mRNA expression levels of selected 

genes were quantified by quantitative reverse transcriptase-chain reaction (qRT-PCR) 

analysis using Opticon DNA Engine (BIO-RAD). Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was used as internal control and statistical significance was 

evaluated by two-tailed unpaired t-test. The primers used are listed in Supplementary Table 

S3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Focal labeling of striatal and neocortical cells with GFP retroviruses in the adult rat brain. 

(a-c) Schematic diagrams illustrating the location of virus injection sites in parasagittal (a) 

and coronal (b,c) views. Boxes indicate the areas shown in d-k. (d-k) Distributions of GFP+ 

cells (dashed circles and arrowheads) in the striatum (d-h) and neocortex (i-k) at DAI-3. 

Sections were counter-stained with methylgreen. (l-w) Co-expression of neuronal markers 

and GFP in virus-infected cells (arrows) in the striatum (l-s) and neocortex (t-w). Dashed 

lines in l, o, q, and r indicate the border of the matrix (M) and patch (P) compartments of the 

striatum. Arrows and arrowheads indicate GFP+ cells co-expressing and non-expressing, 

respectively, the marker shown above each panel. The lower panels m, p, s, u, w show the 

co-localization of relevant markers in single cells in orthogonal views of confocal z-stack 

images in I, o, r, t, and v, respectively. Scale bar: d, e, f, I, 1 mm; e, g, h, j, k, 100 μm; l, n, o, 

q, r, t, v, 50 μm; m, p, s, u, w, 20 μm. Abbreviations: Cx, neocortex; CC, corpus callosum; 

DG, dentate gyrus; LV, lateral ventricle; RMS, rostral migratory stream; Str, striatum; SVZ, 

subventricular zone.
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Figure 2. 
Differential impacts of GFs and Neurog2 in neuronal induction in the adult rat striatum and 

neocortex. The percentages of GFP+ cells expressing Dcx and NeuN in the striatum (a) and 

neocortex under various conditions are shown (mean ± s.d. of 3-4 animals). GFP+/Dcx+ 

cells were examined at DAI-3 and DAI-7 in the neocortex and striatum, respectively. *, p < 

0.01 compared with control viruses in Student’s t test; $, p < 0.01 compared with treatment 

with GFs or Neurog2 viruses alone in Student’s t test.

Grande et al. Page 18

Nat Commun. Author manuscript; available in PMC 2014 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Combinatorial actions of GFs and Neurog2. (a-c) The numbers of total GFP+ (a), GFP+/

Dcx+ (b), and GFP+/NeuN+ (c) cells detected at different time points after GF/virus 

infection (mean ± s.d., n = 3-4 animals). The number of GFP+ cells in GF-untreated animals 

is shown in Supplementary Table S1. *, p < 0.01 compared with control viruses in Student’s 

t test. (d, e) The estimated numbers of GFP+/Dcx+ (left) and GFP+/NeuN+ (right) cells in the 

striatum (d) and neocortex (e) under various conditions (mean ± s.d., n = 3-4 animals). The 

numbers in parentheses show the percentage of GFP+/NeuN+ cells at DAI-14 compared with 

GFP+/Dcx+ cells at earlier time pints. *, p < 0.01 compared with control viruses in Student’s 

t test; $, p < 0.01 compared with GFs or Neurog2 alone in Student’s t test. nd, not detected.
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Figure 4. 
Region-specific differentiation of GFP-labeled neurons in the striatum and neocortex. (a-g) 

Co-labeling of various neuronal markers and BrdU in GFP+ cells (arrows) in the striatum. 

Time points after infection, types of manipulations used, and markers stained are shown 

above individual panels. In c-e, BrdU was administered twice each day for three days 

between DAI-0 and DAI-2. Dashed lines in a, b, c, and f indicate the border of the matrix 

(M) and patch (P) compartments of the striatum. Lower panels in a-d and g show orthogonal 

views of confocal z-stack images of the cells indicated by arrows. Note that the overlap of 
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green, red, and blue colors in c, d, and e is indicated as white color. (h-y) Region-specific 

phenotypes of GFP-labeled neurons in the striatum (h-p) and neocortex (q-y) at DAI-28. 

Arrows indicate GFP+/NeuN+ neurons expressing relevant markers, whereas arrowheads 

indicate marker-negative GFP+ and/or NeuN+ cells. Images in n-p were obtained from 

control virus-infected animals, whereas all others were from Neurog2 virus-infected 

animals. (z-b2) Retrograde labeling of GFP+/NeuN+ cells in the striatum by FG. FG was 

injected into the globus pallidus ipsilateral to the virus injection site at DAI-84, and animals 

were analyzed at DAI-91. z shows the distribution of FG fluorescence (white dots) in the 

striatum (the virus injection site in a dashed circle). a2 shows GFP+/NeuN+ cells co-labeled 

with FG detected in the area boxed in z. b2 shows confocal images (an orthogonal view in 

lower panels) of a neuron boxed in a2. Scale bar: a-g, 50 μm; h-y, 25 μm; z, 1 mm; a2, 50 

μm; b2 and lower panels of a, b, c, d, g, and b2, 20 μm.
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Figure 5. 
Neurogenesis in the ischemic brain. (a-n) BrdU- and GFP-labeled neurons in the adult rat 

striatum (a-f) and neocortex (g-n). Circles and boxes in a, d, g, and k indicate the location of 

virus-infected cells and the areas shown in fluorescence images, respectively. Dashed lines 

in b and e indicate the ventricular wall. b and e show BrdU-labeled neurons near the LV, 

whereas c and f show GFP-labeled neurons detected around virus-infected regions in the 

striatum. h and j show GFP+/NeuN+ and GFP+/GABA+ cells in the neocortex that received 

control viruses, whereas l and n show GFP+/NeuN+ and GFP+/NeuN+/Glu+ cells detected in 

Neurog2 virus-infected animals. I and m show orthogonal views of z stack confocal images 

of neurons indicated by arrows in h and l, respectively. (o, p) Estimated numbers of 

GFP+/Dcx+ cells at DAI-3 (neocortex) and DAI-7 (striatum) (o), and GFP+/NeuN+ cells at 

DAI-14 (both regions) (p) under various manipulation conditions (mean ± s.d., n = 3-4 

animals). The data regarding non-ischemic animals are adopted from Fig. 3d and 3e. The 

numbers in parentheses show the percentage of GFP+/NeuN+ cells at DAI-14 compared with 

GFP+/Dcx+ cells at earlier time pints. *, p < 0.01 compared with control viruses in Student’s 

t test; $, p < 0.01 compared with non-ischemic animals treated with GFs and Neurog2 in 
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Student’s t test. nd, not detected. Scale bar: a, d, g, k, 2 mm; b, c, e, f, h, l, 50 μm; and insets 

in b, c, e, f, i, j, m, n, 20 μm.
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Figure 6. 
Neurosphere-forming cells induced by stab wound and GFs in the adult rat neocortex and 

striatum. (a, b) GFP+ Neurospheres formed in vitro by cells exposed to GFs and GFP viruses 

in vivo. (c-h) Phase-contrast images (c-e) and staining for BrdU (f-h, red) of growing 

secondary neurospheres. Cell nuclei were stained with Hoechst 33258 (blue). (i) Frequencies 

of neurosphere-forming cells 14 days after tissue isolation (primary spheres, indicated as 

1st) and 14 days after the first passage (secondary spheres, 2nd) (mean ± s.d., n = 10). *, p < 

0.01 in Student’s t test. (j-m) Differentiation of a secondary neurosphere derived from the 

striatum. The cells (phase-contrast image in j) were stained for TuJ1 (k, red), GFAP (l, 

blue), and O4 (m, green). (n) Percentages of TuJ1+, GFAP+, and O4+ cells among total cells 

in culture of secondary neurospheres (mean ± s.d., n = 4). *, p < 0.01 compared to SVZ-

derived cells in Student’s t test. Scale bar: a, b, d-i, and k, 50 μm.
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Figure 7. 
Differential gene expression profiles of neurosphere-forming cells derived from distinct 

regions of the adult mouse brain. (a) Venn diagram showing the number of genes commonly 

and differentially expressed in neurospheres derived from the SVZ, neocortex and striatum. 

Among 3,003 genes that were selected as those that gave more than a 5.0-fold higher 

hybridization signal with one or more of the adult neurosphere samples compared with the 

whole brain of adult mice. (b) Heat-map view of cluster analysis of 716 probe sets (637 

genes) that showed more than a 5-fold difference in the expression level between cortical 

and SVZ cells (three stripes represent 3 independent cultures). Neurospheres from the dorsal 

and ventral forebrains (dFB and vFB) of E14.5 embryos were used for comparison. (c-i) 

Quantitative RT-PCR analyses of the expression of transcription factor mRNAs. The levels 

are normalized using GAPDH as internal control, and data are expressed as values relative 

to the SVZ-derived cells (designated as 1.0) (mean ± s.d., n = 3). Abbreviation: dFB and 

vFB, dorsal and ventral embryonic forebrain culture, respectively.
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Table 1

Neurosphere formation by virus-infected cells in vitro. Frequencies of primary neurosphere-forming cells 

among GFP+ and GFP− cells within intact and GF/virus-injected tissues are quantified (mean ± s.d., n = 3). 

The numbers in parenthesis are fold-increments compared to intact tissue. *, p < 0.01 compared to intact tissue 

in Student’s t test; $ , p < 0.01 compared to GFP− cells in Student’s t test.

Number of neurospheres/
103 GFP+ or GFP− cells

Tissue source GFP-label Neocortex Striatum

Intact - 0.3 ± 0.2 (1) 0.9 ± 0.3 (1)

GF/Virus injection - 1.1 ± 0.1 (4)* 9.9 ± 1.5 (11)*

+ 13.0 ± 3.0 (43)$ 150.0 ± 28.2
(167)$
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