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Abstract

Grasp affordances in robotics represent different ways to grasp an object involving a variety

of factors from vision to hand control. A model of grasp affordances that is able to scale

across different objects, features and domains is needed to provide robots with advanced

manipulation skills. The existing frameworks, however, can be difficult to extend towards a

more general and domain independent approach. This work is the first step towards a modu-

lar implementation of grasp affordances that can be separated into two stages: approach to

grasp and grasp execution. In this study, human experiments of approaching to grasp are

analysed, and object-independent patterns of motion are defined and modelled analytically

from the data. Human subjects performed a specific action (hammering) using objects of dif-

ferent geometry, size and weight. Motion capture data relating the hand-object approach

distance was used for the analysis. The results showed that approach to grasp can be struc-

tured in four distinct phases that are best represented by non-linear models, independent

from the objects being handled. This suggests that approaching to grasp patterns are follow-

ing an intentionally planned control strategy, rather than implementing a reactive execution.

Introduction

Multifingered grasping in robotics is a widely studied problem. Despite this, a general solution

has not been found yet. Over the course of time, different approaches were attempted to

address the problem. Early focus [1] was on control algorithms for three or four fingered

hands [2]. The approach was to optimise the placement of robotic fingertips on the surface of

an object to achieve force or form closure with the hand grip. However, it is difficult to scale

such approach to novel or a large number of objects, as it requires ad-hoc computations of

the optimal placements. Recent attempts show that it is possible to optimise this [3]. Later

approaches exploited a known characteristic of human grasping—grasping synergies [4]. It is
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the ability to move the fingers as a group rather than individually. This concept has been

implemented in hardware [5, 6] and in software [7, 8]. Such approaches are simpler and easier

to scale, but selecting the minimum number of synergies in a hand design [9] or formally

assessing the quality of grasp [10] are still research topics in their early stage.

In order to perform robotic grasping of an object, it is first required to reach it with the

end-effector. Controllers for reaching have better overall performance and are used in indus-

trial set-ups. Direct reaching is mostly a solved problem [11], while constrained reaching, i.e.

obstacle avoidance [12] or following a trajectory [13] or a strict time limit [14], is still consid-

ered a research topic. The combination of reaching and grasping controllers in robotics,

instead, was not investigated as much. Reaching and grasping are often considered as separate

control problems, although some studies from neuroscience of grasping suggest the contrary

[15, 16]. The influence of reaching on grasping is often taken into account when designing

[17] or controlling [8, 18] a robotic hand, but has not yet been quantified formally how the two

motions influence each other. Therefore, it is worth to study the interactions between reaching

and grasping. A good reaching might compensate for a bad grasping, or a different reaching

trajectory might be required for a different grasp posture.

There are many studies that combine reaching and grasping to obtain a better understand-

ing of the environment, to learn how to use an object or to guide the hand effectively. Although

those studies do not openly discuss the interaction between reaching and grasping, they do

take it into account. Often, perception and learning aspects are included in the analysis of the

combination of reaching and grasping. Interactive perception is a technique that requires the

robot to build a representation of an object by interacting with it and observing the outcome

of its actions [19]. An application of grasping to use an object can be seen in [20] where

authors are employing the technique to teach a robot how to use tools from perception and

interaction. For instance, the technique can be used to determine interactively how to fold

laundry [21] when combined with gaussian processes. The combination of manipulation and

reaching in interactive perception is used to improve the knowledge of the environment, and

to understand how to interact with it. Therefore, perception and learning are fundamental

components of this technique. Another popular and similar technique is active vision. This

methodology originally addresses complex computer vision problems by changing the view

point of the camera [22]. Such technique can be used to optimise the number of processed

frames needed to execute a grasp [23], or to generate grasping points on-line to guide visual

servoing [24]. Hence, in this technique the interaction between vision and reaching is used to

guide grasping. However, as the end-effector is mounted on the same arm, grasping is influ-

enced by reaching as a result. The above approaches study the interaction between reaching

and grasping but do not target the phenomena directly. In such way, it is difficult to under-

stand the phenomena in depth and scale it for different objects and domains (areas of applica-

tion). As such, the main disadvantage is that those approaches are tailored to the specific

problem. Additionally, an intense use of learning, required by interactive perception, often

needs long on-line training for parameter tuning or model definition.

To overcome those limitations, there is a growing interest in studying human affordances

for object manipulation [25]. The term “affordance” has two different interpretations, one psy-

chological and the other neuroscientific. The first interpretation [26], also named Gibsonian

or object affordance, states that the affordance of an object is a list of potential uses that the

object itself suggests or allows to the user. The neuroscientific interpretation, sometimes

referred as grasp affordance, defines an affordance as a list of possible strategies to grasp an

object. It is believed that a visual stimuli triggers a set of possible actions to be performed

[27] and the specific motion implementation is selected in the primary motor cortex [28] as

initiation of a voluntary action. Our definition of affordance is closer to the neuroscientific
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interpretation than to the psychological one. In this work, an affordance is defined as a possible
way to approach and to grasp an object in order to perform a predefined action.

In our definition the action can be divided in two parts: approaching an object and grasping

it. In this work, the term approaching is referred to the act of reaching an object with the inten-

tion of grasping it and using it to perform an action. This is different from the term reaching
which implies an open-loop displacement of the hand to a defined position; for instance, it

could be touching a surface, pressing a button or positioning an industrial robotic end-effector

for soldering. It is important to stress this difference, since an open-loop reaching action or

grasping an object without the intention of using it is not sufficient to obtain a grasp affor-

dance. Indeed, an open-loop action as described above gives no guidance in selecting the most

appropriate motion.

Affordances openly target the interaction between reaching and grasping to understand the

phenomena of approaching to use an object. Grasp affordances focus more on the implemen-

tation facet of the action, while object affordances focus more on the cognitive and reasoning

side. In one of the first studies [29] of implementation of object affordances, authors describe

how optical flow can aid a robot to learn to roll an object from visual perception. A later study

[30], uses Bayesian networks to infer the object affordance of specific objects from a restricted

set of available actions that can be performed on them. In both cases the approach is tailored

to the domain of use or to a limited set of features which is difficult to extend. Other studies

proposed different approaches for representing a grasp affordance. In [31] authors encode a

grasp affordance for a given object as a probabilistic gripper placement learned either from

human imitation or an off-line model, and improved by experience to compensate for mis-

matches from the original model. In [32], an ontological approach is used to infer the most

appropriate grasp affordance given a fixed set of perceived object properties. The common

limitation of all the above studies is that the approaches are tightly coupling different aspects

of affordances together, such as vision, learning and motion control. An affordance is com-

posed by an interrelation of different features, such as perception, reaching and grasping.

However, a strong coupling between features creates complicated and domain specific systems

that are difficult to scale on a larger set of objects, properties or new domains [33, 34].

The focus of the above works is on specific manipulation tasks. Hence, it is difficult to

design a general approach for a grasp controller that can manipulate novel everyday objects,

which are designed for human use. In this respect, human studies can provide guidelines for

future robotic implementations and several times this happened in the past [35]. For example,

in [36], the authors are modelling human touch strategies of soft objects. The same model was

later implemented on a robotic platform [37] with good results. Another example is shown in

[38]. The authors perform human experiments of pick and place, grasping with sensory con-

straints, to identify the conditions that favour an action plan over another. The model that

defines the conditions and the plans is general enough to be transferred to a robot with ade-

quate sensing capabilities for grasping and reaching. This shows that human studies can be

used to set a base for a robotic implementation or to guide the robotic learning.

This work establishes a first step towards a modular definition of grasp affordance, where

different aspects, such as approaching and grasping, can be combined without the need of tai-

loring them to the specific domain of application. Our approach in this work is to analyse the

approaching part of a grasp affordance from human demonstrations and to provide a model

that describes the general pattern. This work is a fundamental study of human behaviour

required for implementing robotic approaching to grasp controllers. For an initial robotic

implementation, it is sufficient to provide a control strategy for displacing the end effector, in

the form of a position or speed trajectory. At this stage, it is not required to take into account

the end effector orientation as this can be derived in different ways by an existing controller,
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such as a Cartesian hand controller. In this paper, it is analysed the hand trajectory only of the

motion, since the aim is to provide a base for object independent human-inspired grasp affor-

dance controllers in robotics and further insights on the human motion.

This paper addresses the question of whether or not, a general, object independent pattern

of the approaching part of a grasp affordance, defined previously, can be characterised and

modelled from human demonstrations. As well as studies whether a grasp affordance

approach motion is a planned strategy or it is a set of reactive adjustments performed during

the execution.

The contributions of this paper are:

• The interaction between reaching and grasping is characterised by analysing human grasp-

ing experiments in terms of hand to object distance.

• The motion pattern structure is defined in terms of rate change of the distance and of the

displacements of the fingers.

• A set of object-independent models is derived from the data to describe a general, object

independent pattern of approach to grasp.

The proposed interpretation of grasp affordance can shift the attention from the specific

object to grasp to how well the selected posture will perform the selected action, reducing the

dependence on the specific domain of application.

The rest of the paper is organised as follows: in Section II the experimental data and data

preprocessing methodology is discussed. Section III presents the results of the data analysis

and describes the phases of approaching. In Section IV a set of models for the data is presented.

Section V is the discussion and Section VI draws out the conclusions.

1 Methodology

1.1 Experimental protocol

The aim of this study is to understand whether humans have a general, object-independent

pattern of approaching to grasp to perform a specific action and to model its structure. Addi-

tionally, it aims at providing fundamental insights on the structure of human approaching

motion for future robotic control applications following a wider multidisciplinary approach.

It is important to underline that a specific action to perform is needed, as this constraints the

list of possible strategies and postures to the ones actually useful for the task. Not defining

an action to be performed creates an open scenario where any approach to grasp strategy is

acceptable. In this way, it is not possible to discriminate the most appropriate strategy and

grasp affordance. The action selected for the task is hammering on a point. This action was

selected because it is easy to generalise to similar actions, such as inserting. Additionally, ham-

mering is one of the first actions ever learned by infants [39] and it was the action used by pre-

historic humans for crafting the Oldowan stone tools [40], hence this action could also be used

in other simple scenarios such as basic crafting.

Approach to grasp data and object motion data were collected from human trials for this

study. For this purpose, it is important to track the hand, wrist and fingers motion in order to

define trajectories and finger postures in a trial. Also the object position and orientation are

tracked through the whole experiment. This is required in order to highlight the overall grasp

affordance decision process by relating the object position and orientation to the grasping

motion of the human participant, instead of processing the two independently.

A system of four motion tracking cameras (Vicon Bonita) was used for recording the object

data at a capture frequency of 100 Hz. Additionally, a commercial arm and hand wearable
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fibre optic motion capture (MoCap) system (Measurand ShapeHandPlus) was used to record

human data at a capture frequency of 77 Hz. Two sensing systems are required to ensure an

accurate tracking throughout the experiment, both for the hand and the object. The use of a

vision-based tracking system on its own [41] is subject to inaccuracies as the hand occludes the

object when grasping. Those can be mitigated by forcing subjects to employ a limited set of

grasping postures. This would influence the natural reaching to grasp motion and limit the

analysis. On the other side, a data glove tracks the hand very accurately, but it provides little

spatial information on the position of the object in the scene. As the analysis relies on the rela-

tionship between hand and object, those two entities have to be tracked and related accurately

at all times to obtain meaningful observations. Hence both tracking systems have to be used

together to allow subjects to perform natural motions while guaranteeing high accuracy,

robustness of tracking and detailed data. The combined system is robust as data can be lost

only if the object is occluded from the view of most cameras. As the cameras surrounded the

subject, such events were infrequent. The number of frames lost by the MoCap system is

negligible.

The capture frequencies of the two devices were aligned to 100 Hz through linear interpola-

tion. The overall tracking error of the combined tracking systems was no more than 1.5mm.

Participants were seated in front of a table and asked to wear the MoCap system on their

dominant side. The table was placed in the centre of the field of view of the four cameras and it

was covered with a black cloth to eliminate reflections from artificial light. The room was lit

with artificial light only and the illumination was kept constant throughout a capture session.

Fig 1 shows the complete set up.

A set of eight objects, with different shapes and weights, was used for the experiments: a

plastic ball, a paper coffee cup, a card box, a phone headset, a CD keep case, an hard-cover

book, a computer mouse and a hammer. The objects were selected to be of everyday use and to

have different geometrical properties and weights. Fig 2 shows the properties of the objects.

The aim was to make the action and the selection of the hammering surface non-trivial and to

stimulate unusual approach to grasp strategies. In this way it is possible to define a general

object-independent grasping pattern given the variability of approaches. The objects were

given one by one to each subject in random order and, when applicable, random orientation—

the longitudinal axis of the object was either parallel or orthogonal to the table edge.

Nine subjects, seven males and two females, performed the experiments. The study was

approved by the King’s College London Ethical Committee, REC reference Number BDM/12/

13-27, and participants provided written informed consent. The subjects were recruited as vol-

unteers among the members of the Centre for Robotics Research in the Department of Infor-

matics at King’s College London. The experiments were performed in the period from

October to November 2015. Participants had no history of previous motor impairments and

they were all right handed. The mean hand width was 79.7 mm, the mean hand length was

189.3 mm. The measurements were performed as in [42] based on hand breadth and length

from digitizer. Each subject performed the experiments with the objects placed in two different

orientations, when possible. The cup and the ball do not have a unique orientation due to their

circular base. Each approach to grasp experiment was repeated two times. In total, 28 demon-

strations were collected for each participant. The total number of trials collected exceeds those

usually obtained in similar internationally recognised studies on human-inspired robotic con-

trol [7, 38, 43, 44].

For each participant, at the beginning, a hammering point on his non-dominant side was

marked on the table with a paper cup as a damping place holder. The point was selected so

that it would be easy to approach, grasp and hammer without the need of bending or rotating

the torso. A small platform with 5 trackers was used as a common reference point for the
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Vicon and MoCap systems. It was placed on the corner of the table close to the dominant side

of the subject. The position and orientation of the reference plate are fixed for the duration of

the whole trial. The object to be grasped is positioned in front of the subject to allow comfort-

able approaching and grasping without the need of bending the torso. The participants are

always able to perform a direct approach motion without avoiding any obstacle when perform-

ing the experiment.

Subjects were shown a brief demonstration of the experimental protocol prior starting and

they were asked if they had any question on how to perform the experiment. At the beginning

of each trial, subjects adopted the initial reference posture shown in Fig 3. After adopting this

initial posture, subjects performed the experimental protocol as follows:

1. Subjects covered the reference plate with their hand so that it is covered and not visually

tracked. Losing the tracking allows to synchronise the starting point of the both data

streams.

2. Subjects returned to the initial posture, so that the reference plate is tracked again (Fig 3).

3. Subjects approached the object naturally. No constraints or suggestions were given on

which grasp affordance was the most suitable.

4. Subjects hammered the object on the area selected during the set-up. Subjects were free to

choose the hammering style or point of contact with the hammering area.

5. Subjects placed the object away and the data collection was stopped.

If the visual tracking of the object was lost at any point during the experiment, the trial was

repeated. The trial was repeated also if the tracking of the reference plate was lost at any time

when not specified by the protocol.

Although the whole action listed above was captured, only the motion within step 3 was

analysed in this paper. Performing the complete action was required to ensure that subjects

Fig 1. Illustration of the complete experimental set-up.

https://doi.org/10.1371/journal.pone.0208228.g001
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would perform a natural approaching to grasp pattern, so that any difference with plain reach-

ing could be highlighted.

1.2 Data processing

In the analysis the relationship between hand position and the object centroid is characterised.

The object and reference plate centroid positions were acquired directly from the visual

tracking system with no need of further processing.

Instead, the positions of every joint of the kinematic model of the arm were collected during

a trial. The hand position is defined as the centroid between the wrist, middle and ring fingers

metacarpophalangeal (MCP) joint positions. The positions were derived from the kinematic

model using the MoCap toolbox for MATLAB [45].

Fig 2. List of objects used in the experimentation and their properties. The longitudinal axis is highlighted in green

on each object’s picture. The first dimension is along the longitudinal axis, the second is orthogonal to the axis and

lying on the same plane.⊘ stands for diameter, H stands for height.

https://doi.org/10.1371/journal.pone.0208228.g002
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Metacarpal, proximal and distal interphalangeal joint angles and metacarpal adduction/

abduction joint angles of the index, middle, ring and little fingers were also collected (Fig 4(a)

and 4(b)). As commercial MoCap gloves introduce inaccuracies when capturing thumb

motions, the thumb joints were not collected. This choice do not influence the analysis, since

the precise details of the hand posture are not considered. The fingers motion as a whole is

examined to provide an additional qualitative description to the approach patterns. Only MCP

flexion/extension joint motion of the fingers was analysed as it has the greatest impact on the

motion of the whole finger [46]. The main focus of the analysis is the approaching distance of

the hand to the object. As such, the motion of the fingers is to be used qualitatively as a refer-

ence and to provide further context to the reader during the analysis. Further in the text, the

MCP flexion/extension data is referred as simply metacarpal data. The MCPs speed was

obtained from the time derivative of the MCP position data and it was aggregated taking the

mean as follows:

f ¼
ði0t þm0t þ r0t þ l0tÞ

ttot
ð1Þ

Fig 3. Initial reference posture: Arm in straight position parallel to the ground and orthogonal to the chest, hand

fully open and flat fingers.

https://doi.org/10.1371/journal.pone.0208228.g003
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Where i0t, m
0
t, r
0
t and l0t are the speed values at time t of the index, middle, ring and little fingers,

while ttot is the duration of the whole sequence. f is the mean MCP speed data shown in the

analysis. The speed of each finger was derived from the original not normalised position data.

Finger motion data was aggregated in this way to provide a clear and immediate qualitatively

summary of the overall fingers motion during approaching.

The starting point of the data streams of the visual tracking and wearable MoCap were syn-

chronised as part of the experimental protocol. The common starting point of the two captur-

ing systems was the moment where the reference plate lost visual tracking as the subject’s hand

covered its centre. Subjects must cover the reference plate centre to ensure that visual tracking

is lost. As such the centroid of reference plate and the centre of the hand are always close to

each other on the XY plane by design, reducing the reconstruction error. Additionally, a fixed

offset, corresponding to the height of the reference plate’s markers, was removed from the

wearable MoCap data. This allows to align the centre of the hand to the centroid of the refer-

ence plate also along the Z axis. The reference frame of the MoCap data was transformed to

the reference plate coordinates in order to have a common base between the two capture

devices and allow comparisons. The reference frame of the visual tracking system coincided

with the reference plate centroid.

Although the full motion was captured, from the initial position to hammering; only the

approaching part of it was analysed. Within a whole trial, the beginning of the approaching

sequence was marked by the metacarpal and proximal joints of the fingers just starting to

displace. The end of the sequence was marked by the object centroid being just displaced

Fig 4. Schematics of the hand bones and joints involved in the capture.

https://doi.org/10.1371/journal.pone.0208228.g004
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vertically (Z axis) as the hand started to lift the object. Table 1 summarises all the values used

for segmenting the approach motion. The values in the table are normalised medians and vari-

ances. The rest of the motion was still required to make sure that subjects would perform a

realistic approach to grasp as the object would effectively be used for hammering. The experi-

mental protocol was designed to facilitate identifying and segmenting the approaching part of

the motion. Also, using two different capturing systems allowed to discriminate different key

moments univocally, as the same moment can be observed on both systems. The initial posture

adopted by subjects is unusual when approaching to grasp since the arm and all the fingers are

fully extended. Subjects immediately change their fingers configuration when initiating the

motion. This moment marks the beginning of the analysed sequence and can be observed very

clearly from the wearable MoCap system’s data. To further reduce the possibility of confusing

a similar ambiguous posture with the initial posture, the protocol requires subjects to cover the

reference plate prior adopting the initial posture. The only moment when the reference plate is

not tracked is always at the beginning of the data collection. As such, it is straightforward to

observe this moment in the visual tracking system’s data. Since the loss of the reference plate’s

tracking happens seconds before adopting the initial posture, the beginning of the analysed

sequence can be identified by combining the information obtained from both capture systems.

Similarly, the end of the approaching motion can be identified by observing the data from the

combined systems. During a trial, the object is still until grasped. Afterwards, the object’s cen-

troid displaces vertically as the subject transports the object to hammer. The displacement of

the centroid marks the end of the analysed sequence. At the same time, the subject’s hand is

also displacing in the same direction of the centroid from a position close to the table’s surface.

When both systems’ data show that hand and object are moving at the same time, it can be

concluded unambiguously that the approaching motion is finished. Our approach is different

from the state-of-the-art. Typically, other studies analyse the whole motion sequence which is

designed to capture a single phenomenon [47–50]. The aim of this experiment is to highlight

how all the factors in a complete action influence the approaching phase of the motion,

rather than just studying approaching in isolation. Including other factors in the experiment

is required as this study proposes an application to robotics. As such, considering the

Table 1. Summary of the median normalised values and variances of the quantities used for segmenting the

approaching motion from a whole trial.

Quantity Beginning End

Index Metacarpal −0.023 ± 0.04 −0.34 ± 0.41

Index Proximal 0.003 ± 0.006 0.91 ± 0.05

Middle Metacarpal −0.003 ± 0.035 0.29 ± 0.48

Middle Proximal 0 ± 0.003 0.99 ± 0.02

Ring Metacarpal −0.008 ± 0.047 0.90 ± 0.33

Ring Proximal 0.007 ± 0.006 0.99 ± 0.026

Little Metacarpal 0.07 ± 0.09 0.82 ± 0.37

Little Proximal 0.02 ± 0.02 0.99 ± 0.05

Object X Position 0.26 ± 0.01 0.27 ± 0.02

Object Y Position 0.66 ± 0.01 0.70 ± 0.03

Object Z Position 0.046 ± 0.002 0.13 ± 0.02

Palm X Position 0.79 ± 0.06 0.61 ± 0.07

Palm Y Position 0.39 ± 0.09 −0.40 ± 0.08

Palm Z Position 0.66 ± 0.06 0.27 ± 0.10

https://doi.org/10.1371/journal.pone.0208228.t001

Modelling the structure of object-independent human affordances of approaching to grasp for robotic hands

PLOS ONE | https://doi.org/10.1371/journal.pone.0208228 December 26, 2018 10 / 28

https://doi.org/10.1371/journal.pone.0208228.t001
https://doi.org/10.1371/journal.pone.0208228


approaching motion individually would abstract important elements of the human behaviour,

resulting in an approaching controller which might not work in real life.

The normalised euclidean distance between centre of the palm and the object centroid was

calculated and used to quantify the relationship between hand and object positions. The hand

rotation and the hand-object angular relationships (azimuth and zenith) were collected but

not analysed as they are out of the scope of this work. The normalised euclidean distance is

defined as approach distance and it was calculated as follows:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

t¼1

ð
Ot

d

Omx
d
�

Pt
d

Pmx
d
Þ

2

s

ð2Þ

Where a is the approach distance, Ot
d and Pt

d are the values of the object and palm respectively

for dimension d observed at instant t. Omx
d and Pmx

d are the maximum position values for

dimension d of the object and palm. Finally dimension d refers to x, y and z axes.

The approach distance represents the distance between the centre of the hand and the

centroid of the object. It is a quantity which changes over time, as the hand gets closer to the

object. The approach distance is a relationship between the hand and the object and it is used

to quantify how close the hand is to the object at a given time. The purpose of normalising

only on the maximum value is to solely improve the presentation of the data by transforming

it in a non-dimensional quantity. As all the collected data already lays within the same range, a

full normalisation is not otherwise required for the analysis.

The normalised approach distance data was derived two times, to obtain speed and acceler-

ation that were filtered with a moving average filter with span 7. The speed and acceleration

were not normalised a second time once the time derivative of the original quantity was taken.

Results

1.3 Statistical analysis

We conducted statistical analysis of behavioural data to test whether factors such as the

grasped object, the preforming subject, or the specific execution influence the approach

motion. As we are defining a common object-independent approaching to grasp pattern,

those tests are required to verify whether every trial can be treated independently or whether

all trials can be clustered and analysed together or in groups. As such, an Analysis of Variance

(ANOVA) test was performed.

The statistical analysis was performed to understand whether specific features of approach-

ing to grasp depend on the object, the specific trial or the performing subject. To this respect,

the standard deviation of approach distance for each individual trial was normalised and used

as dependent variable. The standard deviation describes the overall rate of change of the dis-

tance within a trial. The larger the standard deviation the more the distance was changing

undergoing peaks and valleys. Therefore, it is useful to observe which factor influences the

change of the approach distance. It is expected to see no significant difference across trials if

the standard deviation is similar. The independent variables were the subjects, objects and trial

number for an object-subject combination. The results of Shapiro-Wilk test demonstrated the

normal distribution of the data. The three hypotheses were tested using a one way ANOVA

with 1-degree-of-freedom test. A hypothesis is considered significant if the Fisher’s index (F) is

bigger than F critical and the null hypothesis is rejected with 99.9% confidence level, which

corresponds to a probability distribution (p) less than 0.001.

The variance of the approach distance did not show a significant dependence on the object

being grasped (F1,230 = 1.75, p = 0.19) or the specific trial (F1,230 = 0.04, p = 0.85) but it did
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show a significant dependence on the performing subject (F1,230 = 4.93, p< 0.001). Therefore

the performing subject is a determining variable in deciding the shape of the approach motion

for grasping. This result can be explained as every person performed the experiment at his or

her own pace. As some subjects were more careful or more confident, the speed of the execu-

tion changed although every object was grasped more or less in the same way.

Additionally, it was tested whether the grasped object influences the structure of the

approaching motion for each subject. Every trial was segmented in four phases, which are

described in Section 1.4 The data in the first three phases of the motion was tested individually

for each subject, the fourth phase was not assessed since, as mentioned in Section 1.4, this

phase is performed differently. Each segment of trial was normalised and interpolated to

obtain a matching duration. Two tests were performed: it was tested the similarity across pairs

of trial segments and the similarity between all trial segments and a global reference—the

mean. If both tests score a value lower than 5% of the overall maximum motion, then the

object does not influence the approaching motion of individual subjects. Firstly, the pairwise

similarity was evaluated as the mean squared difference between every two segments of trial in

the same phase from the same subject. If the grasped object does not influence the approaching

motion, then the trials shall not be too different from each other. For each subject and phase,

every trial section was combinatorially tested with the others for a total of 10044 unique tests.

The pairwise difference was evaluated as follows:

p ¼ E½ðd1 � d2Þ
2
� ð3Þ

Where d1 and d2 are two segments of trial of the same subject, E[] is the mean value of the

squared difference among the trials and p is the pairwise difference. A low pairwise difference

implies high similarity between the two trials. The value of the difference is presented as a

percentage of the total motion for clarity. The mean pairwise difference aggregated across all

subjects and phases is 0.25% ± 0.54. The pairwise difference was within range [0.001 ± 0.001

0.004 ± 0.004] for phase one, [0.17 ± 0.21 0.98 ± 1.12] for phase two and [0.06 ± 0.06

0.66 ± 0.77] for phase three. Furthermore, for each performing subject, the variance of the seg-

ments of trial within each phase was calculated, and it is also reported as a percentage over the

total motion. If the grasped object influences the approaching motion, it is expected to observe

a high variance as the trials overall significantly differ from their mean. The variance for all the

subjects is in the range [0.05 0.20] for phase one, [0.14 0.80] for phase two and [0.03 0.36] for

phase three. Since both tests demonstrated that the trials are at most 2% different from each

other and no more than 1% different from the mean, if grouped by subjects, we can conclude

that the grasped object does not influence the motion.

These results shows that the data can be grouped by subject for the analysis as the perform-

ing subject is a factor that influences the characteristics of the motion. These findings provide

fundamental insights for robotics as they allow to derive approaching models which are gener-

alisable across different objects. In Section 1.4, for the purpose of characterising the data, each

trial has been analysed individually to provide a more detailed and granular analysis, as well as

to avoid possible approximations. Discussions on the common features seen in the subjects’

data are drawn by observing all the trials individually and relating the single trials to each

other by subject.

1.4 Characterisation of approach patterns

In this section the analysis of the data is discussed and a common structure of the approach

motion is formulated. The data is analysed by observing the individual patterns of motion of

the approach distance speed, acceleration and fingers speed variability. As the purpose of this
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study is to analyse approach motions of the hand to the object, the speed of the approach dis-

tance is the fundamental quantity analysed since it represents the rate of change of the distance

between palm and object over time. The acceleration is considered to highlight changes in this

fundamental quantity and to give structure to the motion. The hand position during approach-

ing is considered, but not reported as it does not highlight well enough the dynamic changes

that are involved during approaching. For similar reasons, the speeds of the metacarpophalan-

geal (MCP) joint displacement of the index, middle, ring and little fingers are analysed. To bet-

ter highlight the moments where the MCP joints displace the most, the variance of the mean

of the four fingers across the motion is examined. A high variance indicates a part of interest

for the analysis since large MCP joint displacements imply that the hand is performing an

activity such as preshaping.

Empirical comparisons of each trial showed that we can discriminate four phases. The first

three phases represent the approach to grasp motion. The last phase comprise the final stage of

grasping, when the object is firmly enveloped by the fingers, and the beginning of the lifting

motion of the object is performed prior hammering. Each phase, except for the last, has its

own characteristics which are common across all the trials. Fig 5 shows a sample trial from the

dataset.

To demonstrate that the data is similar across the dataset, a correlation analysis is per-

formed. The analysis is performed on positional data since it is the least processed data. The

main issue to address is that subjects were performing the experiment at their own pace, hence

the length of a phase or of the whole experiment is influenced by external factors such as the

subject’s emotions (rush, boredom, etc.). For this reason, the four phases are analysed indepen-

dently, and the duration of each phase for different trials are matched through interpolation.

In this way the pattern structure within the phase is preserved. Each trial is segmented one by

one according to the criteria defining each phase. The pairwise correlation coefficients for all

the trials are calculated and the overall median value of all the coefficients is taken. The correla-

tion coefficients for the first three phases are 0.93 (p< 0.000001), 0.99 (p< 0.000001) and 0.97

(p< 0.000001) respectively. This shows that the observed structure of the motion and the

Fig 5. Sample approach to grasp trial. From top to bottom plot: hand position, speed, acceleration and variance of

the four metacarpophalangeal joint speeds for the whole approach to grasp motion. The first data point corresponds to

the moment the hand and the finger start to move, the last 17% of the motion shows the object being lifted for

hammering. The Roman numbers identify the four phases.

https://doi.org/10.1371/journal.pone.0208228.g005
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characteristics of each phase are common across all trials irrespective of the subject and the

approached object. The fourth phase, instead, shows a median correlation coefficient of 0.16

(p< 0.00001) demonstrating that this phase is performed in different ways. This result is inter-

esting since this phase features a high MCP joint speed variability which suggests that the

fingers have a significant role in finalising the grasping, but the low correlation coefficient

indicates that the hand position plays an important role as well. Since the focus of this work is

on the first part of the approach to grasp motion, this feature is not discussed further and will

be analysed in future work.

Below, the four phases are discussed more in detail. The features used to distinguish the

four phases within the data are summarised at the beginning of each section. The value of the

acceleration was used to split the data in phases. The average coverage of a phase is calculated

from the corresponding lengths of every individual trial. The distribution of the lengths of

each phase is summarised comprehensively in Fig 6. Since the data can be aggregated per sub-

ject (Section 1.3), common features within subjects are presented as such when appropriate,

although each trial was observed individually.

1.4.1 First phase. In the first phase, the hand starts its approach motion to the object and

the finger MCP joints just begun to displace. This phase covers as average 17.86% ± 6.92% of

the total motion across subjects. The distinctive features of this phase are as follows:

• the hand speed increases to a peak and then starts decreasing;

• the hand decelerates abruptly until its global minimum;

• finger posture starts to shape from the initial flat hand configuration.

The value of the speed peak is independent from the object approached. Although the MCP

joints are moving, their variance is not notably larger as the maximum mean peak in this

phase is 22% times smaller than the global mean maximum. This suggests that the fingers are

displacing because the preshaping is just started. Most of the preshaping motion is performed

in the next phase. Another notable characteristic is that the speed profile is a bell-shaped curve

Fig 6. Distributions of phase coverages with respect to the whole motion. The abscissa (X axis) indicates the

percentage of coverage of the whole motion, while the ordinate (Y axis) describes the number of trials with that

coverage. Graphs (a), (b), (c), (d) show the distribution for phase one, two, three, four.

https://doi.org/10.1371/journal.pone.0208228.g006
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resembling a Gaussian. This profile is distinctive for open loop reaching motions, as found in

[51]. The main difference is that, in this case, the bell-shaped profile terminates before the

whole motion is completed, while in [51] the profile is extended until the end of the motion.

This suggests that subjects treat differently an open loop reaching motion from a targeted

approach motion.

The moment when the acceleration reaches its global minimum indicates the end of the

First Phase and the beginning of the Second.

1.4.2 Second phase. In the second phase, most of the preshaping is performed and the

hand motion patterns undergo important changes in speed and acceleration. This phase covers

as average 12.03% ± 2.10% of the total motion across subjects. These features characterise this

phase:

• the hand speed stays within its global minimum range;

• the hand acceleration increases until its first peak;

• most of the preshaping is performed, as fingers’ MCP speed variability is increasing.

In most trials in this part of the motion, the MCP speed joint variance is above 72% of the

total variability, suggesting that most of the preshaping is performed in this phase. Indeed, the

only other moment when the MCP variance is higher is in the fourth phase. This indicates that

subjects select the finger posture to be used for grasping by the end of this phase.

Additionally, for each individual subject, the variability of his speed patterns undergoes a

bell-shaped increase, underlining that the hand approach pattern is also adjusted in this phase.

Therefore, different people perform this phase in different ways. Additionally, in this phase,

the subject adopts the actual hand approach pattern and the finger posture to use for grasping.

This suggests that the approach to grasp motion is decided and adjusted on the way rather

than being preplanned. In next section it is discussed whether the adjustment is reactive or

intentional.

The moment when the acceleration reaches its first peak corresponds to the end of the Sec-

ond Phase.

1.4.3 Third phase. In the third phase, the distance between the hand and the object

reduces until the approaching motion is terminated. This phase covers as average 30.05% ±
3.75% of the total motion across subjects. The features of this phase are the following:

• the hand steadily increases its speed until settling down to 0 (±0.001) mm/sec;

• the acceleration slowly converges to a steady state value of 0 (±0.0001) mm/sec;

• the hand closes up the distance with the object to finalise the grasping, as the fingers’ MCP

joints speed variability change is minimal.

In this phase the finger MCP joint speed variance also greatly reduces until reaching a

steady or null speed in some cases. This indicates that the implementation of the finger pos-

ture, selected in the previous phase, approaches its end until the fingers stop moving. This hap-

pens just before the actual grasp, where the fingers are enveloping the object, is performed.

The hand approach speed and acceleration also settle down to a more predefined pattern

since the variability of those two quantities greatly reduces. It can also be observed that the

speed pattern converges exponentially to a steady state value. Such change is observed in all

the trials, although the time required to reach the settling value might change. This confirms

that in this phase the approach pattern and finger posture strategies are implemented since, by

the end of this phase the hand is steady and the fingers are not displacing, as they are ready to

clamp the object.
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The time when the acceleration and the speed settle down to the near zero steady state is

the end of the Third Phase and the beginning of the Fourth Phase.

1.4.4 Fourth phase. In the fourth phase the approaching motion is completed and the

object is constrained in the hand and can be lifted for the subsequent action—hammering.

This phase covers as average 40.06% ± 7.18% of the total motion across subjects. The common

characteristic is that fingers’ MCP speed variance is changing as the final enveloping and in-

hand adjustments of the object is performed. Also the hand speed might show a sharp increase

in the final part as the object is lifted. Such increase marks the end of the Fourth Phase. This

phase is the only part of the motion that is different across trials, and is not possible to establish

any common feature in the hand motion patterns as in some trials the speed was steady in oth-

ers the speed had oscillatory components.

This phase coincides with the second part of our definition of grasp affordance, where a

specific grasp posture is employed on a precise part of the object. As such, the characterisation

of this phase is beyond the scope of this work.

2 Modelling of approach to grasp

2.1 Methodology

Different model types were fitted to the speed of approach distance. The reason for using the

speed of approach for modelling is that this paper aims at reliably describing the pattern of

motion from human data and at providing a model as first hypothesis for an object-indepen-

dent robot controller. Since a robotic end effector can be velocity controlled, a model based on

the speed of approach can be easily implemented on a robotic counterpart.

The approach distance data was divided in the four phases mentioned in section 1.4 and

models up to the fourth order were fitted. As the approach to grasp part of the grasp affordance

is modelled, the fourth phase was not considered in the analysis.

224 trials were fitted one by one to estimate the approach distance models, while 28 trials

were discarded as not suitable for model fitting due to missing data or noise. The trials dis-

carded are randomly distributed in the entire dataset and do not relate to a specific subject or

object. 75% of the dataset was used as training set and the other 25% was used as a test set. To

reduce the bias from the specific data collected, 10 different test sets were randomly selected.

The 10 test sets were used to perform cross-validation and to evaluate the quality of the fit.

The length of the trials was normalised for each phase. In total, for each combination of model

type and order, 1680 fits were performed including all the test sets. The set of parameters of a

model undergoing cross-validation are the medians of the parameters resulting from the indi-

vidual fits on the training set.

To evaluate the quality of fit, the R-squared value of the training set and root mean squared

error (RMSE) of the test sets were evaluated. Additionally, a measure of model instability was

defined. A model-order combination is considered unstable if the mean RMSE is fluctuating

across the 10 test sets. In other words:

U ¼
X9

i¼0

�
�
�E½RMSE�i � E½RMSE�iþ1

�
�
� ð4Þ

Where E[RMSE]i and E[RMSE]i+1 are the overall mean RMSEs resulting from the i-th and

(i+1)-th test sets fitted to a given combination of model type and order, and U is the instability

index: the larger the less consistent is the model-order combination. The measure of model

instability is used to discard those models whose performance was inconsistent due to ran-

domness of the heuristic calculation of the parameters. As the instability index is a measure of
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consistency, it is required to evaluate the impact of randomly selected test sets on the fit qual-

ity. The assumption is that if a model truly describes the natural phenomena it is less likely that

it will perform very differently on different combinations of the test set. The index privileges

models which show a similar RMSE score on all tests sets. To further guide the selection, the

mean of the RMSE across all the 10 test sets was also evaluated. This is a summary of the

model combination overall performance which can be used to identify the worse performers,

which are the model combinations with a lower overall mean RMSE. The overall variability of

the same value is also used to guide the selection if models have similar scores. This criteria is

also used to loosely enforce consistency over different test sets.

A combination of model type and order was selected based on the following criteria:

• The R-squared of all available model combinations is compared and all models which scored

less than 0.7 are discarded due to poor fitting.

• The overall mean RMSE is compared across the remaining combinations, those with RMSE

larger than 0.0075 are discarded.

• The instability of each remaining combination is compared, models that score greater than

0.0005 are discarded.

• If a clear winner does not stand out yet, worse performers are discarded.

• Variance of the overall RMSE is assessed to provide hints to guide the selection at this point.

• If two models score equally the combination with least parameters is selected.

• A simple model is also selected earlier in the process if other models with similar scores have

much more parameters.

The thresholds and criteria chosen aimed at reducing the risk of selecting a model which

would overfit the data or which would perform very well because of a lucky combination of tri-

als used for training or testing. As such multiple factors are evaluated and the selection often is

a trade-off, since rarely there is a single model that is the overall best. The most important cri-

terion is the R-squared score as a low R-squared indicates a poor fitting. This threshold was

selected according to state of the art machine learning practices. The thresholds for the RMSE

and stability values were selected experimentally to discard the models with very poor fitting

performance. The R-squared threshold was selected based on the variance of the data, in order

to be strict enough to discard bad fits but not too strict prevent over-fitting. Overall, it was fol-

lowed the Occam’s razor criterion [52], which privileges models with less parameters if the

performances are similar. Within a selected model combination, the actual instance adopted

as model for the first phase is the best RMSE fit across the 10 test sets. The model types used

in the fitting were pre-selected by observing the shape of the median trial for each phase. A

model type was selected either because the data was similar to its canonical output or because

other studies used that model. For example, if the data did not show oscillatory components,

the preliminary fit of a sinusoidal model to the median data would already be too poor to jus-

tify a thorough examination. Moreover, an oscillatory model would create jerky motions and

unstable control, making it unsuitable for a real-world implementation. The classes of model

type selected for fitting were Gaussian Mixtures (abbreviated to n-th order Gaussian) and

Polynomials, for all phases, and, additionally, Exponential models for the third phase. All the

models were intentionally selected in order to be expressed in closed form. The reason is that a

relatively simple model can be automatically optimised at compile-time, when coded in soft-

ware, or can be implemented easily in a reconfigurable hardware circuit (i.e. Field Programma-

ble Gate Array), providing high performances for limited costs [53]. For each phase, the most
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reliable model is indicated in the table in bold, and a second best model is reported in italics, if

present. The latter is the best model if the requirement on the instability index is relaxed. This

can be interpreted an approximation of the original behaviour since it has generally a simpler

structure than the most reliable model counterpart. As such, the models which comply to all

the criteria specified are called most reliable models and are the models discussed in the paper.

The second category of models, which ignore the instability requirement, are named approxi-

mated models and information on the this category is provided as a reference and is discussed

in this section only. The optimal coefficients for each selected model combination are shown

in Table 2, while the complete fit is shown in Fig 7.

Table 2. Optimal coefficients of the models selected for each phase for the most reliable and approximated

models.

Coefficients Phases

First Second Third

Most Reliable Models

a1 1.62 10−3 0.41 10−4 −1.73 10−4

b1 26.18 N/A -0.7063

c1 4.95 N/A N/A

a2 5.77 10−3 −18.08 10−4 −30.89 10−4

b2 26.97 N/A -0.4122

c2 8.396 N/A N/A

a3 5.246 10−3 −30.16 10−4 N/A

b3 29.65 N/A N/A

c3 12.05 N/A N/A

Approximated Models

a1 −0.15 10−4 0.41 10−4 −5.18 10−6

a2 5.93 10−4 −18.08 10−4 5.59 10−4

a3 −3.92 10−4 −30.16 10−4 16.98 10−4

https://doi.org/10.1371/journal.pone.0208228.t002

Fig 7. Combined output of the model fitted to each phase: Gaussian, polynomial and exponential. The model

output (thick dark blue line) is overlaid on sample interpolated trials, used for fitting. Each dashed plot represents a

different subject approaching different objects.

https://doi.org/10.1371/journal.pone.0208228.g007
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2.2 Model validation

2.2.1 First phase. The modelling of the first phase studied whether the approach velocity

patterns were more similar to a Gaussian, as described in [51], or to a polynomial and which

complexity for each model type is required to represent most reliably the used data. In this

respect, many variants of Gaussian and polynomial models were discarded. The full details are

shown in Table 3. The polynomial models were discarded from the model combinations that

fulfilled the criteria set in section 2.1. Those models were mostly too unstable and inconsis-

tently performing across different test sets or they performed poorly. This confirmed that the

most reliable representation of this pattern follows a Gaussian. The best trade-off between

complexity and reliability was a 3rd order Gaussian model. This model has nine parameters

and a stability index of 0.38, while the alternative candidate, 4th order Gaussian model, has 12

parameters and a stability index of 0.25. Following the Occam’s razor criterion, the best trade-

off is the 3rd order Gaussian model, since it saves 3 parameters at the cost of 0.13 stability, 0.04

points per parameter. The result of the fit can be observed in Fig 7.

The selected variant of the 3rd order Gaussian model is shown below, while the optimal

coefficients are shown in Table 2.

f ðtÞ ¼ a1 e
�

t� b1
c1

� �2

þ a2 e
�

t� b2
c2

� �2

þ a3 e
�

t� b3
c3

� �2

ð5Þ

2.2.2 Second phase. The model fitting of the second phase studied whether the human

patterns were more similar to a Gaussian or a polynomial model and which complexity can

appropriately describe the data. The models admitted to the selection showed all a good RMSE

performance decreasing for some more complex variants of the models, as shown in Table 4.

The Gaussian models were all discarded due to instability and inconsistency across different

test sets, poor performance or too high complexity compared to the polynomial model with

similar performance. Within the polynomial models, the 2nd order polynomial has shown to

Table 3. Summary of model fitting results of first phase data. Model type-order combinations with R-Squared less than 0.7 were omitted due to poor fitting. The selected

most reliable combination for the phase is highlighted in bold, the approximated combination is highlighted in italics.

Type Order # Pars R2 E[RMSE] (10−3) Var (10−5) Instab. (10−3)

Gaussian 2 6 0.78 7.07 1.50 0.59

3 9 0.79 7.22 1.46 0.38

4 12 0.81 7.14 1.59 0.25

Polynomial 2 3 0.84 6.90 1.89 0.92
3 4 0.93 8.75 2.50 4.67

4 5 0.97 7.27 2.00 4.96

https://doi.org/10.1371/journal.pone.0208228.t003

Table 4. Summary of model fitting results of second phase data. Model type-order combinations with R-Squared less than 0.7 were omitted. The selected combination

for the phase is highlighted in bold and is equivalent for most reliable and approximated models.

Type Order # Pars R2 E[RMSE] (10−3) Var (10−5) Instab. (10−3)

Gaussian 2 6 0.77 7.31 3.04 0.31

3 9 0.84 7.28 3.18 0.33

4 12 0.91 7.67 3.54 1.32

Polynomial 2 3 0.95 7.25 3.12 0.06

3 4 0.98 7.55 2.92 1.23

4 5 0.99 7.35 3.02 1.09

https://doi.org/10.1371/journal.pone.0208228.t004

Modelling the structure of object-independent human affordances of approaching to grasp for robotic hands

PLOS ONE | https://doi.org/10.1371/journal.pone.0208228 December 26, 2018 19 / 28

https://doi.org/10.1371/journal.pone.0208228.t003
https://doi.org/10.1371/journal.pone.0208228.t004
https://doi.org/10.1371/journal.pone.0208228


be the most reliable and simple version of polynomial models but still showing a good R-

squared performance on the training sets. Therefore this part of the motion can be approxi-

mated with a polynomial:

f ðtÞ ¼ a1 t2 þ a2 t þ a3 ð6Þ

The optimal coefficients of this model are shown in Table 2 and the result of the fit can be

observed in Fig 7.

2.2.3 Third phase. The nature of the motion in this phase requires a rapid convergence to

near zero speed, since the hand is quickly approaching the object to finalise the grasp mostly

using the fingers. For this reason, exponential models were also fitted. This can be used as an

assessment of how likely subjects were targeting the object with a quick reactive motion stop-

ping the hand on contact. The results of the fitting, shown in Table 5, demonstrate that all the

models admitted to the selection performed well in terms of RMSE on the test set, therefore

this measure was not a discriminant. The Gaussian and the polynomial models were both dis-

carded since they all obtained a too low stability score despite their RMSE values being within

range. Therefore the pattern is represented by an exponential model of second order, since the

first order variant obtained an R-squared score on the edge of the minimal criteria for admis-

sion. It can be concluded that subjects do approach the object with a quick and direct reactive

motion rather than with a planned motion as for the other phases.

The final Exponential model is shown below, while the optimal coefficients are shown in

Table 2 and the result of the fit can be observed in Fig 7.

f ðtÞ ¼ a1 eb1 t þ a2 eb2 t ð7Þ

The structure of the motion is comparable with the step response of a second order over-

damped spring-mass-damper system, as the exponents of both terms are negative and less

than 1 as per definition. However, the steady state gain is not equal for both terms but it differs

by a factor of 10 for each exponential. This suggests that the settling dynamics is similar to a

second order system but the steady state differs. However, in our case, once the data reach its

steady state the fourth phase starts.

Discussion

It is commonly agreed that the approaching to grasp motion follows a pre-defined timed plan,

in terms of hand transportation and grip formation, which can be perturbed within limits [54,

55]. In this Section we contribute to this statement further.

Table 5. Summary of model fitting results of third phase data. Model type-order combinations with R-Squared less than 0.7 were omitted. The selected most reliable

combination for the phase is highlighted in bold, the approximated combination is highlighted in italics.

Type Order # Pars R2 E[RMSE] (10−3) Var (10−5) Instab. (10−3)

Gaussian 3 9 0.69 4.49 1.28 0.46

4 12 0.71 4.46 1.14 0.55

Polynomial 1 2 0.69 4.41 1.19 0.28

2 3 0.85 4.29 1.23 0.65
3 4 0.93 4.70 1.04 4.41

4 5 0.97 5.01 1.21 6.56

Exponential 1 2 0.69 7.40 1.03 0.04

2 3 0.81 7.41 1.03 0.13

https://doi.org/10.1371/journal.pone.0208228.t005
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It is worth observing that the first phase of our data has a bell-shaped form. This result is in

line with many findings such as [51] and [56]. Specifically, authors in [51] also fitted a Gauss-

ian model to their data as performed in this study, although the complexity of the model was

higher probably due to the fact that the whole motion was involved. The study in [51] suggests

that the reaching motion is an open-loop motion. Our findings, however, demonstrate that

this open-loop profile terminates before the end of the motion. Marteniuk et al. [57] also

observed a similar difference when subjects were asked to reach to a point or approach to

grasp for lifting the object. The authors found that the hand decelerates longer for more com-

plex tasks. Our findings also confirm the difference between reaching to a point and approach-

ing to grasp.

Indeed, the open-loop reaching part of the motion has a defined duration after which the

strategy of the approach motion is being defined. In this regards, the second phase is the

moment when the final approach and grasping patterns are finalised. In agreement with Mar-

teniuk et al. [57], this phase features a sharp deceleration whose shape is common across sub-

jects, possibly because they all performed the same task. We found that the actual length of the

phase is different for each subject and object being grasped, although this might be also caused

by contingent factors during the experiment. Our results also found that most of the finger

preshaping is performed in this phase. This finding is in line with what is observed by [49] and

it complements our previous work [58] which describes how fingers are displacing for grasp-

ing. It is possible to observe that the precise approaching to grasp strategy is decided by the

end of this phase.

The last phase is the third phase where the decided grasp posture and approach strategy are

performed. Jeannerod [49], in a similar study involving approach to grasp for transporting,

also observed that subjects undergo a low-velocity phase consistently at the same moment near

the end of the motion. That study suggests that this phase is functional to prehension and is

not a corrective action. Our results add to this statement. They suggest that the last phase is

the only part of the motion which is reactive and where the finger joint speed variability is

minimal. This suggests that the act of terminating the approach to grasp motion is a scripted

mechanism.

The object-dependent phase of the approach motion, the fourth phase, possibly has a role

in grasping while approaching. In this phase the object is gripped and lifted as the MCP joints

are most active. Additionally, the fourth phase is the only part of an approaching motion

which is performed in different ways. It is possible to speculate that the fourth phase might be

involved in finalising the last details of a grasp affordance, such as completing the shape of the

grip, in agreement with the results of [48]. In [48], the authors identified a common structure

of the motion of the fingers when reaching to grasp which varies greatly in the last moments of

the motion, when the object is about to be gripped. These results complement our findings on

the common structure of the approaching motion and the lack of similarities on its fourth and

last phase, demonstrating that a similar pattern can be observed in the motion of the fingers as

well. A more through analysis of the finger motions is required to investigate how the grip is

shaped in the fourth phase and relate it to approaching.

Additionally, it is worth to mention that some similarities can be observed between the

velocity profile of the first two phases combined and the velocity profile of subjects reaching to

grasp when their vision is impaired. Subjects with impaired vision have to perform anticipa-

tory motion control to successfully manipulate an object, as some of its features, such as weight

[59], are unpredictable. If vision is impaired unpredictably during reaching to grasp objects of

varying shapes [60], or if subjects are blinded when reaching to grasp to pull an object [47], the

speed profile differs from the that of subjects reaching to grasp with full vision. In the above-

mentioned studies, the reaching motion was slower and the speed profile reached its peak
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earlier than when reaching with no impairments. In our study, the initial parts of subjects’

speed profiles also followed a similar structure, although no vision impairment was applied.

A possible explanation could be that both in [47, 60] and in our study subjects were asked to

perform some manipulation rather than simply reaching. In our case, complex finger control

was required to complete the action, while in the other studies’ case fingers were used to deter-

mine haptic cues on the object used. This might influence the speed profile when reaching the

object.

[61] and [62] observed that grasping kinematics and kinetics are independent activities that

are planned in parallel when approaching to grasp. Our study agrees on the point that grasping

and approaching seemed to be parallel operations. As the approaching is performed, the

motion type changes from planned, to reactive, to object specific, as the grasp was about to be

finalised. It can be speculated that the grasping finalisation gains an higher importance than

approaching near the end of the motion, as the type of control changes. Our study is also in

agreement with the findings of [61] that explicit (visual) knowledge of the object centre of

mass allows subjects to modulate the approach to grasp. However, some objects, like the ham-

mer, were familiar for the subjects, others, like the carton box, were of unpredictable weight

and assumptions could be made on the characteristics of some objects (e.g. it is unlikely to

grasp a full cup of coffee). It is therefore difficult to draw a conclusion on whether prior knowl-

edge of the object or visual cues have a role in shaping the approaching to grasp overall motion

structure. An additional study would be required to rule out the contribution of implicit or

explicit knowledge when planning the approaching to grasp action.

The presented findings support the hypothesis that the approach to grasp motion follows

mostly a planned strategy, although the last phase of the motion is a scripted and reactive com-

ponent. Our results also support the hypothesis that the finger motion is synchronised with

the hand motion, as most of the preshaping is performed in a specific phase.

Conclusion

In this study, we defined two components of a grasp affordance: an initial approaching to

grasp phase, and a second phase where the desired grasp pattern is implemented. The

approach to grasp for hammering was studied, collecting data from 9 subjects who used very

different objects, in different orientations, as hammers. The collected data was analysed and

mathematical models, reliably describing the motion, were defined.

Our findings show that subjects share a common approaching to grasp pattern. Such pat-

tern has a defined structure of three phases that can be reliably modelled mostly as a planned

and intentional motion. The first two phases of the motion are part of a planned motion,

while the third phase follows the dynamics of a spring-mass-damper system and is a reactive

motion. The final action of grasping is performed in a fourth phase which does not have a

common structure across subjects. We described the role of each of the first three phases in the

discussion.

The proposed models of approaching can be used to provide a modular control policy for

an approach motion controller for grasping to hammer. Since the overall model is structured

in three individual models, it is possible to substitute one of the proposed model with an alter-

native one extrapolated from the data collected in this study. The control policy itself can be

used to control a robotic end effector. An algorithm can be used to post-process the output so

that it is suitable for a specific robotic control technique [63]. For example, the model’s profile

could be used to shape an attractor landscape which would drive the hand towards the object’s

centroid [64]. This will reduce the use of geometrical features of the object for the hand con-

trol. Additionally, the proposed approach model can be used as a starting point to derive other
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control policies for similar actions. For instance, it could be possible to derive a control policy

for grasping to insert action, since inserting and hammering are similar. The new policy could

be derived by adjusting the parameters of the proposed model with trial and errors using any

reinforcement learning algorithm [65]. As future work, the proposed models and the learning

algorithm will be implemented on a real robot as approaching policy.

The proposed approach is generalisable to different grippers, from traditional hard robotic

hands to soft hands and even industrial end effectors, such as suction cups or soft manipulators

[66]. Such flexibility is possible because the approaching models are using the centre of the end

effector to control the hand, abstracting the specific details of the hand’s kinematics. However,

soft underactuated hands [67, 68] are best suited to the proposed approach. The nature of

those hands allows to passively shape and adapt the grasp posture while gripping the object

[69], taking advantage of the physical constraints imposed by the environment [70]. The

mechanical design of such hands and the elasticity of their tendons [71] protect the end effec-

tor from breaking in case of involuntary collision with a surface or the object. Therefore, soft

hands can compensate for an imprecise approaching strategy as they adapt their shape or push

the object in-hand when the grasp is executed [72]. Additionally, pairing a soft hand with our

approach could replace the need for a model for phase 4, the object-dependent part of an

approaching to grasp motion. It is possible to speculate that humans adapt their hand posture

at grasping time to take advantage of the environment [73], rather than only relying on a pre-

encoded set of grasp affordances. Soft hands offer a similar capability by design. Hence, if the

environment does play a role in adjusting the grasp pattern, a soft hand could provide a

model-free grasp finalisation to complement our model. Additionally, such pairing could

drastically reduce the use of ad-hoc precomputed grasp affordances or approaching profiles

[74]. Also, the computational complexity of object perception algorithms [75], which often

rely on expensive and power intensive ad-hoc processors (i.e. Graphical Processing Units),

would be simplified since only an approximate shape, position and orientation would be

required to approach and grasp an object. Hence, less prior information on the characteristics

and outlook of an object would be required, allowing the robot to better operate in unstruc-

tured environments, such as houses or public venues, where the used objects are too many to

be all modelled.

It is worth mentioning that this paper analyses only the distance between hand and object,

but the relation between hand and object orientations is not discussed. This choice is justified

by the fact that understanding the fundamental principles of hand trajectory generation in

human approaching is the first step required to translate those principles in approaching to

grasp for robotics. This would give the opportunity to reduce the need of prior knowledge of

the proprieties of the manipulated object, which is an unsolved challenge in robotic manipula-

tion. However, the hand-object orientation relation should also play a role in defining the

structure of approaching to grasp as it is expected to influence the second part of a grasp affor-

dance as well. Such data is currently being analysed and will be presented as future work in a

dedicated study. Preliminary insights on this subject, are presented in [63]. It was found that

the actual length of the phases is different from subject to subject. This factor is more signifi-

cant for studies of human behaviour than for robotics as the duration of an execution is often

configurable and influenced by technical details. Therefore, this can be explored in future

research using the collected dataset. Additionally, the current study analyses direct approach-

ing to grasp patterns. There might be alterations to the patterns in presence of obstacles, con-

straints or other impairments such as lack of vision or tactile sensation. Also, a different

action, or the same action involving flexible or deformable objects, might have a different

structure that might need to be modelled differently. Those factors would require a separate

study.
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Finally, it shall be underlined that the models proposed in this paper are the most reliable

representation of the data. This means that it is expected that the selected models have the

same good performance for any input as they are meant to describe the phenomena. A robotic

implementation might not require the same level of precision, as the objective is to replicate

the functionality of the human motion. As such, simpler polynomial versions of the proposed

models can be adopted as well as compared against the high precision ones proposed in this

paper. Additionally, a criterion to switch between models of different phases is needed for the

motion to be smooth. In this sense, it is possible to interpolate the last point of one model and

the first one of the subsequent model. The validity of such criterion has to be validated in a

robotic implementation, and the approach was tested in simulation in [63]. These analyses will

be part of future works.

The proposed models and characterisation of grasp affordance, in terms of hand speed and

acceleration when approaching an object for using it, underline the importance of the actual

action being performed over the features of the object being handled. Since the approaching

pattern is general and object independent, only a different action would require a different

grasp affordance pattern. As such, the action to be performed, rather than the manipulated

object, should be the discriminant in deciding the specific grasp posture and approaching

motion to be employed among many.
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