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Background. Mutations in virtually all of the proteins comprising the cardiac muscle sarcomere have been implicated in
causing Familial Hypertrophic Cardiomyopathy (FHC). Mutations in the b-myosin heavy chain (MHC) remain among the most
common causes of FHC, with the widely studied R403Q mutation resulting in an especially severe clinical prognosis. In vitro
functional studies of cardiac myosin containing the R403Q mutation have revealed significant changes in enzymatic and
mechanical properties compared to wild-type myosin. It has been proposed that these molecular changes must trigger events
that ultimately lead to the clinical phenotype. Principal Findings. Here we examine the structural consequences of the R403Q
mutation in a recombinant smooth muscle myosin subfragment (S1), whose kinetic features have much in common with slow
b-MHC. We obtained three-dimensional reconstructions of wild-type and R403Q smooth muscle S1 bound to actin filaments in
the presence (ADP) and absence (apo) of nucleotide by electron cryomicroscopy and image analysis. We observed that the
mutant S1 was attached to actin at highly variable angles compared to wild-type reconstructions, suggesting a severe
disruption of the actin-myosin interaction at the interface. Significance. These results provide structural evidence that
disarray at the molecular level may be linked to the histopathological myocyte disarray characteristic of the diseased state.

Citation: Volkmann N, Lui HJ, Hazelwood L, Trybus KM, Lowey S, et al (2007) The R403Q Myosin Mutation Implicated in Familial Hypertrophic
Cardiomyopathy Causes Disorder at the Actomyosin Interface. PLoS ONE 2(11): e1123. doi:10.1371/journal.pone.0001123

INTRODUCTION
Heart failure is a world wide public health problem that affects

several million patients in the United States alone [reviewed in 1].

One prime cause of heart disease is familial hypertrophic

cardiomyopathy (FHC), which is an inherited cardiac disease that

frequently results in sudden death of young and otherwise healthy

individuals [reviewed in 2]. The clinical manifestation of FHC is

widely varied. Common features include asymmetric septal

hypertrophy, potential outflow tract obstruction, foci of disorga-

nized myocytes, cellular disarray of the contractile apparatus,

myofibril disarray, interstitial fibrosis and arrhythmia [3]. Even in

the presence of markedly abnormal ventricular morphology and

histopathology, contractile (systolic) function of the patients’ heart

is usually excellent, and can often appear supra normal. Although

the anatomic, histologic and cellular findings in FHC are well

described, the molecular events that trigger compensatory forms of

cardiac remodeling remain largely unknown.

The majority of FHC cases have been linked to single point

mutations in various contractile proteins of the cardiac sarcomere.

Most of the known (.100) b-myosin heavy chain (MHC)

mutations have been located in the globular head of myosin

(subfragment 1, S1) or near the head-rod junction [4,5]. Many of

these residues are conserved in a wide variety of myosin II

isoforms, suggesting that they may be important for normal

function of the molecule.

The myosin point mutation of Arg403 to glutamine (R403Q)

causes one of the most severe phenotypes of FHC. Fifty percent of

the affected individuals die by 40 years of age. Arg403 is located at

the base of a surface loop (the ‘‘cardiomyopathy loop’’) that was

shown to directly interact with actin (near its nucleotide binding

cleft) for several myosin isoforms including skeletal and smooth

muscle myosin II [6,7,8]. The charge of the residue is conserved

(Arg or Lys) for most published myosin sequences (.40). Thus,

R403Q is one of the few FHC mutations that can directly affect

actin binding. The effect of FHC mutations (and of R403Q in

particular) on myosin activity has been studied predominantly either

by in vitro analysis of myosin motor activity [9,10,11,12,13,14,15] or

by animal models of the disease [16,17,18]. A consistent finding

from the analyses indicates that the R403Q cardiac phenotype is

due to the dominant effects of the mutant on sarcomere function. It

remains unclear how altered functional activity can lead to the

morphological disarray observed for FHC hearts. Is this malignant

myosin mutation directly disrupting myofibril assembly through

molecular level changes, or is this disarray a secondary effect of

changes in global cardiac function and loading?

The primary aim of the present study is to investigate the

structural consequences of introducing a missense mutation into

the ‘‘myopathy loop’’ (Arg403) of a vertebrate smooth muscle

myosin. A smooth muscle myosin fragment was expressed in the

baculovirus/insect cell system [15]. Although human b-cardiac

myosin would be clearly the isoform of choice for our studies,

expression levels of human b-cardiac myosin heavy chain [19] and

of rat a-cardiac myosin [13] have been very low, and thus are not

amenable to extensive biochemical and structural studies. The
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main source of mutated cardiac myosin is from transgenic mice,

but they express primarily a-cardiac myosin in the ventricles

throughout adult life. The functional consequences of mutations in

a fast myosin isoform, such as mouse a-cardiac myosin, may well

be different from those in b-cardiac myosin, a slow myosin

isoform. Despite sequence differences, smooth muscle myosin is in

many respects functionally similar to b-cardiac myosin, insofar as

they both share low values of actin-activated ATPase activity, actin

translocation velocity, and kinetic constants [20,21,22].

An important advantage in studying point mutations in the

smooth muscle heavy chain is that the crystal structure of the

expressed motor domain with its associated essential light chain

was solved by X-ray crystallography to atomic resolution [23]. In

addition, atomic models of the smooth muscle myosin-actin

complex in two nucleotide states (apo and ADP) were derived by

fitting atomic structures of actin and of smooth muscle myosin

domains into 3D reconstructions obtained by electron cryomicro-

scopy [8]. The same study showed that there is a significant

change in the actin interactions of the cardiomyopathy loop if the

apo and ADP structures are compared. This change was not

observed for the faster skeletal myosin isoforms [6] and may be

a feature common to slow myosins.

The atomic structures of smooth muscle myosin domains are

very similar to those of the chicken skeletal isoform [24]. The

structures of more remotely related myosins such as myosin V

[25,26]and myosin I [27] are also very similar, indicating that the

major domain structures are conserved among all myosins. In

addition, the sequence of the cardiomyopathy loop is well

conserved between b-cardiac and smooth muscle myosins, making

smooth muscle myosin an appropriate model system for

characterizing changes caused by mutations of Arg403.

We generated 3D reconstructions of wild-type and R403Q

smooth muscle myosin S1 (R406Q in the smooth muscle sequence)

bound to actin in the apo and ADP states using electron

cryomicroscopy and image analysis. Consistent with its close

proximity to elements involved in forming the actin interface [8],

we observe that the R403Q mutation severely disrupts actin-myosin

interactions when compared to the wild-type reconstructions. The

usually fixed attachment angle of myosin to the actin filament is

much less well defined with a random deviation of about 15u in the

presence of the mutation for both apo and ADP states. The

nucleotide dependent internal conformation of myosin while

attached to actin does not appear to be affected. Our results indicate

that the histopathology hallmark of FHC, namely the sarcomeric

disarray, may be directly linked to molecular level variability of the

R403Q myosin molecule while complexed with actin.

RESULTS
The R403Q mutation is the most widely studied FHC-related

mutation that is located in close proximity to the actin-binding

interface of myosin. We generated reconstructions of smooth muscle

myosin S1 carrying the R403Q mutation attached to actin filaments

using electron cryomicroscopy and image analysis. We obtained

reconstructions in the absence of nucleotide (apo state) and in the

presence of MgADP (ADP state). We compared these 3D maps to

reconstructions of wild-type smooth muscle actomyosin obtained in

parallel, and to previously obtained wild-type maps [8].

Reconstructions of R403Q myosin bound to actin

filaments in the apo and ADP states differ

significantly
We generated 3D maps of wild-type actomyosin complexes as well as

actomyosin containing R403Q smooth muscle S1 in the apo state

and in the ADP state under cryo-conditions (Figure 1 and Table 1).

Each data set was divided into two separate clusters based on the

similarity of their layer-line patterns. The near and far sides of the

Fourier spectrum were kept separate for each of these reconstruc-

tions. Thus, for each condition four independent helical reconstruc-

tions were calculated. The subdivided data sets were also processed

by using the modified version [7] of the iterative helical real space

refinement (IHRSR) method [28] resulting in another two

reconstructions per condition. This process was repeated using an

independent biochemical preparation. Using the Student’s t-test, we

found that there was no statistically significant difference (P,0.005)

between the twelve R403Q reconstructions within each condition

(Figure 2C,D), but a statistically significant difference between the apo

and the ADP state (Figure 2B). Interestingly, this difference is closely

correlated with the difference between the wild-type reconstructions

in the ADP and apo states (Figure 2G), that shows a downward

movement of the light-chain region when no nucleotide is bound.

This movement is not directly apparent for the R403Q maps, but the

difference maps indicate that a similar movement has taken place.

Reconstructions of R403Q myosin bound to actin

filaments have randomized attachment angles in

both states
We checked the density distributions of each mutant reconstruc-

tion for signs of partial decoration or mixed populations, which

would change the relative strength of features in the maps.

Regions of the underlying structure that are not well locked into

space spread their density over a larger area and would appear

weaker than well-determined entities. In the reconstructions done

for the actin filaments decorated with wild-type smooth muscle,

the relative strengths of actin, the motor domain, and the light

chains are comparable for both the ADP and apo states

(Figure 3A,C). In contrast, the reconstructions from the R403Q

mutant display a more widely spread density within the whole

myosin area for both states (Figure 3B,D).

To ensure that this effect is not caused by partial decoration of the

filaments (as opposed to a true mix of conformations), we carefully

analyzed the appearance of the filaments before we selected them

for averaging. Partial decoration would be immediately apparent in

the images by disruptions of the characteristic arrow-head

appearance of myosin-decorated actin filaments. We selected only

filaments that clearly showed full decoration. Again, these new

reconstructions showed the same relative change in the strength of

the features in the maps, reinforcing the notion that this effect is not

due to partial decoration.

To further test for partial decoration in the resulting reconstruc-

tions, we determined the Absolute Values of Individual Differences

(AVID) for the helical reconstructions. Because AVID measures the

variance between asymmetric units, partial decoration leads to an

AVID map where there is no density in the area of the filament being

decorated but clear density in the area where partial occupancy

occurs. The AVID density in that area would be strongest in the case

of 50% occupancy because that maximizes the variance, but higher

(or lower) occupancies are also clearly detectable (up to ,90%). The

AVID density would encase the whole region that experiences

partial occupancy, leading to a ‘‘ghost image’’ of the entire

decorating molecule [29]. For neither the apo nor the ADP states

of the R403Q reconstructions, did the AVID maps show any

indication for ghosting of the myosin density (Figure 2E,F). Thus, the

differences between 3D reconstructions for actin filaments decorated

with wild-type smooth muscle S1 and those containing the R403Q

mutation are solely due to changes in variability in the entire myosin

region and not due to partial decoration.

Disorder and Myosin Mutation
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The fact that we could not separate distinct subpopulations using

sorting strategies either based on the similarity of the optical

diffraction patterns or based on different lever-arm angles indicates

that the actin filaments with R403Q myosin do not contain short

order (as for example the two states of myosin V in the presence of

AMP.PNP; [7] but express truly uncorrelated random mixtures of

attachment angles. Modeling of this angular disorder indicates

a randomization of the angle with a standard deviation of ,15u.

The R403Q mutation does not appear to disturb the

nucleotide dependent conformation of the light-

chain domain while attached to actin filaments
All R403Q maps (apo and ADP) show an orientation of the light-

chain domain that resembles the post-powerstroke position, similar

to those obtained for actin bound myosin II [6,8,30,31,32]. While

the mixture of the attachment angles obscures the orientation in

the maps, a segmentation analysis using the watershed transform

[33] clearly demonstrates that the orientation of the light-chain

domains is nucleotide dependent and matches those of the wild-

type reconstructions (Figure 1F,G). The watershed transform

divides density into natural units and defines the boundary

between them, even if they are touching. The application of this

method to our data shows (i) that the quality of the map is

sufficient to segment actin subunits in the filament core and (ii) that

the boundary between the attached myosin molecules displays the

same angle as the lever arm visible in the wild-type myosin

molecules: the angle of the ADP-state boundaries points

downwards to a lesser extent than that of the apo state

(Figure 1F,G, sketches). This is also supported by the difference

Table 1. Data collection
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No. of Data Sets
a

WT, rigor WT, ADP R403Q, rigor R403Q, ADP

6 6 12 12

Helical Reconstructions

Subunits in Averages 502861754b 586661887 924562903 622562267

Subunits per Turn 2.16060.003 2.16060.004 2.15860.003 2.16060.003

Phase Residual (u)c 2565 2466 4568 3867

Iterative Helical Real Space Refinement

Subunits in Averages 1101263113 842262540 1695262685 1384863650

Subunits per Turn 2.16160.005 2.15960.006 2.16160.003 2.16360.004

aThis counts split data (i.e. far and near side) as different data sets (see text for details).
bAll statistics are calculated over the respective number of data sets.
cThe phase residual is a measure for the homogeneity and quality of the data. Values below 45u are considered excellent; values below 55u are acceptable.
doi:10.1371/journal.pone.0001123.t001..
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Figure 1. Surface representations of smooth muscle actomyosin constructs. The pointed end of the filaments is towards the top of the figure. A:
Wild-type smooth muscle actomyosin in the presence of ADP. B: Wild-type smooth muscle actomyosin in the apo state. The contour level for A and B
is chosen to represent the correct molecular mass. Note the well defined density and angle of the light-chain region (LC) C: R403Q mutant smooth
muscle actomyosin in the presence of ADP. D: R403Q mutant smooth muscle actomyosin in the apo state. The contour level for C and D is chosen to
show as much of the light chain domains as possible without completely obscuring the shape of the motor domain. E: Overlay of the maps in A–D.
Color code and contouring as in A–D. F, G: Watershed segmentation of the maps in C (F) and D (G). These results reconfirm the orientation of the
light-chain domains that correspond to those of the wild-type reconstructions (sketches) and the better definition of boundaries in the center of the
filaments: the actin subunits are well segmented while there is no sub-segmentation of myosin domains as can be obtained for wild-type
reconstructions [33]. The sketches show central lines extracted from the density of the wild-type (grey) and the segmentation of the R403Q (black).
Only the line segments extracted for the corresponding light-chain regions (LC) are shown, line segments corresponding to the motor domain region
(MD) overlap almost completely for all maps.
doi:10.1371/journal.pone.0001123.g001
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map between the R403Q reconstructions in the ADP and apo

states that is highly correlated with the change of the light-chain

domain in the wild-type maps (Figure 2G).

DISCUSSION
Familial hypertrophic cardiomyopathy (FHC) is frequently associ-

ated with mutations in the b-cardiac myosin heavy chain. Many of

the implicated residues are located in highly conserved regions of

the myosin II class, suggesting that these mutations may impair the

basic functions of the molecular motor. Only one of these mutations,

the R403Q point mutation, located in a region of six conserved

amino acids (402–407; PRVKVG), is close enough to the actin

surface to potentially participate in actomyosin interactions (Figure

4). The similarity of the attachment angle of myosin II in

actomyosin reconstructions [6,8,30,31,32] with those of other

isoforms including myosin V [7], myosin VI [34], and brush border

myosin I [35] indicates that this interaction is isoform independent.

Thus, this lethal single point mutation might impair myosin-actin

basic functions through structural changes in the actomyosin

complex. To test this hypothesis, we have prepared recombinant

smooth muscle S1 with the R403Q mutation using a baculovirus/

insect cell expression system, and have generated 3D reconstruc-

tions of R403Q–actomyosin complexes in the two strong binding

states (apo and ADP). Compared to the 3D maps that were obtained

for wild-type smooth muscle actomyosin complexes, the R403Q

maps show a high degree of conformational variability.

In vitro characterization of expressed smooth muscle myosin that

contains the R403Q missense mutation showed an increase in

actin filament velocity in a motility assay and an enhanced actin-

activated ATPase activity [15]. Single molecule mechanics using

a laser trap, gave a unitary displacement and force for the mutant

that was similar to wild-type, but the attachment time to actin

following the unitary displacement was markedly reduced. The

structural data presented here, indicate that the main factor

decreasing the attachment time of the myosin motor domain is

a general increase in variability in the actomyosin system. In

contrast to wild-type constructs, the reconstructions do not exhibit

a well defined attachment angle, but a mixture of a large number

Figure 2. Difference and structural variability maps. 4-nm wide slices perpendicular to the helix axis of several maps are shown on the left. Only
peaks significant at a confidence level of 99.99% are shown. A: Wild-type smooth muscle actomyosin in the absence of nucleotide. The motor domain
(MD) and light-chain (LC) regions are labeled. A faint ghost image of this map is also overlaid on C and E to aid visualization. B: A difference map
generated by subtracting the R403Q mutant smooth muscle actomyosin apo state reconstruction from the R403Q mutant smooth muscle
actomyosin ADP state reconstruction. A clear difference peak can be identified in the light-chain region. A faint ghost image of the wild-type ADP
state reconstruction is overlaid to aid visualization. This image is also overlaid on D and F. C: Difference map between two independently generated
R403Q mutant apo state reconstructions. Only occasional, randomly distributed, isolated pixels can be seen, no coherent difference peaks exist. D:
Difference map between two independently generated R403Q mutant ADP state reconstructions. E: Structural variability (AVID map) of R403Q
mutant apo state reconstruction. Only randomly distributed peaks can be seen, there is no consistent structural variability in any confined region. F:
Structural variability (AVID map) of R403Q mutant ADP state reconstruction. Bar:10 nm. G: Surface representation of the difference map shown in B.
The cyan density represents additional density in the R403Q mutant ADP state reconstruction if compared to the R403Q mutant apo state
reconstruction. The apo state (pink) and ADP state (blue wireframe) wild-type reconstructions are also shown. The difference between the mutant
reconstructions is located in the light-chain region and correlates with the changes observed in wild-type smooth muscle actomyosin.
doi:10.1371/journal.pone.0001123.g002
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of angles. While the wild-type orientation of the light-chain

domain appears to be maintained, this large decrease in stability

provides a structural basis for the change in function for this

mutant.

Cardiac a-myosin isolated from the hearts of homozygous

transgenic mice engineered to carry the R403Q mutation showed

enhanced average force, actin filament velocity and ATPase

activity, consistent with a gain in myosin function [14]. These

findings suggested a molecular mechanism for the supra normal

cardiac performance that is often evident in humans with

hypertrophic cardiomyopathy [2]. However, gain in function

can have detrimental physiological effects. If the cardiac

sarcomere is designed to function within a normal range of

physiological force development, then higher levels of average

force could cause the sarcomeric and myocyte disarray seen in

FHC-diseased hearts [3,16]. Could this characteristic FHC

histology be initiated by structural changes in the actomyosin

complex which disrupts myofibril assembly, without other effectors

contributing?

It was shown that actively contracting cardiomyocytes expres-

sing GFP-myosin (green fluorescent protein fused to an embryonic

myosin heavy chain) carrying the R403Q mutation, exhibited

a significant decrease in organization of the contractile cytoskel-

eton of embryonic chicken cardiomyocytes [36]. The FHC

mutations studied (including the R403Q), all of which are known

to affect myosin motor activity, disrupted the myofibril organiza-

tion in a manner that is characteristic of this disease. Similarly,

cardiomyocytes isolated from heterozygous a-myosinR403Q/+

trangenic mice showed far fewer well-aligned parallel myofibrils

than the wild-type control [37]. These data are consistent with

a direct effect of the R403Q myosin mutation on the organization

of the contractile cytoskeleton.

Here we present structural evidence for the molecular

mechanism leading to this morphological disarray. The possibility

exists that the structural differences observed here may be isoform-

specific; however, we favor the view that the morphological

disarray characteristic of cardiac myosin R403Q-caused FHC, is

a direct outcome of molecular level conformational variability in

Figure 3. Comparison between actin decorated with wild-type smooth muscle myosin S1 and actin decorated with a R403Q smooth muscle
myosin mutant. A: Wild-type smooth muscle actomyosin in the presence of ADP. The top row shows a 4-nm thick central slice perpendicular to the
filament axis. The second row shows a 4-nm thick central slice parallel to the filament axis (cutting plane indicated by the left line in top row). The
pointed end is to the top of the figure in the two lower rows. The bottom row shows an adjacent 4-nm thick slice (cutting plane indicated by right
line in top row). This slice goes primarily through the S1 molecules. B: R403Q mutant smooth muscle actomyosin in the presence of ADP.
Organization of rows as in (A). C: Wild-type smooth muscle actomyosin in the absence of nucleotide (apo). The approximate location of the motor
domain (MD) and the light chain (LC) regions are labeled in each view. Organization of rows as in A. The approximate outline of the actin portion of
the filament is indicated. D: Apo R403Q mutant smooth muscle actomyosin. Organization of rows as in (A). Bar:10 nm.
doi:10.1371/journal.pone.0001123.g003
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the actomyosin modes of interactions. Although there may be an

improvement in motor performance of individual R403Q

molecules, heterogeneous mixture of myosin heads with different

cycling kinetics and large conformational variability within the

sarcomere would likely uncouple the mechanical coordination that

normally occurs between the myosin heads, a condition that may

not only affect myofibril morphology, but may also alter

ventricular performance and thereby contribute to a compensatory

hypertrophy in cardiac muscle tissue.

MATERIALS AND METHODS

Protein Preparations
Actin was prepared from chicken pectoralis acetone powder [38]

and stored at 4 uC as F-actin (10–15 mg ml21) in 5 mM KCl,

5 mM imidazole, pH 7.5, 2 mM MgCl2, 3 mM NaN3. It was

generally used within 2–3 weeks of preparation. Just prior to

application to the glow-discharged 400-mesh copper grids coated

with holey carbon film, F-actin was diluted to 0.025–0.03 mg

ml21 with 20 mM NaCl, 5 mM NaPi, pH 7.0, 1 mM MgCl2,

1 mM EGTA, 2 mM NaN3.

Smooth muscle S1 containing the regulatory and essential light

chains was expressed in an insect cell line as described [39].

Smooth muscle S1 containing the R406Q point mutation (the

equivalent to the R403Q in cardiac myosin) was expressed under

identical conditions to wild-type. A ‘Flag’ tag was ligated to cDNA

encoding 852 amino acids for S1, to facilitate purification. The S1

was diluted to 0.5 mg ml21 in 10 mM NaCl, 10 mM imidazole,

pH 7.0, 1 mM MgCl2, 1 mM dithiothreitol (DTT) in the absence

of nucleotide. S1 in the presence of 0.5 mM MgADP was used at

the higher concentration of 2.0 mg ml21 in the same buffer to

compensate for the reduced binding affinity.

Actomyosin Complexes
Thirty minutes prior to the preparations of the electron

microscopy grids, the ADP myosin samples were incubated in

10 mM imidazole pH 7.0, 10 mM NaCl, 1 mM MgCl2, 1 mM

DTT, 3 mM NaN3 and 0.5 mM ADP on ice. Then after 1 min

incubation of filamentous actin in a humid chamber, the grids

were rinsed twice with the respective myosin buffer without the

myosin sample. The myosin sample, diluted to ,0.5 or 2 mg/ml

in their respective dilution buffer, were applied to copper grids

coated with Quantifoil holey carbon films (Quantifoil Micro Tools

GmbH, Jena, Germany) for 30 s, and replaced by an additional

drop of sample (30 s). The excess of liquid was blotted, and the

grids were plunged into liquid ethane cooled by liquid N2.

Electron Microscopy
Low-dose images were recorded with a Tecnai G2 T12 electron

microscope (FEI Electron Optics, Eindhoven, the Netherlands),

using the 626DH cryo-holder (Gatan Inc, Pleasanton, CA) at

a nominal magnification of 52,0006, accelerating voltage of

120 keV, at 1.5 mm defocus and with a total electron dose of 10

e2/Å2. Micrographs were digitized with a SCAI scanner

(Integraph, Phoenix, AR) with a pixel size of 0.27 nm on the

sample. Data were taken for wild-type as well as for the R403Q

mutation using different biochemical preparations, in the absence

and presence of MgADP. Optical diffraction and manual

inspection were used to ascertain the quality of the images that

were included in the data sets (i.e. well defined Thon rings, no drift

and no astigmatism). In addition, the optical diffraction patterns of

the selected filaments were used as filtering criteria for the quality

of the data (well defined layer lines). To ensure that the observed

differences are not due to sample preparation artifacts, the wild-

type and mutant samples were prepared for data collection in

identical ways by the same operator.

Helical Reconstructions
The Brandeis Helical Imaging Package [40] provided the

alignment parameters for each filament that was introduced in

the real space average. These include phase origin and particle tilt.

The parameters were refined through minimization of the phase

error in reciprocal space [41]. Using these alignment parameters,

3D maps were computed separately for each individual filament in

the data set [8,42]. All reconstructions included 23 layer lines that

were trimmed to 2.1 nm resolution. Since this is within the first

node of the contrast transfer function, no phase correction was

necessary. The abrupt edge in the data introduced by this

procedure was smoothed to zero using a Gaussian fall off. The

layer line orders used were 2, 211, 4, 29, 6, 27, 8, 25, 23, 21,

14, 1, 212, 3, 5, 28, 7, 26, 24, 22, 13, 0 and the equator. The

data were divided into two clusters respectively, using the

Figure 4. Proximity of residue Arg406 (Arg403 in cardiac myosin) to the actin interface. Arg406 (red spheres) is immediately adjacent to residues of
the cardiomyopathy loop that were previously implicated in actin binding by docking studies (407–414; green). While the conformation of the Arg406

in the smooth muscle myosin crystal structure points away from the interface (A), it can easily reach actin by simple, stereochemically permitted bond
angle rotations (B). The resulting conformation does not generate serious clashes with other myosin residues. Myosin is shown in blue, the interacting
actin filament subunits in grey. Residue Pro333 of actin, the closest to myosin Arg406, is shown as spheres.
doi:10.1371/journal.pone.0001123.g004
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similarity of the layerline patterns as a clustering criterion. The

individual filament maps were aligned in real space, normalized,

and averaged [42,43]. Wild-type reconstructions in the apo and

the nucleotide states were indistinguishable from those we

previously obtained [8].

Reconstruction by Iterative Helical Real Space

Refinement
The iterative helical real space refinement (IHRSR) method [28] is

a hybrid approach that uses real-space, single-particle processing

and imposition of helical symmetry in an iterative manner. Our

implementation uses EMAN [44] for the single-particle recon-

struction portion and routines adapted from the CoAn suite [6,45]

to determine and impose the helical symmetry. This implementa-

tion was extensively tested with calculated and experimental data

from frozen-hydrated actin-myosin [see Supplemental Data in 7].

For this study, a box size of 80 6 80 pixels with a 0.54 nm pixel

size was used. This corresponds to about 15 asymmetric units of

the helix, a little over one actin crossover. An overlap of 60 pixels

was chosen, allowing every asymmetric unit to contribute to four

different views of the helix. Maps were calculated for all samples

using the clustered sub-data from the helical reconstructions

described above. The variance for the IHRSR maps (necessary for

calculating t-tests) in each state was estimated using the differences

between the two respective clusters. IHRSR maps were also

calculated for previously obtained data of actin decorated with

wild-type smooth muscle myosin in the presence of ADP and in

the absence of nucleotide [8]. These reconstructions were

indistinguishable from the IHRSR reconstructions obtained from

the wild-type samples used for this work. Statistical significance of

features in difference maps was assessed using a t-test procedure

[46].

Sorting of structural states
The IHRSR method allows for sorting structural states provided

that some short-range order is present and the states are correlated

over the size of the box (about one actin cross-over for this study).

We built a variety of alternative models into the R403Q based

densities and calculated density maps for sorting the experimental

data. There was no significant difference between any of the

reconstructions based on sorted data and that based on the

complete data, and no significant difference between the sorted

reconstructions.

Structural flexibility mapping
The absolute value of individual differences (AVID) was used to

map partial occupancy within the filaments [29]). This procedure

was applied to all maps generated by the helical reconstruction

technique. The final AVID maps were generated by averaging

over the four AVID maps for each condition. Peaks further

removed than 2 nm from features in the corresponding density

maps (density larger than 0.5 standard deviations above mean)

were removed.

Density segmentation
Segmentation was performed using the 3D watershed transform

[33]. This technique segments the density into self-consistent

regions using the density information only, without prior

knowledge of the underlying structure. The angle of the light-

chain domain was determined by defining a line (skeleton) that has

the same distance to the upper and lower boundary of the

individual myosin segments or density boundaries.

Modeling of the angular disorder
The angular disorder of the attachment angle was modeled using

the atomic models obtained for wild-type smooth muscle

actomyosin [8]. For this purpose, it was assumed that the

hydrophobic anchor site identified at the helix-turn-helix motif

of the lower 50kDa domain of myosin remains rigidly attached to

the actin filament. Thus, the a-carbon coordinate of residue Pro548

was used as a pivot point to simulate angular disorder. Samples of

size 30 were drawn from zero-mean Gaussian distributions with

standard deviations of 5, 10, 15, 20, 25 and 30. The values within

these samples were applied as rotations perpendicular to the

filament axis to the atomic model of actin-bound myosin, using

Pro548 as the pivot of the rotation, yielding 30 randomly rotated

models for each standard deviation. Density maps were calculated

from each model within these sets and an average of all 30 maps

was generated for each standard deviation. These averages were

compared with the experimental reconstructions of the R403Q

samples. For both nucleotide states, the average of the set using

a standard deviation of 15 gave the best match, indicating that the

angular disorder is ,15u.
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