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A B S T R A C T

When the discrete element method (DEM) is used to simulate confined compression of granular materials, the

need arises to estimate the void space surrounding each particle with Voronoi polyhedra. This entails recurring

Voronoi tessellation with small changes in the geometry, resulting in a considerable computational overhead. To

overcome this limitation, we propose a method with the following features:

� A local determination of the polyhedron volume is used, which considerably simplifies implementation of the

method.

� A linear approximation of the polyhedron volume is utilised, with intermittent exact volume calculations

when needed.

� The method allows highly accurate volume estimates to be obtained at a considerably reduced computational

cost.
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Method details

We describe a method to approximate the volume of Voronoi polyhedra in situations where recurring
updates are needed for small changes in the geometry, as during simulations of confined compression of
granular materials with the discrete element method (DEM) [1] (see section ‘Additional information:
background’). The method utilises a linear approximation of the volume, with intermittent exact volume
calculations when needed. The Voronoi polyhedron is specified in terms of n vectors rk (with k=1, . . ., n),
see Fig. 1. Hence, the Voronoi polyhedron is represented by a system of inequalities,

Rx � f; (1)

where x denotes the spatial coordinates, R is an n�3 matrix whose kth row equals rk and f is an n

dimensional array with components

f k ¼ krkk2: (2)

It is clear from (1) and (2) that the polyhedron, and hence its volume V, is a function of R. Moreover, the
vectors rk and their magnitudes krkk are routinely determined during each time step of a DEM
simulation.

The polyhedron volume is known to be continuously differentiable with respect to all parameters
occurring in the defining inequality system (1) [2]. Hence the volume can be approximated by the
linear form

V � V0 þ G0 : DR (3)

where V0 is the volume at R0,

G0 ¼
@V

@R

� �
0

; (4)

is the gradient at R0, DR=R�R0 is the change in R relative to R0 and the colon indicates double
contraction. The approximation (3) is expected to be valid provided that the change in R is small.[(Fig._1)TD$FIG]
Fig. 1. Specification of the Voronoi polyhedron (or polygon in two dimensions) in terms of the vectors rk, which in this case are

obtained from an analysis of particle packing.
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The polyhedron volume is calculated according to the recursive projection scheme proposed by
Lasserre [3], which is convenient to use when the polyhedron has a halfspace representation as in
(1). The details are provided in section ‘Volume calculation’ in order to define the relevant quantities
for the subsequent developments. The gradient determination, described in section ‘Gradient
calculation’, utilises formulae derived by Müller et al. [2] and Lasserre [4].

Volume calculation

The convex polyhedron defined by the inequality system (1) may be decomposed into n pyramids.
Hence its volume can be expressed as

V ¼ 1

3

Xn

k¼1

krkkAk; (5)

where Ak is the area of face k. Expression (5) is not useful unless a way be found to calculate the face
areas. To this end, Lasserre [3] suggested a straightforward projection scheme. If we let A0k denote the
area of face k when projected onto the plane xg=0, as illustrated in Fig. 2a, we obtain

A0k ¼
jrkg j
krkk

Ak: (6)

As in Fig. 2a, the unprojected and projected face k will henceforth be denoted by F k and F0k,
respectively. For Eq. (6) to be useful, we must demand that jrkgj>0. As is commonly done [5],
we select g so that jrkgj is maximised (although g depends on k, we will write g rather than
gk for notational simplicity). Combining Eqs. (2), (5) and (6), the polyhedron volume can be
expressed as

V ¼ 1

3

Xn

k¼1

f kA0k
jrkg j

: (7)

The next task is to determine the area A0k.
Eliminating xg from the inequalities (1) using the equation rk �x= fk, one finds thatF0k is defined by a

systems of inequalities of the form

Sky � gk: (8)

Here, Sk is an n�2 matrix, gk is an n dimensional array and y is a vector containing the remaining two
spatial coordinates. Row j of Sk may be considered as a two-dimensional vector, denoted by sjk,
analogous to the three-dimensional vector rk. If we let sjmk be component (j, m) of Sk and gjk be
component j of gk, we specifically obtain

sjmk ¼ rjM � pjkrkM ; (9)
gjk ¼ f j � pjk f k; (10)

where pjk =rjg/rkg. In Eq. (9), M=m when m<g and M=m+1 when m�g, to accommodate for the
projection. Clearly, sjmk and gjk need only be determined for j 6¼k, since the inequality on row j in (8)
will be trivially satisfied.

The special case when ksjkk vanishes deserves some special attention. From the two equalities
embodied in Eq. (9) together with the definition of pjk, it is seen that ksjkk can only vanish if rj and rk

are linearly dependent (parallel if pjk>0 and antiparallel if pjk<0). When rj and rk are parallel, the
‘outer’ constraint is redundant and shall not be included in the subsequent analysis. This constraint
is in turn identified by the sign of gjk (the constraint imposed by rj is redundant when gjk>0 and the
one imposed by rk when gjk<0). Hence, rj and rk are parallel and rk is redundant when pjk>0 and
gjk<0, in which case F k shall not be considered further.



[(Fig._2)TD$FIG]

Fig. 2. Projection of (a) face F k onto the plane xg=0 (to yield F0k) and (b) edge E0jk onto the plane xb=0 (to yield E00jk).
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The convex polygon defined by the inequality system (8) may be decomposed into triangles. Hence
its area may be expressed as

A0k ¼
1

2

X
j2Sk

rjkL0jk; (11)

where Sk denotes the index set for the edges on F0k; L0jk is the length of edge j2Sk and

rjk ¼
gjk

ksjkk
(12)

is the perpendicular distance from the origin to the edge. The edge length is calculated via Lasserre’s
projection scheme. If we let L00jk denote the length of edge j2Sk when projected onto the line xb=yb =0,
as illustrated in Fig. 2b, we obtain

L00jk ¼
jsjbkj
ksjkk

L0jk: (13)
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As in Fig. 2b, the once-projected and twice-projected edge Ejk will henceforth be denoted by E0jk and
E00 , respectively. We select b so that js j is maximised (although b make take on different
jk jbk

values for different faces j2Sk, we will write b rather than bjk for notational simplicity). Combining
Eqs. (11)–(13) we find that

A0k ¼
1

2

X
j2Sk

gjkL00jk
jsjbkj

: (14)

Eliminating yb from (8) using the equation sjk �y=gjk, one finds that E00jk is defined by a system of
inequalities of the form

tjkz � hjk; (15)

where tjk and hjk both are n dimensional arrays and z is a scalar. If we let tijk and hijk be component i of
tjk and hjk, respectively, we specifically obtain

tijk ¼ siak � qijksjak; (16)

hijk ¼ gik � qijkgjk; (17)
where qijk =sibk/sjbk and a=3�b indicates the remaining component of y. Clearly, tijk and hijk need only
be determined when i, j and k are all unequal.

Special considerations are needed when tijk vanishes. From Eq. (16) and the definition of qijk, it
is seen that tijk can only vanish if sik and sjk are linearly dependent (parallel if qijk>0 and
antiparallel if qijk<0). When sik and sjk are parallel, the ‘outer’ constraint is redundant and shall
not be included in the subsequent analysis. This constraint is in turn identified by the sign of hijk

(the constraint imposed by sik is redundant when hijk>0 and the one imposed by sjk when hijk<0).
Hence, sik and sjk are parallel and sjk is redundant when qijk>0 and hijk<0, in which case E00jk shall
not be considered further.

It is clear from the inequality system (15) that the least upper bound on z equals the smallest value
of hijk/tijk for which tijk>0, denoted by umjk. Analogously, the greatest lower bound equals the largest

value of hijk/tijk for which tijk<0, denoted by unjk. When umjk >unjk; j2Sk and the edge length becomes
L00jk ¼ umjk � unjk. Otherwise, j =2Sk and this combination of j and k needs not be considered further.
Moreover, if there is no tijk>0 or no tijk<0, the polyhedron is unbounded.

Gradient calculation

Using the chain rule, one finds that

Gkl ¼
@V

@rkl
¼ @V

@rkl

� �
f

þ 2rkl
@V

@ f k

� �
R

; (18)

where the first derivative is to be taken with the right-hand-side vector f in (1) fixed and the second
derivative with the left-hand-side matrix R fixed. Using Theorem 1 in [2], the derivatives in Eq. (18)
can be expressed as

@V

@rkl

� �
f

¼ � 1

krkk

Z
F k

xldAk ¼ �
Fkl

jrkg j
; (19)

@V
� �

¼ þ 1
Z

dA ¼
A0k ; (20)
@ f k R krkk F k

k jrkg j

where a variable substitution has been accomplished via Eq. (6) and where we have let

Fkl ¼
Z
F0

k

xldA0k: (21)

As demonstrated by Lasserre [4], integrals on faces of convex polyhedra can be expressed in terms
of sums of integrals on the face edges, provided that the integrand is a homogeneous function on the
face. To be able to use this result, we need to distinguish between different cases. We let {a, b, g} be a
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permutation of {1, 2, 3}, such that the first projection is along g (the value of g depends on k) and the
second projection is along b (the value of b depends on j and k).

When l 6¼g, xl indeed is a homogeneous function of degree 1 on F0k. Using Theorem 2.4 in [4], we
thus obtain

Fkl ¼
1

3

X
j2Sk

gjk

ksjkk

Z
E0

jk

xldL0jk ¼
1

3

X
j2Sk

gjkGjkl

jsjbkj
; l 6¼g; (22)

where a variable substitution has been accomplished via Eq. (13) and where we have let

Gjkl ¼
Z
E00

jk

xldL00jk ¼
Z
E00

jk

xldxa; l 6¼g; (23)

noting that dL00jk ¼ dxa. The case l 6¼g can be further subdivided into l=a and l=b. When l=a,

Gjka ¼
Z
E00

jk

xadxa ¼
u2

mjk � u2
njk

2
¼ L00jkM00jk; (24)

where M00jk ¼ ðumjk þ unjkÞ=2. When l=b, the second projection onto the line xl =xb=0 is accomplished
via the equation sjakxa+sjbkxb=gjk. Consequently

Gjkb ¼
Z
E00

jk

xbdxa ¼
1

sjbk

Z
E00

jk

ðgjk � sjakxaÞdxa ¼
L00jkðgjk � sjakM00jkÞ

sjbk
: (25)

When l=g, the first projection onto the plane xl =xg=0 is accomplished via the equation
rkaxa+rkbxb+rkgxg= fk. Consequently

Fkg ¼
1

rkg

Z
F0

k

½ f k � ðrkaxa þ rkbxbÞ	dA0k ¼
1

rkg
f kA0k �

1

3

X
j2Sk

gjkHjkg

jsjbkj

0
@

1
A (26)

where Theorem 2.4 in [4] has been used (note that rkaxa+rkbxb is a homogeneous function of degree
1 on F0k). A variable substitution has been accomplished via Eq. (13), again noting that dL00jk ¼ dxa, and
we have let

Hjkg ¼
Z
E00

jk

ðrkaxa þ rkbxbÞdxa ¼ rkaGjka þ rkbGjkb ¼
L00jkðrkbgjk þ djkM00jkÞ

sjbk
(27)

where djk =rkasjbk� rkbsjak.

Numerical simulations

Numerical simulations were performed to test the accuracy and computational efficiency of the
described method. To assess the overall characteristics of the method, a set of random polyhedra was
investigated. To test the performance of the method in its intended application, a small-scale DEM
simulation was performed.

Random polyhedra

Each random polyhedron was specified in terms of n vectors rk (cf. ‘Method details’ section). The
geometry was selected so that it would be relevant for volume estimation in conjunction with
simulations of particulate systems with the DEM. It was assumed that all particles had the same
diameter d0 (corresponding to the radius r0 =d0/2) and that the maximal particle–particle overlap was
dmax, corresponding to a minimal dihedral angle between the vectors rk of

’min ¼ arccos 1� 1

2
1� dmax

d0

� �2
" #

: (28)

The value of dmax/d0 was kept fixed at 0.2, corresponding to a minimal dihedral angle wmax of about
478. First, n random unit vectors n̂k were generated, such that the dihedral angle between any
pair was at least wmin. Specifically, the components of nk were drawn from independent uniform
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distributions on the interval [�1,1], and n̂k was calculated as nk/knk k whenever knk k>0.
Thereafter, rk was calculated as rkn̂k, where the magnitude rk was drawn from a uniform
distribution on the interval [r0�dmax/2, r0]. Keeping the intended application in mind, only
polyhedra with volumes not exceeding (3/2)Vsph were included in the subsequent analysis, where
Vsph ¼ pd3

0=6 is the particle volume. Components of DR were drawn from a uniform distribution on
the interval [�r, +r], with r/r0 ranging from 1 to 5%.

For each value of n between 6 and 14, 1000 random polyhedra were generated as described above.
For each random polyhedron and value of r, 1000 different variations DR were generated, and for each
variation, both the exact (V) and approximate (Vapprox) Voronoi volumes were determined. As error
estimate, the relative error of the Voronoi volume was calculated as

eV ¼
Vapprox � V

V
(29)

and the average and maximal values of jeVj were determined. The computation times needed for full
(i.e., exact plus gradient), exact and approximate volume determinations were recorded. A special
routine implemented according to the description in section ‘Volume calculation’ were used for the
exact volume determinations.

DEM simulation

Uniaxial compression of 100 spherical particles (diameter 1.0mm) in a cylindrical die (diameter
5.0mm) was simulated with the DEM [1]. The initial particle bed had a height of about 5.25mm and
the upper punch was lowered at a rate of 5mm/s for a period of 0.52s until a nonporous compact was
formed. For illustrative purposes, a standard contact model of the linear spring–dashpot type was used
as described in [6]. The particle density was 1.45g/cm3 and the normal and tangential stiffness were
100N/mm. The sliding and rolling friction coefficients were 0.5 and 0.001 for contact between
particles whereas five times smaller values were used for contact between particles and confining
surfaces. The normal and tangential damping coefficients were chosen so that the fractional damping
was 0.3. The time step was 0.138ms, implying that about 3.8�106 time steps were needed to complete
the simulation.

During the course of the simulation, Voronoi volumes were determined as described in section
‘Method details’. Exact volume determinations and gradient updates were made when contacts were
formed or broken and when the magnitude of any component of DR exceeded a certain predefined
threshold, viz.

max
ij

DRij

r0

����
����� e; (30)

where e was selected as 0.1 and 1% (as before, r0 denotes the particle radius). Whenever updates were
promted by changes in DR, the exact and approximate Voronoi volumes were stored. Based on these,
the relative error of the volume change was calculated as

eDV ¼
DV �DVapprox

DV
; (31)

where DV=V�V0 is the exact volume change and DVapprox =Vapprox�V0 is the approximate volume
change since the last update that yielded the volume V0. Data were binned based on the magnitude of
DV and the average and maximal values of jeDVj were determined for each bin.

Numerical results and discussion

The results obtained from the random polyhedra are summarised in Figs. 3 and 4. The average
and maximal relative errors of the Voronoi volumes, determined for five different values of r/
r0 between 1 and 5%, are displayed as a function of the number of faces, n, in Fig. 3a and b. In
general terms, both the average and maximal errors decreased with increasing n and the maximal
error is seen to be about one order of magnitude larger than the average error. It was empirically
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found that the average error could be described by a function of the form C/n3/2, where the
proportionality constant C depended on r/r0 (solid lines in Fig. 3a). Since the approximate Eq. (3) is
first-order accurate, one expects the truncation error to be proportional to (r/r0)2, and the
constant C was indeed found to be proportional to (r/r0)2 (inset in Fig. 3a). It is clear that an
accurate approximation was obtained as long as r/r0 remained small. Specifically, a maximal error
of about 0.2% was observed when r/r0 did not exceed 1% and a maximal error of about 1% was
obtained when r/r0 was at most 2%.
[(Fig._3)TD$FIG]

Fig. 3. Average (a) and maximal relative errors (b) of the Voronoi volumes for the indicated values of r/r0. The solid lines in (a)

represent fits of the function C/n3/2 to the numerical data, and the inset displays the proportionality constant C vs. (r/r0)2.
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Fig. 4. Computation times, relative to those for exact calculations, for approximate and full (i.e., exact plus gradient) calculations

for the indicated values of r/r0 (the solid lines represent power-law fits to the numerical data).
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Computation times for approximate and full (i.e., exact plus gradient) calculations are displayed as
a function of n in Fig. 4. To enable a clearer view, all values have been normalised by the time required
for the corresponding exact volume calculation (depending on n, this value ranged from a few seconds
to about 1min on the particular hardware used). As seen, consistent computation times were observed
for all five values of r/r0. It is evident that the proposed approximation considerably reduced
computation times, especially for large values of n, where a speedup around 450 was observed. The
computational overhead introduced by gradient calculation ranged from about 50% for n=6 to about
10% for n=14.

The results from the small-scale DEM simulations are summarised in Fig. 5, which displays the
average and maximal relative errors of the volume changes as a function of the magnitude of
the volume change, expressed as jDV/V0j. The insets in Fig. 5a and b show the initial and final particle
arrangements. As can be clearly seen, the magnitude of the relative errors of the volume changes
(Fig. 5) are considerably larger than the magnitude of the relative errors of the Voronoi volumes
(Fig. 3). Moreover, the relative errors increase when jDV/V0j decreases and may, for sufficiently small
values of jDV/V0j, exceed unity. This behaviour is not unexpected but is rather a consequence of
the nature of the approximation. Using matrix notation and expanding the volume to second order,
one obtains

V � V0 þ G
T

0DR þ 1

2
ðDRÞTH0DR; (32)

where DR and G0 represent ‘flattened’ versions of DR and G0, i.e., vectors with 3n components rather
than n�3 matrices, H0 is the corresponding Hessian matrix and the superscript ‘T’ indicates the matrix
transpose. Hence, the relative error of the volume change can be approximated as

eDV �
�ð1=2ÞðDRÞTH0DR

G
T

0DR þ ð1=2ÞðDRÞTH0DR
: (33)

The truncation error will be of the first order but will nevertheless be small provided that
jGT

0DRj
 ð1=2ÞjðDRÞTH0DRj. As demonstrated by the numerical simulations, this condition is
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Fig. 5. Average and maximal relative errors of the volume changes as a function of the relative volume change for (a) e=0.1% and

(b) e=1%. The insets in (a) and (b) show the initial and final particle arrangements.
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generally fulfilled provided that the magnitude of all components of DR are sufficiently small.
Exceptions occur when the positive and negative contributions to G

T

0DR balance each other, in which
case DV/V0 becomes small. According to our experience, the proposed method nonetheless appears to
work well in practice with e�0.1%, likely because relative changes of the order of 10�4 in the Voronoi
volume are insignificant.

When the described method is used in DEM simulations, the overall savings in computation
times will depend on how frequently the gradient needs to be updated on average. However, given
the relatively modest overhead introduced by gradient calculation, significant speedups will result
also for relatively frequent updates. This is substantiated by Table 1, which shows the total number
of gradient updates and computational times for the small-scale DEM simulations. It might be
possible to optimise the procedure used for the exact volume determination even further
Table 1
Number of gradient updates and computational times for the small-scale DEM simulations. For

comparison, the total number of iterations was 3,773,748 and the computational time was 8192s

when exact volume determination was used.

Update limit e No. of updates Computational time (s)

0.1% 148,238 2676

1.0% 45,271 2671
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[7]. However, judging from the data presented in Table 1, such an optimisation would have a
modest impact on the overall computational times. Moreover, the proposed local procedure
circumvents the costly determination of Voronoi diagrams (or the dual Delaunay tetrahedraliza-
tion) inherent in alternative methods [8].

Additional information: background

The discrete element method (DEM), developed by Cundall and Strack [1], has established itself as
the de facto standard technique for micromechanical simulations of granular systems in diverse
application areas (e.g. [9,10]). The method is fairly efficient, at least in relative terms, owing to the
generally employed simplified contact models. Assuming mechanical independence of contacts,
interparticle forces are defined in terms of certain functions of the particle overlap (e.g. [11,12]).
Although the majority of applications of the DEM have been related to dynamical processes with
limited particle deformation, the method is increasingly used to study the behaviour of granular
materials under confined conditions, as during manufacturing of tablets or machine parts by
compression/compaction (see [9] and references therein).

Compression/compaction can often be considered as a macroscopically quasistatic process [13],
characterised by extensive particle deformation. As a result, the assumption of contact independence
will not be valid at high relative densities (exceeding about 0.85–0.90 for monodisperse spherical
particles [14,15]). The combined finite/discrete element method (FE/DE method) [16,17] –
sometimes also referred to as the multiparticle finite element method (MPFEM) [18] or the meshed
discrete element method (MDEM) [19] – has been proposed to overcome this limitation. When
the FE/DE method is used, each particle is meshed by finite elements that enable a superior
representation of particle deformation, but also result in a significantly higher computational cost.
The FE/DE method is highly valuable in the detailed study of systems comprising a few particles,
but is unpractical for large-scale simulations due to its prohibitive computational cost. Hence
simplified models for the interaction between particles under confined conditions, suitable for
implementation in the DEM, are needed.

The most important ingredient in such models appears to be the constraint imposed by plastic
incompressibility [17,19,20]. Plastic deformation can only proceed as long as there is a void space that
can accommodate the displaced material. This in turn necessitates that a way be found to estimate the
volume of the available void space. The most natural and promising approach seems to be to use
volume estimates based on Voronoi constructions, as originally proposed by Arzt [14] and
subsequently used in the DEM by Donzé et al. [19]. Since the methodology is well developed and
open-source software exists, such as CGAL [21] and Voroþþ [22], the main challenge is to retain the
computational efficiency of the DEM despite the overhead introduced by Voronoi volume
determination. Voronoi volumes can readily be determined from half-space representations using
the mentioned codes, but other representations are used internally.
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