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Abstract

Dissolved organic carbon (DOC) released from glaciers has an important role in the biogeo-

chemistry of glacial ecosystems. This study focuses on DOC from glaciers of the southeast-

ern Tibetan Plateau, where glaciers are experiencing rapid shrinkage. We found that

concentrations of DOC in snowpits (0.16±0.054 μg g−1), aged snow (0.16±0.048 μg g−1), and

bare ice (0.18±0.082 μg g−1) were similar across the southeastern Tibetan Plateau, but were

slightly lower than those in other glaciers on the Tibetan Plateau. Vertical variations of DOC,

particulate organic carbon, black carbon, and total nitrate in snowpit showed no systematic

variations in the studied glaciers, with high values of DOC occurring in the ice or dusty layers.

We estimated the export of DOC and particulate organic carbon from glaciers to be 1.96

±0.66 Gg yr–1 and 5.88±2.15 Gg yr–1 in this region, respectively, indicating that organic car-

bon released from glacier meltwater may be affecting downstream ecosystems. Potential

sources of the air masses arriving at the southeastern Tibetan glaciers include South Asia,

Central Asia, Middle East, and northwest China. Emissions from biomass burning of South

Asia played an important role in the deposition of DOC to the glacier, which can be evidenced

by backward trajectories and fire spot distributions from MODIS and CALIPSO images. Our

findings suggest that anthropogenic aerosols contribute abundant DOC to glaciers on the

southeastern Tibetan Plateau. The pronounced rate of glacial melting in the region may be

delivering increased quantities of relic DOC to downstream rivers.

Introduction

Glaciers cover a significant portion of the Earth’s surface and form an integral part of the

global climate system [1–3]. Because of the various inorganic and organic compounds depos-

ited on them and the physical and photochemical processes that occur within them, glaciers
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can serve as a reservoir of atmospheric chemistry [4], and their retreat can affect carbon cycle

and water resources [5–6]. Relatively few studies focus on organic carbon (OC) in glaciers as

compared to studies on inorganic components (i.e., major ions, elements) [7], thus OC is one

of the least understood fractions in snow and ice [1].

Because it makes up a large portion of the OC in glaciers [1, 8], dissolved organic carbon

(DOC) plays a fundamental role in the biogeochemistry of the glacier system [9]. Hood et al.

[1] estimated that the DOC stored in glaciers was about 4.48±2.79 Pg C, constituting about

75% of the OC stored in glaciers and ice sheets. The concentrations and quality of DOC in gla-

ciers varies considerably, with high variability both temporally across the glacier meltwater

season [10–11], and spatially across different regions [8, 12–13]. Hood et al. (2015)[1] found

that DOC concentrations on mountain glaciers, and on the Greenland and Antarctic ice sheet

ranged from 0.01 to 43.2 μg g−1 with a mean of 0.97 μg g−1. This highlights glaciers as ecosys-

tem heavily depleted in OC [14].

Glaciers accumulate organic OC from in situ primary production as well as from atmo-

spheric deposition of carbonaceous material derived from terrestrial and anthropogenic inputs

[1, 15]. Anthropogenic combustion products are considered the main source of the aerosol

organic carbon deposited on glacier surfaces [9–10, 16]. Other possible sources of OC in gla-

cier include aerosols from forest fires [10, 17–18], soil organic matter (Singer et al., 2012; Yan

et al., 2016), and biological processes [19–21]. This diversity of sources was documented by

Antony et al. [19] and Fellman et al. [9] in recent molecular level analyses of DOC in snow and

its dual-carbon-isotope signatures (δ13C/Δ14C).

Hood et al. [20] and Singer et al. [14] found that glacier-derived DOC represents a quantita-

tively significant source of bioavailable carbon to downstream carbon cycling in glacier-fed

streams. The Greenland ice sheet exports labile OC (0.13−0.17 Tg C yr−1) to the Arctic Ocean

and may represent an important OC source to the near-coastal North Atlantic, Greenland,

and Labrador seas [22]. Molecular insights on DOC transformation by supraglacial microbial

communities have indicated that both autochthonous and allochthonous dissolved organic

matter is highly bioavailable and is transformed by resident microbial communities through

parallel processes of degradation and synthesis [15].

The Tibetan Plateau contains a large volume of glaciers, and plays a significant role in the

Earth’s climate system [5, 23]. The atmospheric circulation patterns over the Tibetan Plateau

are characterized by the South Asian (Indian) monsoon in summer and the westerlies in win-

ter [24]. The atmospheric circulation patterns over the Tibetan Plateau are characterized by

the South Asian (Indian) monsoon in summer and the westerlies in winter [24]. Currently,

glaciers in the Tibetan Plateau are experiencing rapid retreat [5, 23], particularly in the south-

eastern Tibetan Plateau [5]. Temperate glaciers are typical in the southeastern Tibetan Plateau

and account for approximately 20% of the total number of glaciers in China [25]. Because they

have exhibited strong surface melting and rapid terminal retreating, these glaciers are subject

to extensive mass loss [5]. The water released by glaciers in this region is important to the

downstream countries [26]. For instance, glacial meltwater can contribute more than 50% of

the total runoff increase in the upper Brahmaputra [27]. In the Indus and Ganges basins, about

40% of the meltwater originates from glaciers [28]. Kääb et al. [29] and Gardner et al. [30] esti-

mated that glaciers in the Himalayan region lost 24±2 Gt yr−1 of ice between 2003 and 2009,

equivalent to around 10% of the global glacier mass. Climate-driven changes in glacier volume

will alter downstream discharge, the speciation of nutrients, and societal development [2, 26].

Previous studies of DOC in Tibetan glaciers mainly focused on samples from snow pits [13,

31–33]. In this study, snow pit and surface snow/ice samples were collected from glaciers in

the southeastern Tibetan Plateau and analyzed for DOC, particulate organic carbon (POC),

total nitrate (TN), black carbon (BC), major ions, and elements. We will describe the

DOC in glaciers of southeastern Tibet
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characteristics of DOC and POC from glaciers on the southeastern Tibetan Plateau, and assess

DOC and POC deposition on glaciers and contribution to river runoff. Finally, we also discuss

possible sources of DOC in the southeastern Tibetan Plateau. Resolving the characteristics and

origin of DOC on the southeastern Tibetan Plateau is important for understanding how the

storage and release of OC from glaciers will change in the future. These results will benefit

local people and attract public attentions to the cryospheric change in the Tibetan Plateau.

Methodology

Field site and snow sampling

This study is under the permit of Northwest Institute of Eco-Environmental and Engineering

Research, Chinese Academy of Sciences. Field sampling sites in our study did not involve

endangered or protected species. The results will benefit local people and attract public atten-

tions to the cryospheric change in the Tibetan Plateau. The study area is located along the south-

eastern margin of the Tibetan Plateau (Fig 1A). This region is strongly influenced by the South

Asian monsoon, which typically arrives via the Brahmaputra Valley [34]. During expeditions in

June of 2015, fresh snow, aged snow, and bare ice samples (the upper 4−8 cm) were collected

from four glaciers (Yarlong (29˚18ʹ20.23ʺN, 96˚46ʹ26.88ʺE, 4050 m a.s.l.), Dongga (29˚

13ʹ34.97ʺN, 96˚52ʹ30.53ʺE, 4700 m a.s.l.), Renlongba (29˚14ʹ33.51ʺN, 96˚55ʹ29.67ʺE, 4850 m a.s.

l.), and Demula (29˚21ʹ09.33ʺN, 97˚01ʹ14.22ʺE, 5140 m a.s.l.)) with average elevations ranging

from 4030 to nearly 5090 m a.s.l. (Fig 1B and S1 Table). In addition, three snowpits were col-

lected from the Dongga (120 cm), Renlongba (70 cm), and Demula (80 cm) glaciers (detailed in

Dataset). Among them, snowpits of Renlongba and Demula glacier were excavated at a vertical

depth of 10 cm; while snowpit of Dongga glacier was excavated at a vertical depth of 15 cm

using a stainless steel spoon. Generally, in order to eliminate contamination, polycarbonate

vials (polycarbonate) were firstly washed using ultrapure water, soaking with 1 M HCl over-

night, rinsing using ultrapure water again, and finally soaking in ultrapure water for 24 h [33,

35]. Surface snow and snowpit samples were directly collected into pre-cleaned polycarbonate

vials for DOC analysis. Polyethylene plastic bags were used to collect snow samples (approxi-

mately 2 L, unmelted) for analysis of BC, POC, a major ions, and elements [36]. During sam-

pling, dust-proof garment with a head-and-mouth mask and gloves were worn to assure

samples were not contaminated [37]. In total, we collected 18 surface snow/ice samples and 23

snow pit samples, and used parallel samples to average the results. Laigu river water samples for

DOC analysis were collected from 20:00, 19 June to 18:00, 20 Jun 2015, every 2 h in the Yarlong

glacier region (Fig 1B). River water was directly collected into pre-cleaned polycarbonate vials.

Field these sampling sites in our study did not involve endangered or protected species.

All samples were kept frozen until analysis. Before filtration, the samples in plastic bags

were rapidly melted in a water bath (approximately 20 minutes for complete melting) and the

melt water (typically 1 L) was filtered through a pre-dried (in a desiccator, at 550˚C, for 6

hours), weighted quartz substrate using a vacuum pump. We filtered the samples twice, rinsing

the filtration equipment twice with ultrapure water (<18.2 mO) to avoid particle loss. Finally,

we transferred the filtered water into pre-cleaned polyethylene vials for the analyses of major

ions and elements and used the filters for POC and BC analyses [36].

Analytical protocols

DOC measurement. We determined DOC concentrations of the glacial samples by high-

temperature combustion (680˚C) using a Total Organic Carbon analyzer (TOC-5000A, Shi-

madzu Corp, Kyoto, Japan) [16, 33] after filtration through a polytetrafluoroethylene (PTPE)

membrane filter (0.45 μm pore size). For liquid water samples, the detection limit of the

DOC in glaciers of southeastern Tibet
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Fig 1. (a) Location of the study area and (b) the distributions of studied glaciers in the southeastern Tibetan Plateau. (Red dots in (a)

represent the glaciers referenced in the main text. TS: Urumqi Glacier No. 1 in Tienshan; LHG: Laohugou No.12 glacier in Qilian

DOC in glaciers of southeastern Tibet
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analyzer was 15 μg L–1 with a standard deviation less than 1.5%. Average DOC and TN of

blanks was 33±10 and 28±6 μg L–1, respectively, indicating that contamination during sam-

pling, pre-treatment, and analysis processing could be ignored.

POC and BC analysis. After filtering, we analyzed the quartz filters for POC and BC.

Based on an adapted IMPROVE protocol [38–39], we measured the POC and BC on the filters

using a thermal-optical carbon analyzer. Because the dust loads in the snow/ice samples were

greater than in the airborne aerosol samples, we modified the method such that, in a 100%

helium atmosphere, only one temperature plateau (550˚C) was used to reduce the time that

the BC was exposed to the catalyzing atmosphere [36, 39]. The detection limit of the analysis

was 0.19±0.13 μg total carbon (TC) cm–2 and the filter blank was 1.23±0.38 μg TC cm–2, which

was much lower (less than one order of magnitude) than the measured sample values.

Major ions and elements. We measured major ions (Na+, K+, Ca2+, Mg2+, NH4
+, Cl−,

SO4
2−, NO3

−) using a Dionex-600 and Dionex-2500 Ion Chromatograph System (Dionex,

USA). The detection limit was 1 μg L–1, and the precision was less than 5%.

In the laboratory, we measured elements directly using inductively coupled plasma-mass

spectrometry (ICP-MS, X-7 Thermo Elemental). The snow samples were melt in the labora-

tory at room temperature, and then acidified with 1% HNO3 and allowed them to react with

the acid for seven days before being measured. We quantified elemental concentrations using

external calibration standards (AccuTrace Reference Standard), analyzing the analytical stan-

dard after the initial calibration and after every 10 samples. We defined the method detection

limit (MDL) as three times the standard deviation of replicate blank measurements. The MDL

for the elements are given in the supplementary material published by Zhang et al. [40].

Detailed information about the elemental analysis can also be found in Cong et al. [41].

Backward air mass trajectories

We calculated backward air mass trajectories using the Hybrid Single-Particle Lagrangian

Integrated Trajectory (HYSPLIT) model (Version 4) [42]. We use 5-day-long backward trajec-

tory with a daily resolution to simulate the moving routes of air masses arriving at the sam-

pling sites (ending at 12:00 (04:00 UTC) Beijing time for the sampling period). The backward

trajectories were calculated at 1000 m above ground level. The trajectory frequency option

started a trajectory from a single location and height every 6 hours, summed the frequency

that the trajectory passed over a grid cell, and normalized it by using either the total number of

trajectories or endpoints. A trajectory may intersect a grid cell once or multiple times.

Principal component analysis

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transfor-

mation to convert a set of observations of possibly correlated variables into a set of values of

linearly uncorrelated variables called principal components. A biplot is also drawn, which is

regarded as a graphical display of matrix multiplication [43].

CALIPSO images

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data can pro-

vide vertical distributions of aerosol and cloud profiles in Earth’s climate system [44]. Previous

Mountains; QY: Qiyi glacier in Qilian Mountains; XDKMD: Xiaodongkemadi glacier in the Tanggula Mountains, central Tibetan Plateau;

ZD: Zhadang glacier in the Mt. Nyainqengtanlha; JMYZ: Jiemayangzong glacier in the Himalayas; Yulong; Yulong snow mountain in the

southeastern Tibetan Plateau).

https://doi.org/10.1371/journal.pone.0205414.g001
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studies indicated that CALIPSO images can capture the features of atmospheric pollutants

transportation [45].

Results

Abundance of DOC and other chemicals

We found average concentrations of DOC of 0.16±0.05, 0.16±0.05, and 0.18±0.08 μg g−1 for

snow pit, aged snow, and bare ice samples, respectively (Table 1). No significant variations

were exhibited between different snow types. The relatively high DOC concentrations for bare

ice may be a result of increased impurities in these samples. Compared with the other studies

noted in Table 1, DOC concentrations were somewhat lower than those from elsewhere on the

Tibetan Plateau, comparable to those from surface snow in the French Alps and Alaska, and

higher than those from snow of the Greenland ice sheet. The average POC concentrations in

bare ice (0.71±0.82 μg g−1) of the glaciers we studied were higher than those from snow pit and

aged snow samples and much higher than those from ice core records (Table 2). Snow pit

POC data were comparable to those from margin areas of the Tibetan Plateau (Yulong and

Laohugou No.12 glacier), but higher than those from the central Tibetan Plateau (Zhadang

and Xiaodongkemadi glacier). The POC concentrations in aged snow (0.38±0.60 μg g−1) were

lower than those from Yulong Snow Mountain, Zhadang glacier, Xiaodongkemadi glacier,

Laohugou No.12 glacier, and Keqikaer glacier (Table 2). We found no significant relationships

between DOC (or POC) concentrations and elevations; however, the DOC and POC

Table 1. Comparison of DOC concentrations from glaciers in the Tibetan Plateau and other remote areas.

Region Year Snow types DOC conc.

(μg g−1)

Comment References

Southeast Tibetan Plateau Jun, 2015 Snowpit 0.16±0.054 Shimadzu TOC-5000A Total Organic Carbon analyzer This study

Aged snow

Bare ice

0.16±0.048

0.18±0.082

Musidao glacier, Altai Aug, 2014 Snowpit 0.76±0.19 Vario EL CN analyzer [31]

Urumqi No.1 glacier, Tienshan Aug, 2014 Snowpit 0.52±0.14 Vario EL CN analyzer [31]

LHG, Northern Tibetan Plateau Jul-Aug, 2015 Snowwpit 0.33±0.13 Shimadzu TOC-5000A Total Organic Carbon analyzer [31]

LHG, Northern Tibetan Plateau Aug, 2016 Fresh snow

Snowpit

0.38±0.06

0.22±0.11

Shimadzu TOC-5000A Total Organic Carbon analyzer [50]

LHG, Northern Tibetan Plateau Aug, 2014 Snowpit 0.66±0.08 Vario EL CN analyzer [31]

Qiyi, Northern Tibetan Plateau Jun, 2014 Snowpit 0.65±0.52 Shimadzu TOC-5000A Total Organic Carbon analyzer [13]

XDKMD, Central Tibetan Plateau Aug, 2014 Snowpit 0.91±0.20 Vario EL CN analyzer [31]

XDKMD, Central Tibetan Plateau Jun, 2014 Snowpit 0.59±0.32 Shimadzu TOC-5000A Total Organic Carbon analyzer [13]

Zhadang, Southern Tibetan Plateau Aug, 2014 Snowpit 1.26±0.09 Vario EL CN analyzer [31]

Yulong, Southern Tibetan Plateau Jun, 2014 Snowpit 0.48±0.05 Shimadzu TOC-5000A Total Organic Carbon analyzer [13]

Yulong, Southern Tibetan Plateau Jun, 2015 Snowpit

Aged snow

0.54±0.22

0.90±0.16

Vario TOC select, Germany [51]

JMYZ, Southern Tibetan Plateau Summer 2009

Winter-Spring

Snowpit Snowpit 0.61

2.68

Shimadzu TOC-VCPH [32]

Mt. Blanc, French Alps Sep, 2012 Surface snow 0.21±0.01 UV/NDIR CO2 [8]

Juneau Icefield, Southeast Alaska May, 2013 Glacier surface snow 0.20 Shimadzu TOC-V CSH analyzer [9]

Mendenhall Glacier, Alaska Snowpit 0.19 OI Analytical 700 TOC analyzer [16]

Bow lake, Albert, Canada Glacier stream 0.35±0.15 Shimadzu TOC 5000A

analyzer

[49]

Greenland Ice Sheet May-Aug, 2012 Snow

Ice

0.06

0.18

Shimadzu TOC-VCSN/TNM-1 Analyzer [50]

https://doi.org/10.1371/journal.pone.0205414.t001

DOC in glaciers of southeastern Tibet
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concentrations in the glacier surface snow and ice may be influenced by other complex factors,

such as slope [46], cryoconite holes [47–48], or biological activities [47, 49]. The DOC concen-

trations we observed were within the range of previously reported values for the glacierized

regions outside the Tibetan Plateau [1].

The mass fraction of organic and inorganic components in snow we measured indicated

similar proportions of DOC for snow pit, aged snow, and bare ice (Fig 2), implying DOC levels

in snow were not controlled only by snowmelt. The highest percentage of POC (> 60%) was

found in bare ice, but the highest percentage of BC occurred in snow pits, indicating differing

post-deposition processes. Carbonaceous components dominated the impurities in snow, con-

tributing more than 80% of mass fractions. The much higher portion of DOC in snow may

indicate different sources or post-deposition processes.

Water soluble major ions accounted for 17.95%, 14.28%, and 5.67% of the total mass for

snow pit, aged snow, and bare ice, respectively (Fig 2). The portion of [NO3
−+NH4

+] and

[Na++K++Ca2++Mg2+] were highest in the snow pit samples and lowest in the bare ice sam-

ples, indicating that glacier melt water eluviation can remove most major ions from snow. The

charge balance between the total cations (∑+) and total anions (∑–) is shown in Fig 3. Strong

correlations between the two totals for snow pit samples indicate most of the ionic components

were measured, and the fact that the average ∑+/∑–ratio was larger than unity implies that the

glacier snow water was slightly alkaline, as was also found by Zhang et al. [7]. For aged snow

and bare ice samples, the correlation between ∑+ and ∑–was not significant and may have

been affected by the glacier meltwater elution or post-deposition processes.

Vertical variations

We found no systematic variations for DOC and TN with snow pit depth in the studied gla-

ciers, but POC and BC showed consistent variations (Fig 4). High DOC values occurred in the

ice layer or dusty layers, similar to the patterns observed by Yan et al. [33] on the Laohugou

No. 12 glacier in the northern Tibetan Plateau and by Xu et al. [32] on the Jiamayangzong gla-

cier in the southern Tibetan Plateau. This indicates that DOC concentrations in the study area

were likely influenced by mineral dust deposition. Doherty et al. [56] noted that BC-containing

particles were washed through the snow pit with higher efficiency than larger particles, such as

soil or mineral dust. Benning et al. [57], Takeuchi et al. [58], and Yang et al. [39] noted that BC

Table 2. POC concentrations from different glaciers in the Tibetan Plateau and its surroundings.

Region Year Snow types POC conc.

(μg g−1)

Comment References

Southeast Tibetan Plateau Jun, 2015 Snowpit 0.41±0.52 TOR method, DRI2001A This study

Aged snow

Bare ice

0.38±0.60

0.71±0.82

Zuoqiupu, Southeast Tibetan Plateau 1960–2005 Ice core 0.01–0.04 TOR method, DRI2001A [52]

Yulong, Southeast Tibetan Plateau Jun, 2015 Snowpit

Aged snow

0.57±0.10

2.09±0.57

TOR method, DRI2001A [51]

Zhadang, South Tibetan Plateau Aug, 2015

May, 2015

Fresh snow

Aged snow

0.14±0.0.02

1.38±0.37

TOR method, DRI2001A [13]

XDKMAD, Central TP Aug 2014 to Oct 2015 Fresh snow

Aged snow

0.16±0.04

0.61±0.47

TOR method, DRI2001A [53]

LHG, Northern TP Jun, 2016 Snow pit

Aged snow

0.39±0.22

0.53±0.29

TOR method, DRI2001A [54]

KQKE, Tienshan May, 2015 Aged snow 1.74 TOR method, DRI2001A [55]

https://doi.org/10.1371/journal.pone.0205414.t002
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and POC redistribute vertically in glaciers, potentially under the control of melting processes

or biological melt enhancement effects.

DOC and POC export from glaciers

The amount of DOC stored in glaciers can be determined from their mass of water and aver-

age DOC concentrations (DOCavg) [1]. In the southeastern Tibetan Plateau, we estimated the

export of DOC and POC from glaciers using Eq (1):

Export DOC¼ DOCavg �MB� GA ð1Þ

Where, MB represents the annual mass balance (mm w.e. yr-1), and GA means the glacier

area (km2). Yao et al. [5] estimated the annual mass balance in the southeastern Tibetan Pla-

teau to be 1100 mm w.e. and estimated the glacier area from the Hengduan and Nyainqeng-

tanglha mountains at 10,699 km2. Based on Eq (1) and Table 1, we estimated the export of

DOC is 1.96±0.66 Gg yr–1 in the study areas (or southeastern Tibetan Plateau). The export of

POC from the study area were calculated to be 5.88±2.15 Gg yr–1, much higher than DOC

export due to higher POC concentrations from glaciers.

Fig 2. Average component proportions in snow pit, aged snow, and bare ice, southeastern Tibetan glaciers.

https://doi.org/10.1371/journal.pone.0205414.g002
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Fig 3. Correlations between total cations (∑+) and total anions (∑–) in (a) snow pit and (b) aged snow/bare ice

samples.

https://doi.org/10.1371/journal.pone.0205414.g003
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Discussions

Potential sources of DOC

The results of PCA for DOC and other proxies for glaciers of the southeastern Tibetan Plateau

showed that four principal components differed significantly (see S2 Table), reflecting complex

associations between different chemicals in glaciers. The first PCA (PCA1), mainly loaded by

POC, EC, Na+, K+, and Cl–, accounted for 46.58% of total variance and may reflect the rela-

tively consistent aerosol deposited on the glaciers. PCA2, loaded by Ca2+, Mg2+, and SO4
2–

(accounting for 26.73% of total variance), indicated crustal sources from desert or arid regions

as noted by Zhang et al. [7]. TN, NO3
–, and NH4

+ were included in PCA3 (contributed 12.34%

to total variance), indicating the impact of anthropogenic activities. Unlike other parameters

in glaciers, DOC was the primary component in PCA4 with an extraction of 62.41%, and was

loaded with Cl- and K+.Biplot of PAC explained 73.31% of total variation of environmental

proxies in this study (Fig 5). As shown in Fig 5, the cosine of the angle between the two

Fig 4. Vertical variations of DOC, POC, BC, and TN from snow pits collected from southeastern Tibetan Plateau.

https://doi.org/10.1371/journal.pone.0205414.g004
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environment vectors (red lines) approximates the correlation between them. For example, Ca2+,

Mg2+, and SO4
2- were positively correlated with each other (acute angle); DOC is also positively

related to with Ca2+, Mg2+, and SO4
2-, indicating impact of crustal sources. The positive rela-

tionship between DOC and K+ (acute angle) indicated impact of biomass burning [59]. Deposi-

tion of Cl is a proxy for sea-salt deposition, implying impact of sea-salt aerosol on DOC (acute

angle) deposition in the southeastern Tibetan Plateau. The distance between the proxies mea-

sures their dissimilarity. Thus, the 12 proxies fell into two groups (green circles in Fig 5).

The southeastern Tibetan Plateau is adjacent to South and Southeast Asia (Fig 6), which

experience widespread biomass burning (e.g., forest fire, straw burning) [60–61]. Biomass

burning is more frequent and widespread in winter and pre-monsoon seasons (Fig 6A and 6B)

than in summer and post-monsoon season (Fig 6C and 6D). Biomass burning is considered to

be an important source of aerosols transported to the Himalayas and Tibetan Plateau [59, 62].

Backward trajectory frequency shows that during the winter and pre-monsoon seasons, air

masses arriving at the southeastern Tibetan Plateau originate primarily from South Asia

(including the Thar Desert region), Central Asia, the Middle East, and the western Tibetan Pla-

teau (Fig 7A, 7B and 7C). In June, air masses originate mainly from South Asia and the Bay of

Bengal (Fig 7D). Our analyses showed that during summer, air masses from the northern

Tibetan Plateau and northwest China play an important role in the aerosol deposition on the

glaciers of the southeastern Tibetan Plateau (Fig 7E). In September (post-monsoon season), air

masses are again generally sourced from South Asia and the Bay of Bengal (Fig 7F). When bio-

mass burning occurs in the air mass source regions (e.g., South Asia), the aerosol can be trans-

ported and deposited on the Tibetan glacier surface. This indicates that forest fires [10, 17–18]

and soil organic matter [14, 33] are important sources of OC found in glaciers. In the central

Himalayas, Cong et al. [59] observed strong positive correlations for dicarboxylic acids with

biomass burning tracers, levoglucosan and K+, demonstrating that this area can be affected by

biomass burning from South Asia. In addition, local contribution (e.g., biofuel burning of

local people) may also contributed to OC deposition in glaciers of this regions.

CALIPSO-derived 532 nm backscatter values for our study area, as well as smoke plume

heights and aerosol sub-types with plume heights, are shown in Fig 8. Vertical profiles of aero-

sol concentrations reveal large values over South Asia. Aerosol subtypes demonstrate that

smoke plumes could extend higher than 5 km in altitude. An example of such pollution phe-

nomenon was observed on 2 January 2015 and 1 June 2015 (Fig 8), clearly demonstrating that

the southeastern Tibetan Plateau (marked with circles) is covered by a thick polluted aerosol

layer, apparently originating from South Asia.

Estimation of DOC and POC export

In a previous study, Liu et al. [31] estimated that the total amount of DOC stored over the

Tibetan Plateau is *3.96 ± 0.87 Tg, approximately ~5.6% of the total DOC in alpine glaciers

(70 Tg) around the world [1]. Pfeffer et al. [63] found DOC released from glaciers in the high

mountains of Asia to be 30.8 Gg yr–1, 50% of which was contributed by glaciers in China.

Because different DOC concentrations and area were used, our estimation of DOC export

from glaciers of southeastern Tibetan Plateau (1.96±0.66 Gg yr–1) is a little lower than that by

Liu et al. [31] (~3 Gg yr–1).

DOC export from glaciers can also affect DOC concentration in river water. The diurnal

variations of DOC concentrations from the Laigu glacial river water samples showed higher

values after 14:00 (Fig 9). Similarly, Sun et al. [64] also found that mercury in the glacier-fed

river water exhibited significant diurnal variations with greater concentrations during high

flow periods in the afternoon. Han et al. [65] and Singh et al. [66] noted that diurnal variations
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in glacial runoff were pronounced as a result of glacier melt. The consistency of DOC with that

of the runoff suggests that glacier ablation intensity has a strong influence on the DOC concen-

trations in downstream river water. Hood et al. [19], Huntington et al. [67], and Lawson et al.

[22] found that coastal ecosystems are sensitive to alteration of both the quantity and lability of

terrigenous DOC exported from glaciers and delivered by rivers. For example, earlier snow-

melt and spring runoff led to changes in the timing of DOC exported to the Gulf of Maine

[67]. In Alpine glaciers, Singer et al. [14] found DOC to be highly diverse and that a significant

fraction of this material was bioavailable, suggesting that glacier-derived DOC contributed to

Fig 5. Biplot to show similarities among measured glacial proxies in discriminating the relationships.

https://doi.org/10.1371/journal.pone.0205414.g005
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Fig 6. Fire spot distribution from December 2014 to September 2015 as determined by MODIS (moderate

resolution imaging spectroradiometer) (https://firms.modaps.eosdis.nasa.gov/map/).

https://doi.org/10.1371/journal.pone.0205414.g006
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downstream carbon cycling in glacier-fed streams. As a large fraction of OC, estimation of

POC export from glaciers still remained poorly constrained. In the central and southern

Tibetan Plateau, the export of POC can be calculated to be about 10.1−20.6 Gg yr-1 (S3 Table).

The continuous export of DOC and POC from glaciers will affect downstream ecosystems

[14]. The quantification of this impact in mountainous regions is of great interest for risk

assessment and adaptation.

Fig 7. Distributions of backward trajectory frequency from December 2014 to September 2015. (https://ready.arl.

noaa.gov/HYSPLIT.php).

https://doi.org/10.1371/journal.pone.0205414.g007
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Fig 8. CALIPSO-retrieved backscatter signal at 532 nm, vertical feature mask, and aerosol sub-type information on 2 January 2015 and 1 June 2015. The

southeastern Tibetan Plateau (marked with circles) is covered by a thick aerosol layer, suggesting that air pollutants could extend more than 5 km in altitude. CALIPSO

profiles were obtained from (https://www-calipso.larc.nasa.gov/).

https://doi.org/10.1371/journal.pone.0205414.g008
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Implications and perspectives

Recent studies in the Tibetan Plateau have shown that glacial meltwater is enriched in dis-

solved carbonaceous species, which are essential for microbial community and downstream

carbon cycling [14, 21–22]. In the northern Tibetan Plateau (Laohugou No. 12 glacier), Yan

et al. [33] indicated that 46.2% of DOC in snow is bioavailable and can be decomposed into

CO2 within one month of its release. The chemical composition of dissolved organic matter in

cryoconite in Tibetan glaciers shows almost one-third of the identified dissolved organic mat-

ter molecules have low C/N ratios (�20), indicating high bioavailability [48]. In this study,

average C/N ratios is at 6.1±4.9 with a range from 2.0 to 22.5, further implying glacial origi-

nated DOC has high bioavailability. Estimation of the impacts of DOC from glaciers on down-

stream biogeochemistry and its relevance for carbon cycling in glacier-fed stream is still of

great scientific interest on the Tibetan Plateau.

Diagnostic dual-isotope signatures (Δ14C/δ13C) of carbonaceous aerosol can be used to

determine contributions from different sources [68–69]. For example, carbon isotopic signa-

tures combined with a three-source mixing model showed that DOC deposited in snow across

the icefield of southeast Alaska reflects fossil fuel combustion products (43%−73%) and, to a

lesser extent, marine (21%−41%) and terrestrial sources (1%−26%) [9]. BC compositions in

Fig 9. Diurnal variations of DOC concentration in Laigu glacier river samples.

https://doi.org/10.1371/journal.pone.0205414.g009
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Himalayan glaciers indicate equal contributions from fossil fuel (46%) and biomass (54%)

combustion, whereas BC in the remote northern Tibetan Plateau is predominantly derived

from fossil fuel combustion (66%) [68]. Potential sources of carbonaceous aerosol in the south-

eastern Tibetan Plateau are discussed qualitatively; the quantification of the contributions to

DOC deposition in glaciers from different sources needs to be investigated further in this

region.

Conclusions

In this study, we find that DOC concentrations in glaciers of southeastern Tibetan Plateau are

slightly lower than other results from the Tibetan Plateau, but comparable to those in the Alps

and Alaska. We found snow pit POC to be higher than that from the central Tibetan Plateau,

but comparable to those from the margin regions of the Plateau. Mass fraction of organic and

inorganic components in snow implied that carbonaceous components dominated the impuri-

ties in snow, characterized by contribution to more than 80% of the total mass. We found no

systematic variations for DOC and TN with snow pit depth in the studied glaciers, but POC

and BC showed consistent variations. High values of DOC occurred in the ice layer or dusty

layers, similar to the pattern observed from Laohugou No.12 glacier in the northern Tibetan

Plateau.

We estimated DOC export from glaciers to be 1.88–2.12 Gg yr–1, which was much lower

than that from previous studies because of the different DOC concentrations used. We esti-

mated export of POC from the study area to be 4.47–8.34 Gg yr–1, indicating that OC in gla-

ciers of southeastern Tibetan Plateau may play an important role on the carbon cycling in

downstream as a result of the accelerated glacier melt occurred in this region.

Using backward trajectories and CALIPSO images, we found that biomass burning from

South Asia is also a major source of DOC deposition on glaciers of the Tibetan Plateau. We

found that, as a result of the different loadings of DOC and other components, biological pro-

cesses in southeastern Tibetan glaciers may play a crucial role on DOC characteristics as

shown by other studies. This issue needs further study.

Our findings suggest that anthropogenic aerosols contribute abundant DOC to glaciers in

the southeastern Tibetan Plateau. Consequently, the pronounced rate of glacial melting in this

region may be delivering increased quantities of relic DOC to downstream of rivers. As global

warming, climate change motivated glacier runoff can affect hydrological processes. Constrain

the role of glacier/ice sheet in OC storage, deposition and export, and its link with terrestrial

carbon fluxes will enhance our understanding of global carbon cycle.
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