
sensors

Article

Fast and Robust Time Synchronization with Median Kalman
Filtering for Mobile Ad-Hoc Networks

Young Jeon , Taehong Kim and Taejoon Kim *

����������
�������

Citation: Jeon, Y.; Kim, T.; Kim, T.

Fast and Robust Time

Synchronization with Median

Kalman Filtering for Mobile Ad-Hoc

Networks. Sensors 2021, 21, 590.

https://doi.org/10.3390/s21020590

Received: 10 December 2020

Accepted: 12 January 2021

Published: 15 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Information and Communication Engineering, Chungbuk National University, Chungju 28644, Korea;
jeony9672@cbnu.ac.kr (Y.J.); taehongkim@cbnu.ac.kr (T.K.)
* Correspondence: ktjcc@chungbuk.ac.kr

Abstract: Time synchronization is an important issue in ad-hoc networks for reliable information
exchange. The algorithms for time synchronization in ad-hoc networks are largely categorized into
two types. One is based on a selection of a reference node, and the other is based on a consensus
among neighbor nodes. These two types of methods are targeting static environments. However,
synchronization errors among nodes increase sharply when nodes move or when incorrect synchro-
nization information is exchanged due to the failure of some nodes. In this paper, we propose a
synchronization technique for mobile ad-hoc networks, which considers both the mobility of nodes
and the abnormal behaviors of malicious or failed nodes. Specifically, synchronization information
extracted from a median of the time information of the neighbor nodes is quickly disseminated.
This information effectively excludes the outliers, which adversely affect the synchronization of the
networks. In addition, Kalman filtering is applied to reduce the synchronization error occurring in
the transmission and reception of time information. The simulation results confirm that the proposed
scheme has a fast synchronization convergence speed and low synchronization error compared to
conventional algorithms.

Keywords: time synchronization; ad-hoc network; fast median; Kalman filter

1. Introduction

An ad-hoc network is adopted for various situations, such as environmental moni-
toring, military operation, and disaster recovery [1]. In an ad-hoc network, the nodes are
equipped with computing and sensing devices operating at low power, and an accurate
time synchronization is required in collecting and sharing data measured by the sensing
devices [2,3]. An accurate time synchronization is a core functionality for distributed
information gathering and control. For instance, in measuring the occurrence of acoustic
or seismic signals over multiple probing nodes, the performance of time synchronization
over the probing nodes greatly affects the accuracy of the measurement. For a high-rate
time division multiple access (TDMA) system, the performance of medium access control
(MAC) layer scheduling is also significantly affected by time synchronization among nodes.
In addition, time synchronization plays an important role for a distributed logging system,
network security, and power management system.

In a cellular communication system, mobile nodes are synchronized according to
the preamble signal transmitted from a base station. Usually, a base station has enough
power to send this signal, which covers the whole cell site of the base station. However,
in an ad-hoc network without a base station, the available radio resources and the power
for each node are scarce and limited [4,5]. Accordingly, this network requires an efficient
synchronization algorithm that is robust against environmental changes along with low
power consumption in the synchronization message exchanges [6].

One of the representative synchronization methods for ad-hoc networks is a reference
node-based algorithm, which includes Flooding Time Synchronization Protocol (FTSP) [7]

Sensors 2021, 21, 590. https://doi.org/10.3390/s21020590 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4904-6339
https://orcid.org/0000-0001-6246-6218
https://orcid.org/0000-0001-6326-2559
https://doi.org/10.3390/s21020590
https://doi.org/10.3390/s21020590
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020590
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/590?type=check_update&version=2

Sensors 2021, 21, 590 2 of 17

and PulseSync [8]. In this method, one of the nodes in a network is selected as a reference
node, and the time of the reference node becomes a global network time. Hence, the
time synchronization messages are traversed from the reference node to all the nodes
in the network. The nodes receiving this synchronization message should estimate the
global network time because of the time gap between transmitting and receiving a time
synchronization message. Then, they update their own time information. Afterwards, the
updated synchronization messages are transmitted to their neighbor nodes. All nodes in
the network are synchronized by repeating this process. Various delays and errors occur in
the process of receiving and transmitting the synchronization messages. In FTSP, MAC-
layer timestamping is used to remove delays that occur when a synchronization message
passes through communication layers [9–11]. However, when transmitting a message to
a neighbor node, a hop delay is inevitable in every hop [12,13]. Hop delay is dependent
on the distance between nodes and the message processing time. As the maximum hop
count among nodes is high in a widely distributed network, hop delay remains the most
important issue in the reference node-based time synchronization method [14].

Another synchronization method is a consensus-based algorithm, where each node
exchanges synchronization messages with its neighbor nodes, and the synchronization
message contains the time information reflecting the time information of its neighbor
nodes [15]. Gradient Time Synchronization Protocol (GTSP) [16], Consensus-based Clock
Synchronization (CoSyn) [17], and Random Broadcast-based Distributed consensus clock
Synchronization (RBDS) [18] belong to the consensus-based synchronization algorithm.
GTSP achieves time synchronization by averaging the relative rate and offset among nodes.
Specifically, each node exchanges synchronization messages with its neighboring nodes
in every round and stores the received time information in a table. At the end of each
round, its time information is updated by averaging the rates and offsets stored in the
table. The repetition of this process results in the time synchronization among all the nodes.
However, if the nodes are deployed in a large area, the number of rounds required in
achieving the synchronization increases sharply [19,20]. Moreover, as the number of nodes
in a network increases, some nodes may malfunction due to hardware or software failure,
which deteriorates the performance of time synchronization.

Naturally, a time synchronization algorithm needs to have a fast convergence in
achieving consensus among nodes and to exclude malfunctioning nodes from the synchro-
nization process. In order to achieve these goals, the median value of the time information
of the nodes is adopted [21,22], because, in excluding outliers, a median—rather than an
average—is a better choice.

In this paper, for mobile ad-hoc networks (MANETs) [23,24], we propose a consensus-
based Median Kalman-filtering Time Synchronization (MKTS) scheme, which reduces the
convergence time of synchronization by rapidly spreading the time information extracted
from the median values of synchronization messages to an entire network [25]. Moreover,
the proposed scheme uses a Kalman filter [26–29] in processing the synchronization mes-
sages to effectively remove the errors occurring in the synchronization. Since the median
values may vary according to the location where each node is located, a Fast-median value
with a reduced regional dependence is proposed. Both the mobility of nodes and the failure
of nodes are considered to evaluate the performance of MKTS. The proposed algorithm
has an excellent performance in mobile environments. Simulation results show that the
proposed scheme has a fast convergence speed and robustness against its environmental
changes. Specifically, a joining of new nodes, a removal of existing nodes, and a failure of
some nodes rarely affect the performance of the proposed scheme. The target precision
level of MKTS is 20 µs for both the static and mobile scenarios, and the synchronization
criteria for other protocols are presented in [30,31].

The remainder of this paper is organized as follows: Section 2 describes the system
model and the process of MKTS synchronization algorithms. Section 3 compares the
performances of MKTS, FTSP, and GTSP in static and mobile environments with some

Sensors 2021, 21, 590 3 of 17

failed nodes. Section 4 discusses the evaluation results and a future research topic, and
Section 5 concludes the paper.

2. Proposed Time Synchronization Method
2.1. Clock Model

A hardware clock embedded into a node is expressed as Equation (1)

Hi(t) = hi × t + oi, (1)

where t is the actual time, hi is the rate of the hardware clock, and oi is the offset of the
hardware clock. The speed of the hardware clock has an error of |hi − 1|. In manufacturing
a clock counter, it is impossible to make an infinitely accurate one. An actual clock rate
will be a little bit faster or slower than a perfect clock. Similarly, the sensitivity of a clock
rate to ambient temperate cannot be perfectly regulated. Likewise, hi and oi are inherent
characteristics of the hardware of node i and cannot be read or modified by node i. Hence, a
logical clock is defined and adjusted to achieve synchronization among nodes. The logical
clock Li(t) of node i is described in Equation (2).

Li(t) = li Hi(t) + βi = lihit + lioi + βi, (2)

where li is the relative logical clock rate representing the relative rate ratio of the hardware
clock and the logical clock, βi is the logical offset of node i. Logical clock is adjusted by
updating li and βi. In Equation (2), xi = lihi is denoted as an absolute logical clock rate,
and when all the nodes have the same absolute logical clock rate, i.e., with N nodes in a
network and x1 = x2 = · · · = xN , the clock rate synchronization for the entire network
is achieved. In the case of GTSP, the update of xi requires the access to the unreadable
parameter hi. Accordingly, instead of directly updating xi, li is adjusted as follows:

li(tn+1)←
∑j∈Ni

xj(tn)

hi(tn)
+ li(tn)

|Ni|+ 1
, (3)

where tn is the time instant receiving a synchronization message from a neighbor node in
the nth round, Ni is a set of neighboring nodes of node i. In GTSP, the synchronization for
the offset uses a similar method of the rate synchronization as follows:

βi(tk+1)← βi(kk) +
∑j∈Ni

(
Lj(tk)− Li(tk)

)
|Ni|+ 1

. (4)

where Equations (3) and (4) are versions of the GTSP update schemes, rephrased.

2.2. MKTS Message and Table Structure

Each node has a unique ID, and the structure of the synchronization message of MKTS
is shown in Figure 1.

Figure 1. Median Kalman-filtering Time Synchronization (MKTS) packet structure.

The table structure for node i to store the information received from node j is shown
in Figure 2. Receiving a new message, a new row is added.

Sensors 2021, 21, 590 4 of 17

Figure 2. MKTS message table structure.

The ID of node j is stored at the first field. Hj(tn) is the hardware clock of node j
received in the nth round, and Hi(tn) is the hardware clock of node i measured at the
instant of receiving Hj(tn) in the nth round. Lj(tn) is the logical clock received from node j.
Li(tn) is the logical clock of node i measured at the instant of receiving Lj(tn) in the nth
round. Rij(tn) is the relative hardware clock rate in the nth round, which is the ratio of
hardware clock rate of node j to the hardware clock rate of node i. lj is the relative logical
clock rate of node j. Sj is the number of messages received from node j.

2.3. Relative Hardware Clock Rate

As shown in Equation (3),
xj(tn)

hi(tn)
is required in synchronizing the relative logical clock

rate li. Without access to the unreadable hi(tn),
xj(tn)

hi(tn)
can be obtained as follows [32]:

xj(tn)

hi(tn)
=

Lj(tn)−Lj(tn−1)
tn−tn−1

Hi(tn)−Hi(tn−1)
tn−tn−1

=
Lj(tn)− Lj(tn−1)

Hi(tn)− Hi(tn−1)
=

∆Lj

∆Hi
=

∆Hjlj

∆Hi
=

Hj(tn)− Hj(tn−1)

Hi(tn)− Hi(tn−1)
× lj.

(5)
Rij(tn) is expressed as Equation (6).

Rij(tn) =
hj(tn)

hi(tn)
=

Hj(tn)−Hj(tn−1)
tn−tn−1

Hi(tn)−Hi(tn−1)
tn−tn−1

=
Hj(tn)− Hj(tn−1)

Hi(tn)− Hi(tn−1)
. (6)

Hence,
xj(tn)

hi(tn)
= Rij(tn)lj is satisfied. In order to increase the accuracy of Rij(tn), the

errors caused by delay are reduced by adopting an integral filter [33], which takes the
weighted moving average for the continual input of Rij(tn). Since the weighted current
Rij(tn) is added to the previous average, the error can be filtered out. The filtered version
R′ij(tn) can be obtained as Equation (7).

R′ij(tn) =
min

[
Sj, 5

]
− 2

min
[
Sj, 5

]
− 1
× R′ij(tn−1) +

1
min

[
Sj, 5

]
− 1
× Rij(tn), Sj ≥ 2. (7)

If the maximum Sj is very high, the averaging is as good as being taken over by very
many previous Rij(tn)s, and the impact of the current Rij(tn) will be marginal. Accordingly,
a high Sj results in a good performance in eliminating error; however, too high Sj may
result in the deterioration of catching the actual changes of Rij(tn) like clock rate changes
from ambient temperature change, which should be reflected as not being filtered out. In
selecting the maximum Sj, FTSP, which adopts least square method using 4–8 previously
received messages is referred. Since the proposed method is focused on mobile scenarios,
relatively small Sj = 5 is selected as a maximum value.

2.4. Update Rule

When a node receives synchronization messages from its neighbor nodes, it may
update its time information to an average or a consensus value of the received time
information. Alternatively, it can be synchronized to the time of a specific node [34]. For
instance, if node i determines to follow the clock of node j, the absolute logical clock
rate and logical clock of node i must be modified to the values of node j. Accordingly,

Sensors 2021, 21, 590 5 of 17

xi(tn)← xj(tn) and Li(tn)← Lj(tn) should be achieved by adjusting li and βi as shown
in Equations (8) and (9).

li ← Rij(tn)× lj =
hj

hi
× lj =

xj

hi
, (8)

βi ← Lj(tn)− li × Hi(tn). (9)

In MKTS, each node updates its clock information by selecting a specific target node
and changing its time information following the selected one. The criterion of selecting the
target node is an integral part of the proposed scheme, and the detailed selection process is
described in what follows. Basically, the selected target node has a median logical clock
from among its neighboring nodes. This method plays an important role in excluding
outliers and expediates the convergence of the synchronization process. Kalman filtering
follows this median-based approach to reduce the errors caused by noise and delay. Using
both the median-based approach and Kalman filtering, a robust time synchronization is
achieved against the mobility of the nodes in a MANET.

However, directly adopting a medium of logical clocks from among neighbor nodes
can cause a problem. Since each node selects a medium node from among its own 1-hop
neighboring nodes, if the nodes of a MANET are distributed over a large area, the logical
clocks of the selected mediums will be different depending on the geographic location of
each node. Accordingly, oscillations may occur in exchanging the selected medium logical
clocks at each synchronization round. For instance, as shown in Figure 3, there are four
clusters represented as gray areas. The clusters with orange nodes and blue nodes have
a single intersection node colored purple. This purple node can be synchronized to the
cluster with orange nodes at one round, and it can be synchronized to other cluster with
blue nodes at some other round. This causes oscillation to the purple node. As many
rounds pass, this oscillation will be diminished; however, if the nodes are deployed over
a wide area, the convergence will take a much longer time. These oscillations hinder the
synchronization and slow down the convergence. Therefore, instead of adopting the logical
clock of the selected median node, Fast-median (F-Median) is proposed. F-Median selects
the fastest logical clock within a certain range, where the range is centered at the logical
clock of the medium node and has a predefined span. F-Median can reduce the oscillation
while excluding outliers.

Figure 3. Exemplified network with four clusters and oscillating nodes.

Figure 4 depicts F-Median in the nth synchronization round, where t(n) is the start
time of the nth synchronization round, black circles are the received logical clocks, and the
black squares are the estimated logical clocks at the synchronization round boundary.

Sensors 2021, 21, 590 6 of 17

Figure 4. Median value in synchronization round.

In order to select a node with a median logical clock from among neighboring nodes,
the exact logical clocks at the synchronization round boundary t(n + 1) should be esti-
mated. When node i receives a message from node j at tn belonging to the nth round, i.e.,
tn ∈ [t(n), t(n + 1)), the logical clock of node j at t(n + 1) can be estimated as follows:

Lj(t(n + 1)) = Lj(tn) + (Hi(t(n + 1))− Hi(tn))× Rij(tn) · lj. (10)

After the estimations, the neighboring nodes are sorted according to the estimated
logical clocks. Subsequently, a medium node is selected from the sorted neighboring nodes.
The process of selecting the median node can be expressed as follows:

LMed
i (t(n + 1)) = Medianv∈Ni (Lv(t(n + 1)), (11)

where LMed
i (t(n + 1)) is the median value selected by node i at t(n + 1), and Medianv∈Ni (·)

is a function that returns the median value from the 1-hop neighbor node set Ni of node i.
Then, a range centered at the selected logical clock with the predefined span is determined,
and the node with the fastest logical clock within that range is finally selected. The detailed
F-Median process is described in Algorithm 1.

Algorithm 1. Fast Median.

Input:
THRESHOLD: upper bound of F-Median range

Output:
1: for each j ∈ Ni
2: Lj(t(n + 1))← Lj(tn) + (Hi(t(n + 1))− Hi(tn))× Rij(tn)× lj
3: end
4: Sortv∈Ni (Lv(t(n + 1)))
5: M← arg Medianv∈Ni (Lv(t(n + 1))
6: for each j ∈ Ni
7: e← LM(t(k + 1))− Lj(t(k + 1))
8: if e < THRESHOLD
9: Fastest_Median_Value← j
10: break
11: end
12: end

Sensors 2021, 21, 590 7 of 17

Kalman filtering follows the F-Median process to remove the errors due to topology
change or randomness in transmission and reception. If node i selects node j as a F-Median
node, the input to the Kalman filter can be expressed as Equations (12) and (13) [35].

Tn = Li(tn)− Lj(tn), (12)

Dn =
xj(tn)−xi(tn)

xi(tn)
=

Lj(tn)−Lj(tn−1)

Li(tn)−Li(tn−1)
− 1

=
lj×(Hj(tn)−Hj(tn−1))×t
li×(Hi(tn)−Hi(tn−1))×t − 1 =

Rij lj
li
− 1,

(13)

where Tn is the logical clock difference between node i and node j in the nth round. Dn
is the ratio of the absolute logical clock rate difference between node i and node j to the
absolute logical clock rate of node i in the nth round. xn is a column vector having Tn and
Dn as elements as shown in (14).

xn =

[
Tn
Dn

]
. (14)

where xn is the observed values in the nth round in a real environment, and a model for
the environment needs to be designed. The parameters for the environment adopted in
MKTS are shown in Equations (15) and (16).

∆Hi = Hi(t(n + 1))− Hi(tn), (15)

An =

[
1 ∆Hi
0 1

]
, (16)

where An is the environment model in the nth round. The initial input vector is x0, and
the initial covariance of the input data is arbitrarily set to P0. From these initial values and
Equations (17) and (18), xp and Pp are obtained as follows:

xp = Anxn, (17)

Pp = AnPnAT
n + BnQBT

n , (18)

where xp is a predicted input data, and Pp is a predicted covariance of the input data. In
addition, xn is the actual input data of the nth round, and Pn is the covariance of the actual
input data. Bn is the transformation matrix of Q, where Q is the noise matrix generated in
the process of predicting the covariance shown as follows:

Q =

[
δ2 0
0 ϕ2

]
, (19)

where δ and ϕ are Gaussian noises. In order to deal with nonlinearity in the estimation,
instead of Equation (18), (20) can be used [36].

Pp = AnPnAT
n +

[
1 ∆Hi

2
0 1

]
Q
[

1 ∆Hi
2

0 1

]
∆Hi, (20)

where ∆Hi is obtained from Equation (15). Moreover, in Equation (20), the error occurring
in the process of predicting the covariance of a nonlinearly operating model is calculated
using the Riccati equation. Pp is used to calculate the Kalman gain using the relationship
between the actual and predicted data as follows:

Kn = PpUT
n

(
UnPpUT

n + R
)−1

, (21)

Un =
[

1 ∆Hi
]
, (22)

Sensors 2021, 21, 590 8 of 17

where Kn is the Kalman gain in the nth round, R is the Gaussian noise of the observed
data, and Un is a transformation matrix of measured values. The Kalman gain is used to
adjust the actual data and the predicted data, yn and yp, respectively, which are given by
Equations (23) and (24):

yn = Unxp + u, (23)

yp = Unxp, (24)

where u is noise generated in the process of measuring data. xn and Pn are updated
following Equations (25) and (26).

xn+1 = xp + Kn

(
yn − yp

)
=

[
Tn+1
Dn+1

]
, (25)

Pn+1 = (I−KnUn)Pp. (26)

After updating xn+1 and Pn+1, node i updates its own logical clock and relative logical
clock rate as follows:

Li(t(n + 1)) = Li(t(n + 1))− Tn+1, (27)

li = li × (Dn+1 + 1). (28)

The synchronization process is repeated every round to optimize the predicted data
and covariance and to remove errors caused by noise and delay. In practical protocols, the
synchronization round has the same period with beacon transmission period, and some
portion of the super frame is allocated to time synchronization message exchanges. A
flowchart showing the whole synchronization process is depicted in Figure 5.

Figure 5. Flowchart of the whole process of MKTS.

Sensors 2021, 21, 590 9 of 17

3. Performance Evaluation

The performance of MKTS is verified by comparing MKTS with other conventional
algorithms of FTSP and GTSP, under the environment considering mobile nodes and node
failures. The specific evaluation plan is to compare MKTS with FTSP and GTSP in static
and mobile environments, to compare MKTS with FTSP and GTSP by varying the speed of
nodes and the size of the network area, and finally, to evaluate MKTS with an increasing
number of malfunctioning nodes. In this comparative evaluation, FTSP and GTSP are
not the state-of-the-art techniques, however, they are still the representative techniques
for ad-hoc network time synchronization. Moreover, the proposed scheme focuses on the
mobility of nodes, which is not supported by most of the time synchronization techniques.
In addition, the most consensus-based algorithms follow the basic philosophy of GTSP,
i.e., each adjusts its own time information according to the average information of its
neighbor nodes. Accordingly, the contribution of the proposed scheme can be evaluated by
comparing with FTSP and GTSP. For the performance analysis, the network simulator OP-
NET [37] is used, which is an established commercial network simulator readily supporting
practical protocols like IEEE 802.11 and IEEE 802.15.4. In measuring the performance of
the proposed algorithm, Maximum Network Error Ae and Maximum Neighbor Error Ne
are used, where Ae is the largest logical clock difference among nodes, and Ne is the largest
logical clock difference between neighboring nodes in an entire network. Ae and Ne are
expressed as follows:

Ae = maxv,w∈N{|Lv(t)− Lw(t)|}, (29)

Ne = maxv,w∈Nv{|Lv(t)− Lw(t)|}, (30)

where N is the set of all nodes in a network, and Nv is the set of node v’s 1-hop neighbor
nodes. To compare the performance, the placement of the nodes is depicted in Figure 6.
The parameters of the simulations are summarized in Table 1.

Figure 6. Mesh and random topologies for node placement.

Table 1. System parameters.

Parameter Value

Number of Nodes 49
X Dimension 600 m
Y Dimension 600 m

Communication Range 110 m
Topology Grid/Random
Mobility Random Direction

Beacon Interval 30 s
Hardware Clock Drift −30~+30 (µs)

Hardware Clock Drift Variation −5~+5 (µs)

Sensors 2021, 21, 590 10 of 17

3.1. Performance Comparison with Conventional Methods

Figure 7 shows Ae over time while the nodes are static for a mesh (left) topology
and a random (right) topology. The criterion determining the achievement of the network
synchronization is set as 20 µs in Ae. As shown in this figure, FTSP has an advantage in
the synchronization speed because this scheme has the global reference clock to quickly
disseminate over the network. On the other hand, in GTSP, since it takes relatively many
rounds to calculate the average of the clocks of neighboring nodes, the convergence speed
is low. Even though MKTS adopts a distributed approach, its convergence speed is faster
than FTSP.

Figure 7. Network error in static environment for mesh (left) and random (right) topologies.

For the mesh topology, the convergence times, i.e., the times taken in achieving
Ae ≤ 20 µs, are in the increasing order of MKTS, FTSP, and GTSP. In addition, the aver-
age Aes for these schemes are 12.13 µs, 15.11 µs, and 16.26 µs, respectively. A similar
performance is maintained for the random topology. Note that MKTS achieves the best
performance both in the convergence time and Ae under the static environment.

Figure 8 shows Aes in a mobile environment, where the nodes move at a speed of 5 m/s
in random directions. As shown in this figure, GTSP fails in achieving the synchronization,
because the members of a set of neighboring nodes change too quickly for the averaged
clock value to converge. Since FTSP synchronizes with the clock of the reference node, even
when the network topology is changed, it can achieve synchronization. However, note that
the average Ae is 28.7 µs, indicating that the performance decreases by 76% compared to
the performance under static environment shown in Figure 7. The average Ae of MKTS is
15.73 µs, which is much better than FTSP. Moreover, the performance decrement of MKTS
compared with the static environment is 23%; therefore, it is clearly better than FTSP. In
general, under a mobile environment, the decrease in the synchronization performance is
inevitable because neighboring nodes may be changed in every round. However, MKTS
minimizes this performance degradation by effectively excluding outliers using F-Median
and by reducing clock estimation error using Kalman filtering.

3.2. Synchronization Performance with Varying Area Size and Node Speed

Figure 9 compares F-Median with the median-based approach by varying the speed of
the nodes, where the median approach selects a median node from among the neighboring
nodes without considering the Fast-logical clocks. Both the F-Median and the simple
median use Kalman filtering. This figure shows that, regardless of the speed of the nodes,
F-Median has a better performance than the median-based method. In the static case,
F-Median and the median-based method have the similar Ae deviations (orange line and
violet line, respectively); however, F-Median has 18% better Ae than the median-based
method. In particular, when the node speed is 5 m/s, F-Median has 49.3% lower deviation
and 27.4% lower Ae than the median-based approach.

Sensors 2021, 21, 590 11 of 17

Figure 8. Network error in mobile environment.

Figure 9. Network error with median and F-median in mobile environment.

Figure 10 shows Ae and Ne of MKTS in a mobile environment. This figure shows
that the synchronization performance is maintained even when the speed of the nodes
increases. If the size of the area, where the nodes are deployed, is not large, the increasing
the speed of the nodes can be beneficial in achieving the synchronization as shown in this
figure. However, if the area is very large or has no boundary, as the speed of the nodes
increases, the synchronization performance decreases. For instance, in an environment in
which there is no boundary of limiting the movement of nodes, the higher the speed of
random walking nodes, the more prone the radio link among the nodes is to be broken,
resulting in a decrease in the synchronization performance.

Figure 10. Synchronization error with varying node speed in mobile environment.

Ae and Ne for random walking without boundary is depicted in Figure 11. In this fig-
ure, the nodes are static until 600 s achieving time synchronization, after 600 s, the random

Sensors 2021, 21, 590 12 of 17

walk starts. Figure 11 shows that the slower the speed, the longer the synchronization is
maintained. In addition, if the speed of the nodes is high, the nodes within the synchro-
nization boundary quickly leave it, and the synchronization performance decreases rapidly.
Figure 12 shows the performance according to the various area size and the node speed. It
is inversely proportional to area size and proportional to speed. As the range of the nodes’
movement gets smaller, the amount of the exchanged time synchronization messages is
maintained at a high level. If the nodes are deployed over a bounded area, as the speed
of the nodes increases, the probability of a node getting out of the synchronization group
increases.

Figure 11. Network error with no boundary.

Figure 12. Network error with varying area size and node speed.

However, as shown in Figure 13, if the boundary is small and the speed of the nodes
high, the probability of a node entering the synchronization group also increases. On
the other hand, if the speed is low, the probability of a node getting out of the synchro-
nization group is decreased, but the probability of a node, which left the synchronization
group, re-entering the synchronization group decreases, resulting in the decrease in the
synchronization performance of the entire network.

3.3. Performance Analysis with Malfunctioning Nodes

As the number of nodes increases, the number of malfunctioning nodes may increase.
If a node exhibits abnormal behavior due to hardware or software failure, the network
synchronization performance is greatly reduced. MKTS improves the synchronization
performance by excluding malfunctioning nodes from the synchronization process.

Figures 14 and 15 show Ae and Ne when a single node exhibits abnormal behavior. In
this simulation, a single node starts to malfunction and to send corrupted time synchro-
nization messages at 900 s. In these figures, the synchronization performance of GTSP
deteriorates and fails to achieve time synchronization. FTSP converges but shows the in-
creased fluctuation during the simulation time. On the other hand, MKTS has very a small

Sensors 2021, 21, 590 13 of 17

fluctuation and successfully maintains the synchronization, even when a malfunctioning
node exists.

Figure 13. Network boundary.

Figure 14. Network error with a single malfunctioning node.

Figure 15. Neighbor error with a single malfunctioning node.

Figure 16 shows the performance of MKTS with varying speed of nodes while two
malfunctioning nodes exist. In this simulation, one node fails at 600 s and the other at 1500 s,
respectively. As shown in this figure, MKTS successfully achieves time synchronization
by excluding these two malfunctioning nodes from the synchronization process, and the
speed of the nodes hardly affects the synchronization performance. Figure 17 shows the
performance of MKTS with the increasing number of malfunctioning nodes. Performance

Sensors 2021, 21, 590 14 of 17

decrement is very small up to six malfunctioning nodes, i.e., 12.2% of the total nodes are
malfunctioning nodes.

Figure 16. Mobile network error with 2 malfunction nodes.

Figure 17. Network error with increasing malfunction nodes.

However, when more than six nodes are malfunctioning, the performance starts
to decrease. Even if malfunctioning nodes exist, MKTS recovers the synchronization
performance within a short period of time. Moreover, under the harsh environment, in
which 12.2% of the nodes are transmitting corrupted time information, MKTS maintains a
good time synchronization.

4. Discussion

The results of the performance evaluation clearly show the advantage of MKTS. Com-
pared with conventional time synchronization protocols for both the static and mobile
scenarios, the excellent performance is confirmed. In particular, the performance gap is
remarkable under the mobile scenarios because the proposed scheme maintains time syn-
chronization under the harsh condition that nodes move with high speed. Moreover, fast
convergence times are achieved by efficiently disseminating Fast-median values. Another
notable strength of MKTS is its robustness and resilience against environmental changes.
Even when 12.2% of malfunctioning nodes transmit corrupted time synchronization mes-
sages, MKTS quickly recovers time synchronization. These results support the working
hypotheses that Fast-median efficiently excludes outliers and Kalman filtering enhances
the synchronization.

A drawback of the proposed scheme is that MKTS has a difficulty in finding the
optimal Fast-median when there are a small number of nodes in a network. The purpose
of adopting median values is to exclude outliers from samples; however, when the number
of samples is small, the probability that outliers fall into the range, which is centered at a
median, increases. This decreases synchronization performance of MKTS; however, note

Sensors 2021, 21, 590 15 of 17

that other time synchronization scheme can also suffer from this problem if a small number
of nodes are scattered over a wide area.

For a future research topic extending the proposed scheme, a time-synchronization
protocol with an aerial relay node can be considered. The proposed scheme is targeting
for a MANET. When a group of nodes are connected to a base station via an aerial relay
node, the time synchronization will be an interesting and challenging issue extending
the proposed scheme. In this case, the protocol needs to optimize the operation of the
fast-moving aerial relay node, and time synchronization should take this feature into
account.

5. Conclusions

In this paper, we propose a time synchronization algorithm for mobile environments,
which removes outliers using the F-Median of synchronization messages and eliminates
synchronization errors using Kalman filtering. In the case of conventional FTSP, the
convergence speed of synchronization is fast, but performance decreases as the number of
hops increases. In GTSP, the effect of a large hop count is small, but the convergence speed
is low. In addition, when nodes in a network act abnormally due to a hardware or software
failure, the network synchronization performance is greatly reduced. MKTS shows the
fast convergence speed and an accurate synchronization performance. In addition, even if
some nodes behave abnormally in a network, these nodes are effectively excluded from
the synchronization process to maintain synchronization performance.

Author Contributions: Y.J. and T.K. (Taejoon Kim) conceived and designed the experiments; Y.J. and
T.K. (Taehong Kim) performed the network simulation; Y.J., T.K. (Taehong Kim), and T.K. (Taejoon
Kim) analyzed the data; T.K. (Taejoon Kim) acquired funding; Y.J. and T.K. (Taejoon Kim) wrote the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3068305).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rhee, I.-K.; Lee, J.; Kim, J.; Serpedin, E.; Wu, Y.-C. Clock Synchronization in Wireless Sensor Networks: An Overview. Sensors

2009, 9, 56–85. [CrossRef] [PubMed]
2. Akhlaq, M.; Sheltami, T.R. The Recursive Time Synchronization Protocol for Wireless Sensor Networks. In Proceedings of the

2012 IEEE Sensors Applications Symposium Proceedings, Brescia, Italy, 7–9 February 2012; pp. 1–6. [CrossRef]
3. Hasan, K.F.; Feng, Y.; Tian, Y. GNSS Time Synchronization in Vehicular Ad-Hoc Networks: Benefits and Feasibility. IEEE Trans.

Intell. Transp. Syst. 2018, 19, 3915–3924. [CrossRef]
4. Pande, H.K.; Srivastava, K.K.; Mangal, L.C. A Resource Allocation Protocol to Meet QoS for Mobile Ad-hoc Network (MANET)

in Tactical Scenario. In Advances in VLSI, Communication, and Signal Processing; Springer: Singapore, 2020; pp. 71–79.
5. Pliatsios, D.; Sarigiannidis, P.; Goudos, S.K.; Psannis, K. 3D Placement of Drone-Mounted Remote Radio Head for Minimum

Transmission Power under Connectivity Constraints. IEEE Access 2020, 8, 200338–200350. [CrossRef]
6. Zhang, Y.; Qiu, T.; Liu, X.; Sun, Y.; Zhao, A.; Xia, F. Mac-Time-Stamping-based High-accuracy Time Synchronization for Wireless

Sensor Networks. In Proceedings of the 2016 International Conference on Software Networking (ICSN), Jeju, Korea, 23–26 May
2016; pp. 1–4. [CrossRef]

7. Maroti, M. The Flooding Time Synchronization Protocol. In Proceedings of the 2nd ACM Conf. Embedded Networked Sensor
Systems, Baltimore, MD, USA, 3–5 November 2004.

8. Lenzen, C.; Sommer, P.; Wattenhofer, R. PulseSync: An Efficient and Scalable Clock Synchronization Protocol. IEEE/ACM Trans.
Netw. 2015, 23, 717–727. [CrossRef]

9. Lenzen, C.; Sommer, P.; Wattenhofer, R. Optimal clock synchronization in networks. In Proceedings of the 7th International
Conference on Embedded Networked Sensor Systems, SenSys 2009, Berkeley, CA, USA, 4–6 November 2009.

http://doi.org/10.3390/s90100056
http://www.ncbi.nlm.nih.gov/pubmed/22389588
http://doi.org/10.1109/SAS.2012.6166318
http://doi.org/10.1109/TITS.2017.2789291
http://doi.org/10.1109/ACCESS.2020.3034881
http://doi.org/10.1109/ICSN.2016.7501927
http://doi.org/10.1109/TNET.2014.2309805

Sensors 2021, 21, 590 16 of 17

10. Saïah, A.; Benzaïd, C.; Badache, N. CMTS: Consensus-based Multi-hop Time Synchronization protocol in wireless sensor networks.
In Proceedings of the 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 31 October–2 November 2016; pp. 232–236. [CrossRef]

11. Al-Kofahi, O. Evaluating time synchronization using application-layer time-stamping. In Proceedings of the 2016 IEEE Wireless
Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–6. [CrossRef]

12. Ren, W.; Zhao, Q.; Swami, A. On the Connectivity and Multihop Delay of Ad Hoc Cognitive Radio Networks. IEEE J. Sel. Areas
Commun. 2011, 29, 805–818. [CrossRef]

13. Yang, B.; Wu, Z.; Shen, Y.; Fan, Y. Multicast Delivery Delay in General Two-Hop Relay MANETs. In Proceedings of the
2017 International Conference on Networking and Network Applications (NaNA), Kathmandu, Nepal, 16–19 October 2017;
pp. 100–103. [CrossRef]

14. Su, X.; Hui, B.; Chang, K. Multi-hop clock synchronization based on robust reference node selection for ship ad-hoc network.
J. Commun. Netw. 2016, 18, 65–74. [CrossRef]

15. Liu, C.; Zhang, G.; Guo, W.; He, R. Kalman Prediction-Based Neighbor Discovery and Its Effect on Routing Protocol in Vehicular
Ad Hoc Networks. IEEE Trans. Intell. Transp. Syst. 2019, 21, 159–169. [CrossRef]

16. Sommer, P.; Wattenhofer, R. Gradient clock synchronization in wireless sensor networks. In Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks, San Francisco, CA, USA, 13–16 April 2009; pp. 37–48.

17. Sun, W.; Gholami, M.R.; Ström, E.G.; Brännström, F. Distributed clock synchronization with application of D2D communication
without infrastructure. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December
2013; pp. 561–566. [CrossRef]

18. Sun, W.; Ström, E.G.; Brännström, F.; Gholami, M.R. Random Broadcast Based Distributed Consensus Clock Synchronization for
Mobile Networks. IEEE Trans. Wirel. Commun. 2015, 14, 3378–3389. [CrossRef]

19. Phan, L.-A.; Kim, T.; Kim, T.; Lee, J.; Ham, J.-H. Performance Analysis of Time Synchronization Protocols in Wireless Sensor
Networks. Sensors 2019, 19, 3020. [CrossRef] [PubMed]

20. Maggs, M.K.; O’Keefe, S.G.; Thiel, D.V. Consensus Clock Synchronization for Wireless Sensor Networks. IEEE Sens. J. 2012, 12,
2269–2277. [CrossRef]

21. Sun, J.; Liao, H.; Upadhyaya, B.R. A robust functional-data-analysis method for data recovery in multichannel sensor systems.
IEEE Trans. Cybern. 2014, 44, 1420–1431. [CrossRef] [PubMed]

22. Singhal, D.; Garimella, R.M. Simple Median based information fusion in wireless sensor network. In Proceedings of the 2012
International Conference on Computer Communication and Informatics, Coimbatore, India, 10–12 January 2012; pp. 1–7.
[CrossRef]

23. Sahin, S.; Cipriano, A.M.; Poulliat, C.; Boucheret, M. On Cooperative Broadcast in MANETs with Imperfect Clock Synchronization.
In Proceedings of the MILCOM 2018–2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31
October 2018; pp. 1–7.

24. Bellavista, P.; Giannelli, C.; Lagkas, T.; Sarigiannidis, P. Multi-domain SDN controller federation in hybrid FiWi-MANET networks.
EURASIP J. Wirel. Commun. Netw. 2018, 2018, 103. [CrossRef]

25. Liu, Y.; Fan, X.; Chen, L.; Wu, J.; Li, L.; Ding, D. An Innovative information fusion method with adaptive Kalman filter for
integrated INS/GPS navigation of autonomous vehicles. Mech. Syst. Signal Process. 2018, 100, 605–616. [CrossRef]

26. Welch, G.; Bishop, G. An introduction to the Kalman Filter. In Proceedings of the Annual Conference on Computer Graphics &
Interactive Techniques (SIGGRAPH ’01), Los Angeles, CA, USA, 12–17 August 2001.

27. Wu, Z.; Li, J.; Zuo, J.; Li, S. Path planning of UAVs based on collision probability and Kalman filter. IEEE Access 2018, 6,
34237–34245. [CrossRef]

28. Song, W.; Wang, J.; Zhao, S.; Shan, J. Event-trigged cooperative unscented Kalman filtering and its application in multi-UAV
systems. Automatica 2019, 105, 264–273. [CrossRef]

29. Jondhale, S.R.; Deshpande, R.S. Kalman Filtering Framework-Based Real Time Target Tracking in Wireless Sensor Networks
Using Generalized Regression Neural Networks. IEEE Sens. J. 2019, 19, 224–233.

30. Sarvghadi, M.A.; Wan, T.-C. Message Passing Based Time Synchronization in Wireless Sensor Networks: A Survey. Int. J. Distrib.
Sens. Netw. 2016, 12, 1280904. [CrossRef]

31. Djenouri, D.; Bagaa, M. Synchronization Protocols and Implementation Issues in Wireless Sensor Networks: A Review. IEEE Syst.
J. 2016, 10, 617–627. [CrossRef]

32. Phan, L.; Kim, T.; Kim, T.; Lee, J.; Ham, J. Poster Abstract: A Fast Consensus-based Time Synchronization Protocol with Virtual
Links in WSNs. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 1019–1020. [CrossRef]

33. Ramanathan, R. Challenges: A radically new architecture for next generation mobile ad hoc networks. In Proceedings of the
11th Annual International Conference on Mobile Computing and Networking, MobiCom ’05, Cologne, Germany, 28 August–2
September 2005; pp. 132–139.

34. Sun, W.; Brännström, F.; Ström, E.G. Network Synchronization for Mobile Device-to-Device Systems. IEEE Trans. Commun. 2017,
65, 1193–1206. [CrossRef]

http://doi.org/10.1109/NCA.2016.7778623
http://doi.org/10.1109/WCNC.2016.7564909
http://doi.org/10.1109/JSAC.2011.110412
http://doi.org/10.1109/NaNA.2017.44
http://doi.org/10.1109/JCN.2016.000009
http://doi.org/10.1109/TITS.2018.2889923
http://doi.org/10.1109/GLOCOMW.2013.6825047
http://doi.org/10.1109/TWC.2015.2404917
http://doi.org/10.3390/s19133020
http://www.ncbi.nlm.nih.gov/pubmed/31323979
http://doi.org/10.1109/JSEN.2011.2182045
http://doi.org/10.1109/TCYB.2013.2285876
http://www.ncbi.nlm.nih.gov/pubmed/25051452
http://doi.org/10.1109/ICCCI.2012.6158913
http://doi.org/10.1186/s13638-018-1119-0
http://doi.org/10.1016/j.ymssp.2017.07.051
http://doi.org/10.1109/ACCESS.2018.2817648
http://doi.org/10.1016/j.automatica.2019.03.029
http://doi.org/10.1155/2016/1280904
http://doi.org/10.1109/JSYST.2014.2360460
http://doi.org/10.1109/INFCOMW.2019.8845142
http://doi.org/10.1109/TCOMM.2016.2639504

Sensors 2021, 21, 590 17 of 17

35. Mo, Y.; Liu, Z.; Zheng, L.; Deng, X. Kalman-consensus filter for time synchronization in wireless sensor networks. In Proceedings
of the IET International Conference on Information and Communications Technologies (IETICT 2013), Beijing, China, 27–29 April
2013; pp. 421–428. [CrossRef]

36. Oliveira-junior, E.M.; Souza, M.L.; Kuga, H.K.; Lopes, R.V. Clock synchronization via Kalman filtering. In Proceedings of the
Brazilian conference on dynamics, control and applications, Bauru, Brazil, 18–22 May 2009.

37. OPNET, Retrieved. Available online: https://www.riverbed.com/sg/index.html (accessed on 28 May 2019).

http://doi.org/10.1049/cp.2013.0080
https://www.riverbed.com/sg/index.html

	Introduction
	Proposed Time Synchronization Method
	Clock Model
	MKTS Message and Table Structure
	Relative Hardware Clock Rate
	Update Rule

	Performance Evaluation
	Performance Comparison with Conventional Methods
	Synchronization Performance with Varying Area Size and Node Speed
	Performance Analysis with Malfunctioning Nodes

	Discussion
	Conclusions
	References

