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Automatic and feature-specific prediction-related
neural activity in the human auditory system
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Prior experience enables the formation of expectations of upcoming sensory events. How-
ever, in the auditory modality, it is not known whether prediction-related neural signals carry
feature-specific information. Here, using magnetoencephalography (MEG), we examined
whether predictions of future auditory stimuli carry tonotopic specific information. Partici-
pants passively listened to sound sequences of four carrier frequencies (tones) with a fixed
presentation rate, ensuring strong temporal expectations of when the next stimulus would
occur. Expectation of which frequency would occur was parametrically modulated across the
sequences, and sounds were occasionally omitted. We show that increasing the regularity of
the sequence boosts carrier-frequency-specific neural activity patterns during both the
anticipatory and omission periods, indicating that prediction-related neural activity is indeed
feature-specific. Our results illustrate that even without bottom-up input, auditory predictions
can activate tonotopically specific templates.
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he human capacity to predict incoming sensory inputs

based on past experiences is fundamental to our ability to

adapt our behavior to complex environments. A core
enabling process is the identification of statistical regularities in
sensory input, which does not require any voluntary allocation of
processing resources (e.g., selective attention) and occurs more or
less automatically in healthy brains!. Analogous to other sensory
modalities®3, auditory cortical information processing takes place
in hierarchically organized streams along putative ventral and
dorsal pathways*. These streams reciprocally connect different
portions of auditory cortex with frontal and parietal regions®>.
This hierarchical anatomical architecture yields auditory cortical
processing regions sensitive to top-down modulations, thereby
enabling modulatory effects of predictions. Building upon this
integrated feedforward and top-down architecture, cortical and
subcortical regions seem to be involved in auditory prediction-
error generation mechanisms®’. A relevant question in this
context is to what extent prediction-related top-down modula-
tions (pre-)activate the same feature-specific neural ensembles as
established for genuine sensory stimulation.

Such fine-tuning of neural activity is suggested by frameworks
that propose the existence of internal generative models®-11,
inferring the causal structure of sensory events in our environ-
ment and the sensory consequences of our actions. A relevant
process to validate and optimize these internal models is to
predict incoming stimulus events by influencing the activity of
corresponding neural ensembles in relevant sensory areas.
Deviations from these predictions putatively lead to (prediction)
error signals, which are passed on in a bottom-up manner to
adapt the internal model, thereby continuously improving pre-
dictions? (for an alternative predictive coding architecture see!2).
According to this line of reasoning, predicted input should lead to
weaker neural activation than input that was not predicted, which
has been illustrated previously in the visual!l> and auditory
modality!4. Support for the idea that predictions engage neurons
specifically tuned to (expected) stimulus features has been more
challenging to address and has come mainly from the visual
modality (for review see ref. 1°). In an fMRI study, Smith and
Muckli showed that early visual cortical regions (V1 and V2),
which process occluded parts of a scene, carry sufficient infor-
mation to decode above-chance different visual scenes!®. Intri-
guingly, activity patterns in the occlusion condition are
generalized to a non-occlusion control condition, implying
context-related top-down feedback or input via lateral connec-
tions to modulate the visual cortex in a feature-specific manner.
In line with these results, it has been shown that mental preplay
of a visual stimulus sequence is accompanied by V1 activity that
resembles activity patterns driven in a feedforward manner by the
real sequence!. Beyond more or less automatically generated
predictions, explicit attentional focus to specific visual stimulus
categories also goes along with similar feature-specific modifica-
tions in early and higher visual cortices even in the absence of
visual stimulation!”. It has been proposed that expectations
increase baseline activity of sensory neurons tuned to a specific
stimulus!'®1%. Moreover, another study using magnetoencepha-
lography (MEG) and multivariate decoding analyses revealed how
expectation can induce a preactivation of stimulus template in
visual sensory cortex, suggesting a mechanism for anticipatory
predictive perception?0. Overall, for the visual modality, these
studies emphasise that top-down processes lead to sharper tuning
of neural activity to contain more information about the pre-
dicted and/or attended stimulus (feature).

Studies that look at whether predictions in the auditory domain
(pre-)activate specific sensory representations in a sharply tuned
manner are scarce especially in humans (for animal works see
e.g., refs. 21:22)). Sharpened tuning curves of neurons in A1 during

selective auditory attention have been established in animal
experiments?3, although this does not necessarily generalize to
automatically formed predictions. A line of evidence could be
drawn from research in marmoset monkeys, in which a reduction
of auditory activity is seen during vocalization?* (for suppression
of neural activity to movement-related sounds in rats in rats see
ref. 2%). This effect disappears when fed back vocal utterances are
pitch shifted?0, thereby violating predictions. Such an action-
based dynamic (i.e., adaptive) sensory filter likely involves motor
cortical inputs to the auditory cortex that selectively suppress
predictable acoustic consequences of movement?’. Interestingly,
even inner speech may be sufficient to produce reduced neural
activity, but only when the presented sounds match those
internally verbalized?8. A study using invasive recordings in a
small set of human epilepsy patients showed that masked speech
is restored by specific activity patterns in bilateral auditory cor-
tices2?, an effect reminiscent of a report in the visual modality!
(for other studies investigating similar auditory continuity illu-
sion phenomena see refs. 30-32), Although feature specific, this
“filling-in” type of activity pattern observed during phoneme
restoration cannot conclusively determine whether this mechan-
ism requires top-down input. In principle, these results could also
be largely generated via bottom-up thalamocortical input driving
feature-relevant neural ensembles via lateral or feedforward
connections. To resolve this issue, putative feature-specific pre-
dictions need to be shown also without confounding feedforward
input (i.e., during silence).

In high-resolution fMRI experiment, it was recently shown that
predictive responses to omissions follow a tonotopic organization
in the auditory cortex33. But following the notion that predictive
processes are also proactive in an anticipatory sense, the exact
timing of the effects provides important evidence on whether
predictions in the auditory system occur together with feature-
specific preactivations of relevant neural ensembles!>. To this
end, higher temporal resolution techniques (e.g., electro-
encephalography (EEG) or MEG) are needed.

The goal of the present MEG study was to investigate in
healthy human participants whether predictions in the auditory
modality are exerted in a carrier-frequency (i.e., tonotopic) spe-
cific manner and, more importantly, whether those predictions
are accompanied by anticipatory effects. For this purpose, we
merged an omission paradigm with a regularity modulation
paradigm (for an overview see ref. 34; see Fig. 1 for details). So-
called omission responses occur when an expected tone is
replaced by silence. his response has been frequently investigated
in the context of Mismatch Negativity (MMN?3°) paradigms,
which undoubtedly have been the most common approach of
studying the processing of statistical regularities in human audi-
tory processing>©=3%. This evoked response occurs upon a
deviation from a “standard” stimulus sequence, that is, a sequence
characterized by a regularity violation regarding stimulation
order. For omission responses (e.g, ref. 49), this order is usually
established in a temporal sense, allowing precise predictions of
when a tone will occur?! (for a study using a repetition sup-
pression design see ref. 42). The neural responses during these
silent periods are of outstanding interest as they cannot be
explained by any feedforward propagation of activity elicited by a
physical stimulus. Thus, omission of an acoustic stimulation will
lead to a neural response, as long as this omission violates a
regular sequence of acoustic stimuli, that is, when it occurs
unexpectedly. Previous works have identified auditory cortical
contributions to the omission response (e.g., ref. 42)). Interest-
ingly, and underlining the importance of a top-down input
driving the omission response, a recent DCM study by Chennu
et al.# illustrates that it can be best explained when assuming
top-down driving inputs in higher-order cortical areas (e.g.,
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Fig. 1 Experimental design. a Transition matrices used to generate sound sequences according to the different conditions (random (RD), midminus (MM),
midplus (MP), and ordered (OR)). b Schematic examples of different sound sequences generated across time. 10% of sound stimuli were randomly

replaced by omission trials (absence of sound) in each context

frontal cortex). While establishing temporal predictions via a
constant stimulation rate, we varied the regularity of the sound
sequence by parametrically modulating its entropy level (see e.g.,
refs. 444%), Using different carrier frequencies, sound sequences
varied between random (high entropy; transition probabilities
from one sound to all others at chance level) and ordered (low
entropy; transition probability from one sound to another one
above chance). Our reasoning was that omission-related neural
responses should contain carrier-frequency specific information
that is modulated by the entropy level of the contextual sound
sequence. Using a time generalization decoding approach?0, we
find strong evidence that particularly during the low entropy (i.e.,
highly ordered) sequence neural activity prior to and during the
omission period contains carrier-frequency specific information
similar to activity observed during real sound presentation. Our
work reveals how even in passive listening situations, the auditory
system extracts the statistical regularities of the sound input,
continuously casting feature-specific (anticipatory) predictions as
(pre-)activations of carrier-frequency specific neural ensembles.

Results

Single-trial neural activity contains carrier frequency infor-
mation. A crucial first step and the foundation to addressing the
question of whether carrier-frequency specific neural activity pat-
terns are modulated by predictions even in anticipatory or omission
periods is to establish that we can actually decode carrier-
frequencies during actual sound presentation. To address this
issue, we used the single trial MEG time-series data from the ran-
dom (high entropy) condition and trained a classifier (LDA) to
distinguish the four different carrier frequencies (Fig. 2a). Robust
above chance (p <.05, Bonferroni corrected, gray line) classification
accuracy was observed commencing ~30ms following stimulus
onset and peaking (~35%) at around 100 ms to gradually decline
until 350 ms. Interestingly, carrier-frequency specific information
remained above chance at minimum until 700 ms post-stimulus
onset (i.e., the entire period tested) meaning that this information
was contained in the neural data when new sounds were presented.
In this study, we focus on the data from the random sequence, since
this decoding was the basis (i.e., training data set) for all upcoming
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Fig. 2 Decoding carrier frequencies from random sound sequences. a Robust increase of decoding accuracy is obtained rapidly, peaking ~100 ms after
which it slowly wanes. Note however that significant decoding accuracy is observed even after 700 ms, i.e. likely representing a memory trace that is (re-)
activated even when new tones (with other carrier frequencies) are processed. b Source projection of classifier weights (relative change baseline (-100-0)
ms, 50% threshold) for an early (W1) and late (W2) reveals informative activity to mainly originate from auditory cortices, with a right hemispheric
dominance. During the later (W2) period informative activity spreads to also encompass e.g. frontal regions

analysis using a time-generalization approach, in which carrier-
frequency had to be decoded.

To identify the brain regions that provided informative activity,
we adapted a previously reported approach?’ that projects the
classifier weights obtained for the decoding of carrier frequency
from sensor to source space (Fig. 2b). Since later analysis using
the time-generalization approach pointed to a differential
entropy-level effect for early (50-125ms; W1) and late
(125-333 ms; W2) periods of the training time period (described
below and in Fig. 3), the projected weights are displayed
separately for these periods. For both time periods it is evident
that bilateral auditory cortical regions contribute informative
activity, albeit with a right hemispheric dominance. While this
appears similar for both time-windows, informative activity also
spreads to non-auditory cortical regions such as frontal areas
during the later (W2) period.

Overall, the analyses so far show that carrier-frequency specific
information can be robustly decoded from MEG, with informa-
tive activity originating (as expected) mainly from the auditory
cortex. Interestingly and beyond what can be shown by
conventional evoked-response analysis, carrier-frequency specific
information is temporally persistent, potentially reflecting a
memory trace of the sound that is (re-)activated when new
information arrives.

Modulations of entropy lead to clear anticipatory prediction
effects. An anticipatory effect of predictions should be seen as
relative increases of carrier-frequency specific information prior to
the onset of the expected sound with increasing regularity of the
sound sequence. To tackle this issue it is important to avoid
potential carry-over effects of decoding, which would be present, for
example, when training and testing on ordered sound sequences.
We circumvented this problem by training our classifier only on
data from the random sound sequence (see Fig. 2a) and testing it
for carrier-frequency specific information in all other conditions
using time generalization. The raw (i.e., grand averaged) condition-
and time-generalized results are displayed in Fig. 3a, b, and entropy-
dependent modulation of decoding accuracy in the pre-sound
(Fig. 3¢) and pre-omission period (Fig. 3d) can be readily appre-
ciated. A non-parametric cluster permutation test (Fig. 3¢, d) yields

a clear prestimulus effect in both cases confirming a linear increase
of decoding accuracy with a decreasing entropy level (pre-sound:
Peluster < 0.001; pre-omissions: peyster < 0.001). In both cases, these
anticipatory effects appear to involve features that are relevant at
later training time periods (~125-333 ms, W2; for informative
activity in source space see also Fig. 2b). The time courses of
averaged accuracy for this training time interval (shown in Fig. 3e:
analysis locked to sounds, Fig. 3f: analysis locked to omissions)
visualize this effect with a clear relative increase of decoding accu-
racy prior to expected sound onset in particular for the ordered
sequence. This analysis clearly underlines that predictions that
evolve during a regular sound sequence contain carrier-frequency
specific information that are preactivated in an anticipatory man-
ner, akin to the prestimulus stimulus templates reported in the
visual modality0.

Entropy-dependent classification accuracy of sounds. Accord-
ing to some predictive processing frameworks!?, predicted sounds
should lead to a reduced activation as compared with cases in
which the sound was not predicted. In the case that the activation
stems mainly from carrier-frequency specific neural ensembles, a
decrease of decoding accuracy with increasing regularity (i.e., low
entropy) could be expected. Using a time generalization
approach, we applied the classifier trained on the carrier-
frequencies from the random sound sequence (Fig. 2) to the
post-sound periods of the individual entropy conditions (see
grand-average time- and condition generalization results in
Fig. 3a). Our regression approach yielded a negative relationship
between decoding accuracy and regularity at ~100-200 ms post-
sound onset; however, this effect did not survive multiple com-
parison testing (pcuster = 0.12) (Fig. 3c). Also on a descriptive
level, this effect appeared not to be strictly linear, meaning that
our study does not provide strong evidence that predictions
reduce carrier-frequency specific information of expected tones.
Interestingly, a significant positive association (pgyster < 0.001) at
a later interval time period emerged, beginning at around 370 ms
post-sound onset and lasting at minimum until 700 ms (Fig. 3c).
Analogous to the aforementioned anticipation effect (and the
subsequently described omission effect), decoding accuracy
increased the more regular the sound sequence. However, this
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Fig. 3 Analysis for pre- and post-stimulus decoding using time-generalization of classifier trained on random sound sequences. a, b “Raw"” decoding time-
generalization maps (grand average across subjects), tested on sound- (@) and omission- (b) locked trials, in increasing entropy from top to bottom.
¢, d Regression results (sound left, omission right), using entropy level as the independent variable; red colors indicate increased decoding accuracy for
more regular sequences. t-values are thresholded at uncorrected p < 0.05. The areas framed in black are clusters significant at pcjuster < 0.05. e, f Decoding
accuracy for individual conditions averaged for training times between the dashed lines, testing on sound (left) and omission (right). ¢ Display of effects
pre- and post-sound, showing a clear anticipation effect and a late effect commencing after ~400 ms. The latter effect is more clearly visualized in (e).
Interestingly, different train times appear to dominate the anticipation and post-stimulus effects. d Display of effects pre- and post-omission, showing a
single continuous positive cluster. However, the actual t-values suggest temporally distinct maxima within this cluster underlining the dynamics around this
event. Analogous to sounds a clear anticipation effect can be observed, driven by increased pre-omission decoding accuracy for events embedded in
regular sequences (see f). A similar increase can be seen immediately following the onset of the omission which cannot be observed following actual sound
onset. Interestingly this increase is long lasting with further peaks emerging approximately at 330 ms and 580 ms

effect was most strongly driven by classifier information stem-
ming from earlier training time intervals (50-125ms, W1; see
Figs. 2b and 3e, left panel). This effect is in line with the pre-
viously described temporally extended effect for the decoding of
carrier frequency from random sound sequences and suggests
that carrier-frequency specific information is more strongly
reactivated by subsequent sounds when embedded in a more
regular sound sequence.

Entropy-dependent classification accuracy of sound omissions.
Our sound sequences were designed such that the onset of a
sound could be precisely predicted (following the invariant 3 Hz

rhythm), but the predictability of the carrier-frequencies was
parametrically modulated according to the entropy level. Fol-
lowing the illustration of anticipation-related prediction effects, a
core question of our study was whether we could identify carrier-
frequency specific information following an expected but omitted
sound onset. This is suggested by the grand-average time- and
condition-generalized decoding results time-locked to the omis-
sion onset shown in Fig. 3b. A nonparametric cluster permutation
test for the regression (Fig. 3d) yielded a single cluster that also
comprises the anticipation effect described above (pjyser < 0.001);
however—and in contrast to the analysis locked to sounds
(Fig. 3c)—a post-omission onset increase is clearly identifiable.
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Interestingly, also the post-omission effect was long lasting,
reaching far beyond the short interval of the omitted sound.
Figure 3f shows the decoding accuracy averaged over the W1 and
W2 training time intervals (see Fig. 2b), illustrating the enhanced
decoding accuracy especially for the ordered sequence particu-
larly pronounced for W2. Even though the entropy-driven effect
is clearly continuous, local peaks at ~90, 330, and 580 ms fol-
lowing the time of the (omitted) stimulation onsets can be
identified at a descriptive level. This shows that carrier-frequency
specific information about an anticipated sound is enduring, not
only encompassing prestimulus periods, but temporally persists
when the prediction of a sound presentation is violated.

Interindividual neural representations of statistical regularities
and their correlation with feature-specific predictions. Our
previous analyses established a clear relationship between
(anticipatory) predictions of sounds and the carrier-frequency
specific information contained in the neural signal. This was
derived by a regression analysis across conditions using the
entropy level as independent variable. An interesting follow-up
albeit exploratory question is whether interindividual variability
to derive the statistical regularity from the sound sequences
would be correlated with carrier-frequency specific information
for predicted sounds.

To pursue this question we first tested whether information
pertaining to the level of statistical regularity of the sequence is
contained in the single-trial level signal. Using all magnetometers
(i.e., discarding the spatial pattern) and a temporal decoding
approach showed that the entropy level of the condition in which
the sound was embedded could be decoded above chance from
virtually any time point (Fig. 4a, green curve). Given the block-
wise presentation of the conditions, this temporally extended

effect (p < 0.05, Bonferroni corrected, green horizontal line) is not
surprising. On top of this effect, a transient increase of decoding
accuracy following ~50-200 ms stimulus onset can be observed.
In order to identify potential neural generators that drive the
described effect, the trained classifier weights were projected in
the source space (see inset of Fig. 4a) analogous to the approach
described above. Since sensor level analysis suggested a
temporally stable (in the sense of almost always significant)
neural pattern, the entire 0-330 ms time period was used for this
purpose (gray line, inset of Fig. 4a). The peak informative activity
was strongly right lateralized to temporal as well as parietal
regions. Based on this analysis, we can state that information
about the regularity of the sound sequence is contained also at the
single-trial level and that temporal and parietal region may play
an important role in this process. We applied the classifier trained
on the sound presentations to the same omission periods, in
order to uncover whether the statistical pattern information is
also present following an unexpected omission (Fig. 4a, red
curve). Interestingly, in this case, a decrease of decoding accuracy
was observed commencing ~120ms after omission onset and
lasting for ~200 ms. During this brief time period the entropy
level could not be decoded above chance (Fig. 4a, red horizontal
line). This effect illustrates that an unexpected omission
transiently interrupts the processing of the statistical regularity
of the sound sequence. We also tested for a difference in accuracy
between sound and omission trials at each timepoint, which was
significant (p < 0.05, Bonferroni corrected, black horizontal line)
between ~30 ms and ~300 ms, again emphasizing the brevity of
this effect.

To test whether the interindividual variability in neurally
representing the entropy level is associated with carrier-frequency
specific predictions, we correlated average entropy decoding
accuracy in a 0-330 ms time window following sound onset with
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time-generalized decoding accuracy for carrier-frequency around
sound or omission onset separately for the early (W1) and late
(W2) training time-windows. A nonparametric cluster permuta-
tion test (Fig. 4b) shows for the early training time-window (W1)
a negative relationship (peuster = 0.02), meaning that participants
whose neural activity suggested a stronger representation of the
level of statistical regularity preactivate carrier-frequency specific
neural patterns to a lesser extent. It should be noted that the
overall entropy-related effect was driven more by the later
training-time window (W2), for which no correlation was
observed in the present analysis. Also, the correlation effect was
not found when locking the analysis to the omission onset, which
could either suggest a spurious finding or suboptimal power for
this effect, given the much lower number of trials for the
omission-centered time-generalized decoding. On a descriptive
(uncorrected) level positive correlations can be seen following
sound onset that are sequentially pronounced for early (W1) and
late (W2) training-time windows (pcyster = 0.062 and pyster =
0.096, respectively). Following the omission onset a late positive
correlation (pcyster = 0.033) was observed at ~500-600 ms for the
late training time-window (W2), meaning that the carrier-
frequency specific pattern of the omitted sound was reactivated
more during the ordered sequence for participants who showed
stronger encoding of the statistical regularity. Altogether, this
analysis demonstrates that the brain has a continuous representa-
tion of the magnitude of regularity of the sequence and that it is
modulated by the presence or (unexpected) absence of a sound.
Furthermore, some indications are present that suggest the
interindividual variability in this more global representation of
the input regularity could potentially influence the exertion of
carrier-frequency specific neural patterns preceding and following
sound, even though this connection would need to be followed up
in more targeted studies.

Discussion

In this study, we investigate neural activity during passive lis-
tening to auditory tone sequences by manipulating respective
entropy levels and thereby the predictability of an upcoming
sound. We used multivariate pattern analysis (MVPA) applied to
MEG data to first show that neural responses contain sufficient
information to decode the carrier-frequency of tones. Using
classifiers trained on random sound sequences in a condition-
and time-generalized manner, our main finding is that carrier-
frequency specific information increases the more regular (ie.,
predictable) the sound sequence becomes, especially in the
anticipatory and post-omission periods. This study provides
strong support that prediction-related processes in the human
auditory system are sharply tuned to contain tonotopically spe-
cific information. While the finding of sharp tuning of neural
activity is not surprising, given in particular invasive recordings
from the animal auditory cortex (e.g., during vocalizations, see
ref. 26; or shift of tuning curves following explicit manipulations
of attention to specific tone frequencies, see refs. 2348), our work
is a critical extension of previous human studies for which
tonotopically tuned effects of predictions has not been shown
thus far. Critically, given that omission responses have been
considered as pure prediction signals®#*°, our work illustrates
that sharp tuning via predictions does not require bottom-up
thalamocortical drive.

To pursue our main research question, that is whether single-
trial MEG data contains carrier-frequency specific information
following sound onset, we relied on MVPA applied to MEG
data®6>Y, Prior to addressing whether (anticipatory) prediction-
related neural activity contains carrier-frequency specific infor-
mation, an important sanity check was first to establish the

decoding performance when a sound was presented in the ran-
dom sequence. A priori, this is not a trivial undertaking given that
the small spatial extent of the auditory cortex”! likely produces
highly correlated topographical patterns for different pure tones
and that mapping tonotopic organization using noninvasive
electrophysiological tools has had mixed success (for critical
overview see e.g., ref. °2.). Considering this challenging back-
ground it is remarkable that all participants showed a stable
pattern with marked post-stimulus onset decoding increases after
~50 ms. While a peak is reached around 100 ms post-sound onset
after which decoding accuracy slowly declines, it remains above
chance for at least 700 ms. This observation is remarkable given
the passive setting for the participant (i.e., no task involved with
regards to sound input) and the very transient nature of evoked
responses to sounds that are commonly used in cognitive neu-
roscience. Our analysis shows that neural activity patterns con-
taining carrier-frequency specific information remain present for
an extended time putatively representing a memory trace of the
sound that is available when new acoustic information impinges
on the auditory system. This capacity is of key importance for
forming associations across events, thereby enabling the encoding
of the statistical regularity of the input stream?®3->4,

The previous result underlines that noninvasive -electro-
physiological methods such as MEG can be used to decode low-
level auditory features such as the carrier-frequency of tones. This
corroborates and extends findings from the visual modality for
which successful decoding of low-level stimulus features such as
contrast edge orientation have been demonstrated previouslyss.
However, the analysis leading to this conclusion included all
sensors and was, therefore, spatially agnosticc. We used an
approach introduced by Marti and Dehaene*’ to describe infor-
mative activity at the source level. Based on the subsequent
entropy-related effects identified in the time-generalization
approach, we focussed on an earlier (W1, 50-125ms) and a
later time-window (W2, 125-333 ms). While informative activity
was observed bilaterally especially in auditory regions along the
Superior Temporal Gyrus in both hemispheres, the pattern was
stronger on the right side. Furthermore, on a descriptive level,
informative activity was spread more frontally in the later time-
window, implying an involvement of hierarchically downstream
regions. Overall this analysis suggests that carrier-frequency
specific information mainly originates from within auditory
cortical regions, but that regions not classically considered as
auditory processing regions may contain feature-specific infor-
mation as well®.

This analysis was relevant not only as a sanity check, but also
because the trained classifiers were used and time-generalized to
all entropy levels. While this approach yielded highly significant
effects (see also below for discussion), decoding accuracy was not
high in absolute terms, especially for the anticipatory and omis-
sion periods. However, it should be noted that we refrained from
a widespread practice of sub-averaging trials°%>>, which boosts
classification accuracies significantly. When compared with cog-
nitive neuroscientific M/EEG studies that perform decoding on
the genuine single trials and focus on group-level effects (rather
than feature-optimizing on an individual level as in BCI appli-
cations), the strength of our effects are comparable (e.g,
refs. 47:56),

Using an MVPA approach with time-generalization allowed us
to assess whether carrier-frequency related neural activity prior to
or during sound/omission is systematically modulated by the
entropy level. When training and testing within regular (i.e., low
entropy) sound sequences, carry-over effects could be artificially
introduced that were erroneously interpreted as anticipation
effects: in these conditions the preceding sound (with its carrier-
frequency) already contains information about the upcoming
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sound. To circumvent this problem, we consistently used a
classifier trained on sounds from the random sequence, that is,
where neural activity following a sound is not predictive of an
upcoming sound, and applied it to all conditions. Using a
regression analysis, we could derive in a time-generalized manner
the extent to which carrier-frequency specific decoding accuracy
of the (omitted) sound was modulated by the entropy of the
sound sequence that the event was embedded in. The act of
predicting usually contains a notion of pre-activating relevant
neural ensembles, a pattern that has been previously illustrated in
the visual modality (e.g., ref. 1,20.). For the omission response, this
was put forward by Bendixen et al.4%, even though the reported
evoked response effects cannot be directly seen as signatures of
preactivation. Chouiter et al.”” also use a decoding approach, and
show an effect of frequency/pitch after expected but omitted
sounds, but do not look for an anticipatory effect. In line with this
preactivation view, our main observation was that carrier-
frequency specific information increased with the increased reg-
ularity of the tone sequence already in the pre-sound/omission
period, clearly showing sharp tuning of neural activity in antici-
pation of the expected sound. This effect was particularly pro-
nounced for later training time periods (W2; see Fig. 3) which
contained informative activity also beyond auditory regions (e.g.,
frontal cortex; see Fig. 2b). This finding critically extends the
aforementioned research already completed in the visual mod-
ality, that clearly established feature-specific tuning of antici-
patory prediction processes in the auditory system. Our finding
supports and enhances a recent high field fMRI study for the
auditory domain33, where the lower temporal resolution of the
technique could not permit the separation of pure prediction and
and preactivation effects.

According to most predictive coding accounts, expected stimuli
should lead to attenuated neural responses, which has been
confirmed for auditory processing using evoked M/EEG (e.g.,
ref. 14) or BOLD responses (e.g., ref. 13). Thus a reduction of
carrier-frequency specific information could also be expected
when sounds were embedded in a more ordered sound sequence.
While such an association was descriptively observed in early
training- (W1) and testing-time (<200 ms) intervals, it was sta-
tistically not significant (Fig. 3c). This observation may be
reconciled when dissociating the strength of neural responses
(e.g., averaged evoked M/EEG or BOLD response) from the
feature specific information in the signal, as has been described
for the visual modality: here reduced neural responses in the
visual cortex have been reported, while at the same time repre-
sentational information is enhanced!®. An enhancement of
representational—that is, carrier-frequency specific—information
was observed in our study at late testing-time intervals, following
~500 ms after sound onset. This effect was broad in terms of the
training-time window; however, it was largest for early intervals
(W1; see Fig. 3c). The late onset suggests this effect is a con-
sequence of the subsequent sound presentation, that is, a reacti-
vation of the carrier-frequency specific information within more
ordered sound sequences, which would be crucial in establishing
and maintaining neural representations of the statistical regularity
of the sound sequence. While this effect derived from time-
generalization analysis is not identical to the temporal decoding
result described above, it is fully in line with the result in that
feature-specific information is temporally persistent—even in this
passive setting—far beyond the typical time windows examined in
cognitive neuroscience.

Next to the anticipatory and post-sound period, we were also
interested in the strength of carrier-frequency specific informa-
tion following an omission. Since no feedforward activity along
the ascending auditory pathway can account for omission-related
activity, they have been considered to reflect pure prediction

responses’8. Suggestive evidence comes from an EEG experiment
(ref. 36, but see also ref. 37) in which sounds following button
presses with a fix delay could either be random or of a single
identity. The authors show evoked omission responses to be
sensitive not only to timing, but also to the predicted identity of
the stimulus. However, from the evoked response it is not pos-
sible to infer which feature-specific information the signal carries
(see comment above). Our result significantly extends this
research by illustrating that carrier-frequency specific information
increases following omission onset the more regular the sound
sequence is. Descriptively this occurs rapidly following omission
onset with a peak at ~100 ms; however, further peaks can be
observed approximately following the stimulation rate until at
least 600 ms. The late reactivations of the carrier-frequency spe-
cific information of the missing sound is in line with the tem-
porally persisting effects described above, pointing to an
enhanced association of past und upcoming stimulus information
in the ordered sequence. However, in contrast to the sound
centered analysis, the post-omission entropy-related effects are
mainly driven by the late training time-window (W2) analogous
to the anticipatory effect. Based on this temporal effect, we
speculate that while reactivation of carrier-frequency specific
information following sounds by further incoming sounds in an
ordered sequence engage hierarchically upstream regions in the
auditory system, omission-related carrier-frequency specific
activity engages downstream areas including some conventionally
considered non-auditory (e.g., frontal cortex).

While a predictive processing account appears most parsimo-
nious in explaining the observed findings, one concern could be
that adaptation could play a confounding influence. This seems
valid at first sight, given the unavoidable increased sequential co-
occurence of certain tones in establish a regularity pattern (note
that this, however, does not affect the trained classifiers which
were all established on the same random condition). For instance,
in this study, all transition probabilities across participants were
identical and could favor a spread of adaptation to tonotopically
neighboring regions®®. However, a pure adaptation account is
unlikely as this process would normally go along with reduced
activity that is maximal at the adapted sound frequency and
decreases with growing tonotopic distance (for a study in rats, see
ref. ©0). Also, an effect of adaptation would be most plausibly seen
after the actual sound onset; however, modulations of decoding
accuracy across entropy levels was weakest immediately after
sound onset or relatively late (see above). Nevertheless, the dif-
ferential influences of prediction vs adaptation would need to be
more systematically tested in the future, perhaps by randomizing
the off-diagonal transition probabilities.

The overall individual ability to represent statistical regularities
could have profound implications for various behavioral
domains®%. While the main analysis pertained to the decoding of
carrier-frequency specific (low-level) information, we also
addressed whether a representation of a more abstract feature
such as the sequence’s entropy level could also be decoded from
the noninvasive data. Functionally, extracting regularities requires
an integration over a longer time period and previous MEG
works focussing on evoked responses have identified in particular
slow (DC) shifts as reflecting transitions from random to regular
sound®!. This fits with our result showing that the entropy level of
a sound sequence can be decoded above chance at virtually any
time point, implying an ongoing (slow) process tracking regula-
rities that is transiently increased following the presentation of a
sound. Our across-participant correlation approach is suggestive
that indeed the individual’s disposition to correctly represent the
level of regularity is linked to pre- and post-sound/omission
engagement of carrier-frequency specific neural activity patterns.
While some open questions remain (e.g., the prestimulus
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discrepancy between sound and omission correlation patterns),
we consider this line of research very promising for future
research studies.

Taken together, the successful decoding of low- and high-level
auditory information underlines the significant potential of
applying MVPA tools to noninvasive electrophysiological data to
address research questions in auditory cognitive neuroscience
that would be difficult to pursue using conventional approaches.
In particular our approach may be a reliable and easy avenue to
parametrize an individual’s ability to represent statistical regula-
rities, without the need to invoke behavioral responses that may
be influenced by multiple non-specific factors. This could be
especially valuable when studying different groups for which
conventional paradigms that rely on overt behavior may be
problematic, such as children or various patient groups (e.g.,
disorders of consciousness).

In conclusion, predictive processes should (pre-)engage
feature-specific neural assemblies in a top-down manner. How-
ever, only little direct evidence exists for this notion in the human
auditory system??33. We significantly advance this state by
introducing a hybrid regularity modulation and omission para-
digm, in which expectations of upcoming carrier-frequency of
tones were controlled in a parametric manner. Using MVPA, our
results unequivocally show an increase of carrier-frequency spe-
cific information during anticipatory as well as (silent) omission
periods the more regular the sequence becomes. Our findings and
outlined approach holds significant potential to address in-depth
the further questions that surround the role of internal models in
auditory perception.

Methods

Participants. A total of 34 volunteers (16 females) took part in the experiment,
giving written informed consent. At the time of the experiment, the average age
was 26.6 + 5.6 SD years. All participants reported no previous neurological or
psychiatric disorder, and reported normal or corrected-to-normal vision. One
subject was discarded from further analysis, since in a first screening it was found
that she had been exposed to a wrong entropy sequence (twice MP and no OR).
The experimental protocol was approved by the ethics committee of the University
of Salzburg and was carried out in accordance with the Declaration of Helsinki. In
particular, written informed consent to take part in this study was obtained from all
participants at the beginning of the experiment.

Stimuli and experimental procedure. Before entering the MEG cabin, five head
position indicator (HPI) coils were applied on the scalp. Anatomical landmarks
(nasion and left/right pre-auricular points), the HPI locations, and around 300
headshape points were sampled using a Polhemus FASTTRAK digitizer. After a 5
min resting state session (not reported in this study), the actual experimental
paradigm started. The subjects watched a movie (“Cirque du Soleil: Worlds Away”)
while passively listening to tone sequences. Auditory stimuli were presented
binaurally using MEG-compatible pneumatic in-ear headphones (SOUNDPixx,
VPixx technologies, Canada). This particular movie was chosen for the absence of
speech and dialogue, and the soundtrack was substituted with the sound stimu-
lation sequences. These sequences were composed of four different pure (sinu-
soidal) tones, ranging from 200 to 2000 Hz, logarithmically spaced (that is: 200 Hz,
431 Hz, 928 Hz, 2000 Hz) each lasting 100 ms (5 ms linear fade in/out). Tones were
presented at a rate of 3 Hz. Overall the participants were exposed to four blocks,
each containing 4000 stimuli, with every block lasting about 22 min. Each block
was balanced with respect to the number of presentations per tone frequency.
Within the block, 10% of the stimuli were omitted, thus yielding 400 omission trials
(100 per omitted sound frequency). While within each block, the overall number of
trials per sound frequency was set to be equal, blocks differed in the order of the
tones, which were parametrically modulated in their entropy level using different
transition matrices®2. In more detail, the random condition (RD; see Fig. 1) was
characterized by equal transition probability from one sound to another, thereby
preventing any possibility of accurately predicting an upcoming stimulus (high
entropy). In the ordered condition (OR), presentation of one sound was followed
with high (75%) probability by another sound (low entropy). Furthermore, two
intermediate conditions were included (midminus and midplus, labeled MM and
MP respectively®2). The probability on the diagonal was set to be equiprobable
(25%) across all entropy conditions, thereby controlling for the influence of self-
repetitions. The experiment was programmed in MATLAB 9.1 (The MathWorks,
Natick, Massachusetts, U.S.A) using the open source Psychophysics Toolbox®3.

MEG data acquisition and preprocessing. The brain magnetic signal was
recorded at 1000 Hz (hardware filters: 0.1-330 Hz) in a standard passive magne-
tically shielded room (AK3b, Vacuumschmelze, Germany) using a whole head
MEG (Elekta Neuromag Triux, Elekta Oy, Finland). Signals were captured by 102
magnetometers and 204 orthogonally placed planar gradiometers at 102 different
positions. We use a signal space separation algorithm implemented in the Maxfilter
program (version 2.2.15) provided by the MEG manufacturer to remove external
noise from the MEG signal (mainly 16.6 Hz, and 50 Hz plus harmonics) and
realign data to a common standard head position (-trans default Maxfilter para-
meter) across different blocks based on the measured head position at the begin-
ning of each block®.

Data analysis was done using the Fieldtrip toolbox® (git version 20170919) and
in-house built scripts. First, a high-pass filter at 0.1 Hz (6th order zero-phase
Butterworth filter) was applied to the continuous data. Subsequently, for
independent component analysis, continuous data were chunked in 10 s blocks and
down-sampled at 256 Hz. The resulting components were manually scrutinized to
identify eye blinks, eye movements, heartbeat and the 16 and 2/3 Hz train power
supply artifacts. Finally, the continuous data were segmented from 1000 ms before
to 1000 ms after target stimulation onset and the artifactual components projected
out (3.0 £ 1.5 SD components removed on average per each subject). The resulting
data epochs were down-sampled to 100 Hz for the decoding analysis. Finally, the
epoched data was 30 Hz lowpass-filtered (6th order zero-phase Butterworth filter)
prior to further analysis. Following these preprocessing steps, no trials were
rejected®®.

Multivariate pattern analysis (MVPA). We used MVPA as implemented in
the MVPA-Light (https://github.com/treder/MVPA-Light, commit 003a7c)
package®7-98, forked and modified in order to extract the classifier weights
(https://github.com/gdemarchi/MVPA-Light/tree/devel)*”. MVPA decoding was
performed on single trial sensor-level (102 magnetometers) data using a time-
generalization® analysis.

Overall, three decoding approaches were taken. At first, in order to investigate
how brain activity is modulated by the different entropy levels (Entropy-level
decoding), we kept trials either with only sound presentation (removing omission
trials) or only omissions (discarding the sounds). We defined four decoding targets
(classes) based on block type (4 contexts: RD, MM, MP, OR). Sounds that were
preceded by a rare (10% of the time) omission were discarded, whereas all the
omissions were kept in the omission entropy decoding. Then, to test whether we
could classify carrier frequency in general (a.k.a. Sound-to-sound decoding), we
defined four targets (classes) for the decoding related to the carrier frequency of the
sound presented on each trial (4 carrier frequencies). In order to avoid any
potential carry-over effect from the previous sound, the classifier was trained only
on the random (RD) sounds. Also here the sounds preceded by an omission were
discarded. To avoid further imbalance, the number of trials preceding a target
sound were equalized, for example, the 928 Hz sound trials were preceded by the
same number of 200 Hz, 430 Hz, 928 Hz and 2000 Hz trials (N-1, N balancing).
Finally, in order to study whether omission periods contain carrier frequency
specific neural activity (Sound-to-omission decoding), omission trials were labeled
according to the carrier frequency of the sound which would have been presented.
As with the sound-to-sound decoding, the random sounds trials were used to train
the classifier, which was subsequently applied to a test set of trials where sounds
were not presented, that is, omissions, using the same balancing schemes as before.

Using a Multiclass Linear Discriminant Analysis (LDA) classifier, we performed
a decoding analysis at each time point around stimulus/omission onset. A five-fold
cross-validation scheme, repeated five times, was applied for entropy-level and the
random sound-to-sound decoding, whereas for the training on the RD sound—
testing on MM, MP, OR sounds as well as for the sound-to-omission decoding—no
cross-validation was performed, given the cross decoding nature of the latter
testing of the classifier. For the sound-to-omission decoding analysis, the training
set was restricted to random sound trials and the testing set contained only
omissions. In all cases, training and testing partitions always contained different
sets of data.

Classification accuracy for each subject was averaged at the group level and
reported to depict the classifier’s ability to decode over time (i.e., time-
generalization analysis at sensor level). The time generalization method was used to
study the ability of each LDA classifier across different time points in the training
set to generalize to every time point in the testing set. For the sound-to-sound
and sound-to-omissions decoding, time generalization was calculated for each
entropy level separately, resulting in four generalization matrices, one for each
entropy level. This was necessary to assess whether the contextual sound sequence
influences classification accuracy on a systematic level.

Decoding weights projection analysis. For relevant time frames the training
decoders weights were extracted and projected in the source space as follows. For
each participant, realistically shaped, single-shell headmodels® were computed by
co-registering the participants’ headshapes either with their structural MRI (15
participants) or—when no individual MRI was available (18 participants)—with a
standard brain from the Montreal Neurological Institute (MNI, Montreal, Canada),
warped to the individual headshape. A grid with 1.5 cm resolution based on an
MNI template brain was morphed to fit the brain volume of each participant.
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LCMV spatial filters were computed starting from the preprocessed data of the
training random sounds (for the sound-to-sound and sound-to-omission decod-
ing), or from all the sound or omission data (for the entropy decoding)’®. Common
practice in the field is to multiply the sensor level single-trial time-series by the
filter obtained above to create the so-called virtual sensors. Instead, we multiplied
the sensor level “corrected by the covariance matrix”7! decoding weights time-
series by the spatials filters to obtain a “informative activity” pattern®’. Baseline
normalization was performed only for visualization purposes (relative change of
100-ms pre-stimulus activity).

Statistical analysis. For the sound and omission decoding, we tested the depen-
dence on entropy level using a regression test (depsamplesregT in Fieldtrip). Results
for sounds and omissions were sorted from random to ordered respectively. In
order to account for multiple comparisons, we used a nonparametric cluster
permutation test’2 as implemented in Fieldtrip using 10000 permutations and a
P <0.025 to threshold the clusters, on a pseudo time-frequency (testing time vs
training time—accuracy 2D structure). Moreover, to investigate the temporal
dynamics of the single entropy levels in the regression, we ran the statistics above
averaging across two different time windows (“avgoverfreq’ in fieldtrip), namely an
early time window “W1” (from 75 ms to 125 ms post random sound onset in
the training set) for the sound-to-sound decoding, and a later window “W2” (from
125 ms to 333 ms).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The “mat” files containing the data shown in the figures, along with the MATLAB code
to recreate the plots, are available at Zenodo (https://doi.org/10.5281/zenodo.3268713).
In the same repository a downsampled (to 100 Hz) version of the raw data is present. The
original non resampled data (ca. 300 Gb) is available, upon reasonable request, from the
corresponding author.

Code availability
Data analysis pipeline is available at the corresponding author’s github repository
(https://github.com//gdemarchi)
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