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The extraordinary evolutionary suc-
cess of transposable elements

(TEs) invites us to question the nature
of the co-evolutionary dynamics between
TE and host. Although sometimes
assumed to be wholly parasitic, TEs have
penetrated and spread throughout eukar-
yotic genomes at a rate unparalleled
by other parasites. This near-ubiquity,
occurring despite the potentially delete-
rious effects of insertional mutagenesis,
raises the possibility that a counterbal-
ancing benefit exists for the host. Such a
benefit may act at the population level
to generate genomic diversity within a
species and hence greater adaptability
under new selective pressures, or at the
level of primary gain for the individual.
Recent studies have highlighted the
occurrence of retrotransposition events
in the germline and discovered a surpris-
ingly high rate of mobilization in somatic
cells. Here we examine the available
evidence for somatic retrotransposition
and discuss how this phenomenon may
confer a selective advantage upon an
individual or species.

Transposable elements are a prominent
feature of our genetic heritage. In addition
to providing nearly half of the human
genome,1,2 TEs have generated numerous
sequences that distinguish our DNA from
that of other primates and more distant
relatives.3,4 Whether these differences are a
cause or effect of evolution, and whether
TEs are parasitic or symbiotic mobile
genetic elements, is the subject of long-
term debate.5,6

Three retrotransposon families remain
mobile in the human genome: L1, Alu
and SVA.7,8 Of these, L1 is considered
the main driver of retrotransposition

(Fig. 1A). Proteins translated from its
two open reading frames mobilize L1
RNAs in cis9 as well as Alu, SVA and
other RNAs incorporating a polyA
tail in trans10-12 (Fig. 1D). Approximately
3,000 retrotransposons (~100 L1, ~3,000
Alu, , 100 SVA) are transposition-
competent per individual,13 in contrast to
the millions of immobile sequences pro-
duced by ancestral TEs.1

Other than a common pattern of near-
exclusion from exons,14 the genomic
distributions of L1, Alu and SVA are
markedly different. L1 sequences are
depleted in introns1 and very recent L1
insertions are more likely to be excluded
from protein-coding genes than older
insertions,14,15 suggesting that these events
are strongly selected against.16,17 By con-
trast, recent Alu insertions are almost
randomly distributed in the genome and
SVA insertions are enriched in protein-
coding genes.14 As noted above, the L1
machinery mediates L1, Alu and SVA
mobilization, implying that each family is
inserted in a similar genomic pattern and
then redacted from the genome by natural
selection depending on their impact. It is
also possible that insertion site preference
is modulated by unknown host factor
interactions specific to each family.

An obvious consequence of insertional
mutagenesis is genetic disease; TEs are
associated with more than 75 human
disorders.13,18 Likewise there are numerous
documented cases of alternative transcripts
and chimeric genes produced by TE inser-
tions, often leading to expression of a host
gene in a new spatiotemporal context19,20

(Fig. 1E). Several L1 sequence features,
including a long polyA tail and strong
internal 5' and 3' promoters19,21 can also
dramatically alter the expression of a host
gene in cases of intronic integration,17
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while the epigenetic marks associated
with L1 and other retrotransposons22 can
modify chromatin state at integration sites
and thereby drive rapid shifts in gene
expression (Fig. 1E).

Given the multiple routes by which
TEs can deleteriously alter the functional
landscape of a genome, it is perhaps
surprising that the global human popu-
lation presents such a large number of
dimorphic insertions.23 Recent studies
using high-throughput sequencing (for
reviews, see refs. 13, 24 and 25) have
yielded a wealth of new insertion sites in
healthy and diseased individuals, suggest-
ing the full catalog of dimorphic and
private insertions has been vastly under-
estimated and that roughly 1/20 live births
harbor de novo retrotransposition events.

Most of these new insertions are
thought to be neutral and are ultimately
lost or fixed through genetic drift. The
overall impact of the remaining insertions
is likely to be overwhelmingly deleterious,

raising the question of why retrotrans-
position is allowed to continue at an
apparently high rate. More effective TE
suppression would prevent harmful muta-
tions, both in the germline and during
somatic development.26 A model of
successful parasitism would suggest that
we have simply failed; that somehow
despite a clear selective advantage to the
host in silencing retrotransposons, L1 has
managed to evade all attempts to prevent
its activity. However, suppression of L1
has been effective during our recent
evolution: less than 0.002% of human
L1 copies are transposition-competent,
and even fewer are frequently active or
“hot”7,27. While the current state of L1
activity is a snapshot of a dynamic system,
this could nonetheless suggest that it is
evolutionarily advantageous to limit retro-
transposition but not to totally eradicate it.
For example, the South American rat
genus Oryzomys28,29 has won this evolu-
tionary arms race, apparently achieving L1

quiescence but, interestingly, this outcome
coincides with a notable increase in
karyotypic instability.30

This leads us to consider the position
that regulated germline retrotransposition
confers a benefit upon a host population.
L1 provides clues for how this system
may have co-evolved with the governing
transcriptional programs of the host.
Paradoxically, the canonical L1 promoter
has retained motifs necessary for its
transcriptional suppression in the germline
and throughout development (e.g., SOX2
binding sites31,32) while new, usually 5'
truncated, L1 insertions are rapidly inacti-
vated despite breaking free of the suppres-
sion inherent to the canonical L1
promoter33,34 (Fig. 1B and C). Thus,
L1 maintains its own suppression but
is not entirely silenced, leading to a
tolerable rate of insertional mutagenesis
while maintaining increased genomic mal-
leability and genetic diversity that may be
selected on when a population is strongly

Figure 1. L1 is the main driver of retrotransposition in human cells. (A) L1 structure. ORF1 encodes an RNA-packaging protein and ORF2 encodes a
protein (ORF2p) with endonuclease and reverse transcriptase domains.50,51 (B) Expression of L1 is limited by transcriptional repression and (C) post
transcriptional regulation. (D) L1 ORF1p and ORF2p form an RNP with a marked cis preference,9 but ORF2p can also mobilize other RNAs with a polyA tail
in trans. (E) Diverse effects of L1 insertional mutagenesis on gene expression. (F) L1 is known to be highly active during embryogenesis, and in neural
cells (G), resulting in somatic mosaicism. Somatic retrotransposition in other adult tissues may also occur.
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pressured (e.g., in the cases of pandemic or
famine). For example, an L1-mediated
TRIM5-CypA gene fusion35 following
the divergence of Old and New World
primates provides owl monkeys with HIV
resistance not seen in other New World
monkeys.

Nonetheless, a model founded exclu-
sively upon observations of germline retro-
transposition may be critically incomplete.
We propose that L1 activity during
ontogenesis36-38 (Fig. 1F and G) may serve
to accelerate TE and host co-evolution.
Recent reports suggest that the brain is
a hotspot of somatic mosaicism caused
by L1 mobilization during neurogen-
esis.31,39-41 If calculations of 80 somatic
L1 insertions per neuron, of which there
are ~1011 present in the human body,42 are
even approximately accurate,31 then a
single human individual may have more
somatic L1 insertions than the total
number of private germline L1 insertions
in the global population. Informing this
scenario further, we recently developed a
technology to map somatic L1 insertions
in human cells.39 Our principal conclu-
sions were that these events preferentially
impacted protein-coding genes expressed
in the brain, that the hippocampus—
as seen previously31—was particularly
enriched for somatic retrotransposition
and that neural cells indeed present43 a
remarkable degree of somatic genome
mosaicism. Despite this advance, numer-
ous questions are yet to be answered,
including (1) the timing of somatic L1
mobilization throughout life; (2) how
many events occur per individual, organ
or cell; (3) whether certain population

groups are particularly affected; (4) which
transcription factors govern L1 activation
in somatic cells other than neurons and (5)
whether the same rules that apply in germ
cells (e.g., a limited number of “hot”
donor elements and families7,27) also apply
to somatic cells.

Moreover, as somatic events are by
definition non-heritable, it is the propen-
sity for L1 mobilization, rather than its
consequences, on which natural selection
may apply. If true, this may suggest that
the brain is enriched for somatic mobi-
lization as an innocent bystander in an
evolutionary arms race occurring primarily
in the germline. A large percentage of
genes expressed in the brain are also
expressed in the testis (the “brains and
balls” phenomenon44), meaning that L1
transcription may be activated in somatic
cells as an accident of evolution. The
mutagenic effects of these insertions may
then be simply tolerated by somatic cells;
in addition to a reduction in impact due to
heterozygosity, each mutation is expected
to affect only a small sub-population of
mature cells.

Another, more striking, possibility is
that somatic retrotransposition confers
some primary gain upon the individual
host. As noted by others,45 Barbara
McClintock’s celebrated discovery of
transposition-derived kernel variegation
in maize46 was also the first description
of somatic mosaicism caused by a trans-
posable element. Singer et al.43 more
recently provided a compelling case for
the potential action of L1 in producing
somatic mosaicism in neural cells, result-
ing in greater genetic diversity and thus a

greater variety of behavioral phenotypes
in isogenic animals. As at the population
level, genetic diversity may be beneficial at
the cellular level. One classic example,
driven by RAG proteins domesticated
from an ancient transposon,47,48 is V(D)J
recombination, where somatic rearrange-
ments in immunoglobins and T-cell
receptors49 provide genetic diversification
crucial for the adaptive immune system.

The contribution of TEs to the fitness
and success of species may not be limited
to their well-documented effects on the
genome mediated through germline
retrotransposition. Their potential role in
driving genetic diversity both within and
between individuals adds yet another
layer to the complex relationship between
TEs and their hosts. Characterization
of the regulation and functional impact
of somatic retrotransposition is now
feasible,39 and may soon settle debate
on whether TEs are merely globally
successful parasites, or diverse genomic
symbiotes.
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