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Abstract

Introduction

Accurate mapping of spatial heterogeneity in tuberculosis (TB) cases is critical for achieving

high impact control as well as guide resource allocation in most developing countries. The

main aim of this study was to explore the spatial patterns of TB occurrence at district level in

Zimbabwe from 2015 to 2018 using GIS and spatial statistics as a preamble to identifying

areas with elevated risk for prioritisation of control and intervention measures.

Methods

In this study Getis-Ord Gi* statistics together with SaTscan were used to characterise TB

hotspots and clusters in Zimbabwe at district level from 2015 to 2018. GIS software was

used to map and visualise the results of cluster analysis.

Results

Results show that TB occurrence exhibits spatial heterogeneity across the country. The TB

hotspots were detected in the central, western and southern part of the country. These

areas are characterised by artisanal mining activities as well as high poverty levels.

Conclusions and recommendations

Results of this study are useful to guide TB control programs and design effective strategies

which are important in achieving the United Nations Sustainable Development goals

(UNSDGs).

Background

Most disease-related deaths recorded in developing countries are associated with commonly

occurring communicable diseases such as TB and Human Immunodeficiency Virus (HIV) [1,
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2]. The WHO African region contributed 24% of the estimated 10 million Mycobacterium
tuberculosis (M.tuberculosis) infections recorded globally in 2018 [3]. TB is an infectious bacte-

rial airborne disease caused by M. tuberculosis complex and ranks among the top 10 causes of

deaths in the world [3–5]. The disease is transmitted from person to person through breathing

air contaminated by the bacteria [1]. TB is ranked above HIV/AIDs as the leading cause of

death from a single infectious agent [6]. Most countries in sub-Saharan Africa (SSA) are char-

acterised by high TB incidence rates of up to 275 cases per 100,000 of the population [7]. In an

effort to reduce TB incidence, Zimbabwe adopted the global World Health Organization

(WHO) ‘End TB Strategy’ which aims to reduce annual TB-related deaths by 95% and TB inci-

dence by 90% at the end of 2035 compared to 2015 [3, 8]. This strategy is in line with United

Nations Sustainable Development Goals (UNSDGs) particularly SDG 3 which targets to end

the global TB epidemic by 2030 [9].

The success of national TB control programmes (NTP) in most parts of the developing

world particularly in Africa is hindered by failure to consider spatial heterogeneity in the dis-

tribution of the disease [10]. Without evidence of fine scale spatial heterogeneity in the occur-

rence of the disease [11], uniform interventions are implemented across different settings by

NTP. Thus, a better understanding of the spatial epidemiology of TB may guide policy makers

in formulating effective prevention and control strategies [12–14]. For instance, the identifica-

tion of TB clusters and hotspots provides the basis for targeted control of the disease as well

optimizing resource allocation [10]. This is particularly important in resource limited coun-

tries such as Zimbabwe where there is need to prioritise allocation of resources by focusing on

areas with the highest disease burden as they have the greatest need. Therefore, this study

hypothesises that effective management of communicable diseases such as TB primarily

depends on accurate detection and mapping of spatial heterogeneity in the occurrence of the

disease. Achieving TB targets and goals at national or global scales require an understanding

of the spatial pattern of the disease which acts as a preamble to developing effective strategies

aimed at reducing new infections.

In the context of Zimbabwe, most research on TB has been largely limited to trend analysis

of prevalence of the disease. For example, studies have focused on the prevalence of TB in Zim-

babwe resulting from the economic crisis of 2008 [15] including the prevalence of drug resis-

tant TB using non-spatial statistical analysis [16]. Other studies have focused on developing

strategies to control TB such as the use of directly observed treatment (DOT) [17–19] while

others assessed factors influencing adherence to TB treatment [20]. Although these studies

have provided valuable insights in understanding risk factors of TB occurrence, there is limited

application of spatial analysis particularly in detecting hotspots and cold spots of TB especially

in Zimbabwe. This is despite the fact that GIS-based spatial analysis combined with spatial sta-

tistics are indispensable tools for supporting surveillance and control of most diseases in the

world [21–23].

To date, GIS and spatial statistics have been applied to understand patterns of TB occur-

rence in several countries with different environmental settings [6, 7, 13, 22, 24, 25]. These

studies have generated important information about the distribution of the disease and its

transmission patterns. However, the major limitation of these studies is that they are biased

towards smaller spatial scales such as a single urban area over short temporal durations [14,

26]. By focussing on smaller spatial scales, these studies fail to capture the spatial pattern of TB

at a spatial scale that is relevant for TB programming, for example district scale. The district is

the spatial epidemiological administrative unit at which TB interventions and control are

planned in Zimbabwe [27]. In this regard, spatial analysis becomes relevant when the spatial

unit at which TB data is analysed represents the expected epidemiological dynamics in the

country. Thus, it is important to fully understand the spatial heterogeneity in the occurrence
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of TB at large spatial scales such as the district level to inform targeted public health response,

which is regarded as one of the most effective approaches in disease control [28].

Although GIS and spatial statistics have been successfully applied to identify TB hotspots

and clusters, most of these studies have applied either of these techniques in isolation despite

their complementarity as well as their potential to reduce uncertainties associated with adop-

tion of a single method to guide control interventions [29]. This limitation calls for the adop-

tion of multiple cluster detection methods as this is critical in the detection of truly

representative high-risk areas. The application of multiple techniques is increasingly recom-

mended in spatial epidemiological studies to eliminate the limitations of a single method in

disease hotspot detection [30–32]. This study therefore aimed at characterising the spatial pat-

tern of TB hotspots and clusters using geospatial techniques and spatial statistical tools based

on TB notification data recorded at district level from 2015 to 2018 in Zimbabwe.

Methods

Study area

The study was conducted in Zimbabwe located in southern Africa between latitudes 15.5˚ and

22.5˚ S and longitudes 25˚ and 33˚E [33]. Zimbabwe is characterized by a subtropical climate

with distinct seasons [34]. The country is divided into ten administrative provinces and sixty-

six (66) districts (Fig 1A). The total human population was estimated at 14.64 million in 2019

https://data.worldbank.org [35]. Of the 14.64 million, 67% of the population resides in rural

areas. The greater proportion of the population is at risk from the three top killer diseases i.e.,

HIV, TB and malaria. A network of health infrastructure has been constructed to provide

health services across the country (Fig 1B)

Data sources

TB notification data. Aggregated data on TB notification from 2015 to 2018 were

obtained from the Ministry of Health and Child Care (MOHCC) head office in Zimbabwe.

The country has a well-established WHO-recommended directly observed treatment, short-

course (DOTS)-based national TB programme (NTP) in which TB treatment services are inte-

grated within the general primary health care delivery system [36]. The health care system

includes rural hospitals, district, provincial and mission hospitals (Fig 1B). TB is a notifiable

disease in Zimbabwe hence a person with TB is required by law to report to the nearest health

centre for treatment due to the infectiousness of the disease. The assumption in this study was

that every health facility is manned by well trained health personnel who can accurately test

for TB. The data used in this study are aggregated district totals from the rural health centres

(RHC/clinics) and thus did not include the physical address of the patients [37]. The diagnosis

of TB in Zimbabwe follows national guidelines and is mostly based on chronic cough, or sug-

gestive clinical symptoms (fever, night sweats, weight loss), and positive sputum smears and/

Fig 1. a) Location of the study area including the administrative Provinces and districts and b) Spatial distribution of

health facilities where TB cases were recorded.

https://doi.org/10.1371/journal.pone.0249523.g001
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or chest X-Ray [15] including bacteriological confirmation using Gene Xpert [38]. After TB

diagnosis is completed at each health facility, heath workers complete notification forms and

patient treatment cards for all recurrent patients. The notification information includes diag-

nosis, patient category, treatment regimen and monitoring indices [39]. This information is

then entered into the DOTS register at each facility and later uploaded into the District Health

Information Management System (DHIS 2) [38]. In this study, a patient with TB relapse was

considered to belong to any of the following categories: treatment after failure, treatment after

default or retreatment based on the WHO TB case definition [40]. A relapse may also be a

patient who completed treatment but shows smear-positive symptoms while patients treated

after failure represent those who failed first line treatment. In addition, patients who default

from treatment and present again with smear-positive pulmonary TB (PTB) are classified as

treatment after default while retreatment other refers to all other recurrent TB cases [40]. Since

the study used anonymized data abstracted from district registers there was no need for ethics

approval or informed patient consent. However, permission to use the routinely collected data

was obtained from the NTP under the Ministry of Health and Child Care.

Population data

Population data used in this study were obtained from the Zimbabwe Statistics Agency (ZIM-

STAT) based on the 2012 population census as well as from projections for the years 2015 and

2018. The 2015–2018 population figures were obtained using a medium scenario based on the

projected annual growth rate of 1.1% [41]. Population projection data were used for the years

2015–2018 because in Zimbabwe, a national population census is conducted after every 10

years hence the population of intercensal years is estimated based on the projected growth

rate. The population projections were carried out assuming geometric growth in the popula-

tion [41].

Data analysis

Global autocorrelation of TB cases. The aggregated TB notification data at district level

were used to calculate TB incidence by dividing the total TB notification for each district for a

particular year by the projected population of that given year before multiplying by 100, 000.

This gives a TB incidence per 100,000 of the population. The level of spatial clustering of TB

cases at district level was examined by applying spatial autocorrelation using global Moran’s I
[42] statistic with row standardized inverse distance weight matrices. The technique tests

whether there is any systematic pattern in the distribution of TB notifications among districts

of Zimbabwe as opposed to being randomly distributed. The index ranges from -1 to +1 with a

score of zero indicating no clustering while a positive value suggests that the distribution of TB

cases in neighbouring districts is more spatially aggregated than a random pattern [43, 44]. In

contrast, a negative value suggests dispersion of TB cases at the district level. Dispersion of TB

cases means that districts with similar TB cases are actually less likely to be located near each

other [45]. The TB cases and the projected population were spatially joined to the geometry of

districts in a GIS for mapping using the spatial join function in Arcmap 10.3 [46].

Local spatial clusters of TB cases. Global techniques of spatial autocorrelation such as

the Moran’s I can successfully detect spatial clustering, but they fail to specify the location of

the clusters [47]. Therefore Getis-Ord Gi
�

was used to examine where TB cases formed statisti-

cally significant local aggregation in geographic space [48, 49]. The scan statistic method by

Kulldorff (SaTScan 9.6) [50] was used to further detect the location as well as extent of TB clus-

tering across districts of Zimbabwe. The following sections outline how each of these methods

were implemented to detect clustering of TB cases at district level.
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Detecting local spatial clusters using Getis-Ord Gi
�

. The Getis-Ord Gi
� was used to

obtain additional information on the spatial pattern of TB such as the intensity and stability of

core hotspot or coldspot areas [48]. The Getis-Ord Gi� method considers each district in the

context of neighbouring districts which suggests likelihood of spatial autocorrelation among

neighbouring districts [48, 49]. The conceptualization of spatial relationships was based on

contiguity edges corners (also referred to as the Queen’s case) available in ArcGIS 10.1.3 soft-

ware where districts that share an edge or corner were considered as neighbours. The Queen’s
case was adopted to analyse spatial adjacency relationships since it compensates for the irregu-

lar size and shape of the districts [51] and is most ideal when modelling contagious diseases

such as TB [46]. Based on the neighbours of a district, the ratio of the local sum of TB cases

within neigbouring districts was compared to the sum of TB cases in the whole study area.

Where the local sum of TB cases was significantly different from the expected local sum, and

that difference was too large to be the result of random chance, the result was regarded as sta-

tistically significant based on the Z-score [52].

Since the Getis-Ord Gi
� considers neighbouring districts, the results are likely to be corre-

lated hence the need to account for multiple testing and spatial dependency to accurately

detect the pattern of TB [53]. Spatial dependence arises from the geometric relationship

among districts that share a common boundary in addition to the TB cases recorded in neig-

bouring districts. Although the Bonferron method is most widely used to account for multiple

testing and spatial dependency, it has a limitation of being conservative [53]. To overcome this

limitation, the false discovery rate (FDR) method available in ArcGIS 10.3.1 was applied in this

study. The FDR correction accounts for multiple testing and spatial dependency by controlling

for the average rate that identified hotspots are truly significant [54]. This method has been

shown to accurately evaluate occurrence of hotspots [55].

The detected significant hotspots/coldspots imply high/low TB cases in a particular district

are surrounded by districts with high/low TB cases, respectively [48, 56]. To classify a district

as a hotspot, a threshold Z-score of> 1.96 and a P-value of< 0.05 were considered [12]. Dis-

tricts with Z-scores between -1.96 and +1.96 were considered as having non-significant clus-

ters while those with Z-scores <-196 were classified as coldspots.

The Getis-Ord Gi
� takes the form;

G�i ðdÞ ¼

X

j
wijðdÞXj � wi

�X
�

S� ½ðnS1i
�Þ � wi

�2�=ðn � 1Þ
� �

1=2

ð1Þ

where:

Xj = TB Case for district j
Wij = spatial weights between district i and j
n = total number of districts

Wij (d) = spatial weights vector with values for all districts j within distance d of district i

Wi
� = sum of weights

S1i
� = sum of squared weights

s� = standard deviation of data cells

Detecting local spatial clusters using SaTscan. The scan statistic method developed by

Kulldorff (SaTScan 9.6) [50] was applied to detect the spatial pattern of TB at the district level.

The method has been widely used for detecting spatial clusters of diseases in different environ-

mental settings [57–59]. Purely spatial analysis based on the discrete poisson method was

applied to detect clusters of varying sizes at different locations including their relative risk

(RR) and a significance value generated using Monte Carlo Simulations [60]. The relative risk

for each cluster was calculated by comparing the observed and expected TB cases in each

PLOS ONE Spatial patterns of pulmonary tuberculosis (TB) cases

PLOS ONE | https://doi.org/10.1371/journal.pone.0249523 April 8, 2021 5 / 15

https://doi.org/10.1371/journal.pone.0249523


circular window resulting in a log likelihood ratio [61]. In this study, the number of TB cases

aggregated at district level, the projected population and the centroid coordinates of each dis-

trict were used as input files. The discrete Poisson model which assumes that the number of

TB cases in each district followed a Poisson distribution with a known population at risk was

applied to detect significant TB clusters. The population at risk for each of the four years was

derived from population projections based on the 2012 census. The Gini coefficient [62] was

used to determine the maximum reported cluster size as a percentage of the population for the

respective years (Table 1). For the four years, the maximum reported cluster size ranged from

6–20% of the population at risk.

The Gini coefficient is an intuitive way to evaluate the degree of heterogeneity among a col-

lection of clusters [62].

Results

The spatial distribution of TB notification rates in Zimbabwe at district level from 2015 to

2018 is illustrated in Fig 2. The TB notification is relatively higher in the central and southern

part of the country than in the east and north western regions. In fact, across all the years con-

sidered in this study, TB notification was consistently high in the central and southern regions.

The TB notification was high in Beitbridge, Buhera, Chirumhanzu, Gwanda, Hwange, Mwe-

nezi and Sanyati districts (Fig 2).

The results of Moran’s I analysis showed a strong positive spatial autocorrelation (P< 0.05)

across all the four years from 2015 to 2018. Specifically, results show that the Moran’s index

was 0.173, 0.140, 0.243 and 0.032 for 2015, 2016, 2017 and 2018 respectively. The significant

positive spatial autocorrelation indicates that the distribution of TB cases was more spatially

clustered than would be expected in a random process for each year across the districts of

Zimbabwe.

Results of hotspot analysis

Results of hotspots analyses using local Getis Ord Gi
� after applying the false discovery rate are

illustrated in Fig 3. The results show that significant TB hotspots (Z-score>1.96) are character-

istic of the central, southern and western part of the country. These hotspots covered most

urban areas and districts characterised by both formal and informal mining activities such as

Kwekwe, Mhondoro-Ngezi and Chegutu (Fig 3). Over the study period, Chegutu, Kwekwe

and Mhondoro-Ngezi and were persistently characterised by significant hotspots (Fig 3). Most

of these districts in the centre of the country lie along the Great Dyke of Zimbabwe where

small scale artisanal miners predominate. While hotspots of TB were observed in the central

and southern part of the country the majority of the county was characterised by non-signifi-

cant TB hotspots (Z-score<1.96) across the four years (Fig 3).

Table 1. Maximum reported cluster size (MRCS) from 2015–2018 in Zimbabwe determined using the Gini

coefficient.

Year % of the Population Optimal Gini Coefficient

2015 6 0.2784

2016 10 0.1956

2017 10 0.1949

2018 20 0.2179

https://doi.org/10.1371/journal.pone.0249523.t001
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Results of cluster detection using SaTscan

The TB epidemic in Zimbabwe is characterised by geographically distinct clusters across the

study area (Fig 4). Using spatial analysis, different clusters were identified for each year with

the year 2015 having the highest number of clusters centred on specific districts (Fig 4). In gen-

eral, the pattern of TB occurrence exhibits stability or persistence for some regions e.g., central

and southern regions which are characterised by significant clusters in each year considered in

this study. Overall, 25 significant clusters (P < 0.001) were detected and their characteristics

are summarised in Table 2.

The summary of TB clusters detected using the Gini coefficient and their characteristics

illustrate that the most likely cluster with the highest relative risk was detected in 2015 while

the lowest relative risk was recorded in 2018 (Table 2).

Discussion

Results of this study indicated that TB exhibits spatial heterogeneity as indicated by the occur-

rence of spatial clusters as well as hotspots of the disease in specific districts. The identification

of clusters and hotspots in similar locations by the two approaches adopted here i.e., SaTscan

Fig 2. Spatial distribution of TB notification per 100,000 of the population at district level in Zimbabwe for (a) 2015,

(b) 2016, (c) 2017 and (d) 2018.

https://doi.org/10.1371/journal.pone.0249523.g002

Fig 3. Spatial distribution of TB hotspots in Zimbabwe at district level for (a) 2015, (b) 2016, (c) 2017 and (d) 2018.

https://doi.org/10.1371/journal.pone.0249523.g003

PLOS ONE Spatial patterns of pulmonary tuberculosis (TB) cases

PLOS ONE | https://doi.org/10.1371/journal.pone.0249523 April 8, 2021 7 / 15

https://doi.org/10.1371/journal.pone.0249523.g002
https://doi.org/10.1371/journal.pone.0249523.g003
https://doi.org/10.1371/journal.pone.0249523


and Getis Ord Gi
�statistic suggest that they are viable and robust options for identifying and

detecting areas of unusually high TB occurrence [12]. This demonstrates the advantages of uti-

lising more than one spatial technique to understand spatial variability in disease occurrence

which increases confidence in the validity and application of the results [43]. In studies where

Getis Ord Gi
�statistic and SaTscan have been applied, the results have been used to guide TB

interventions [24]. The use of GIS and spatial statistics in spatial epidemiological is an impor-

tant approach for investigating infectious diseases and has been used to study diseases such

malaria [60], breast cancer [57] and foot-mouth disease [61]. In these studies, the two tech-

niques yielded useful information for guiding disease control.

The results of this study indicate that statistically significant hotspots and spatial clusters

were common in central and southern parts of Zimbabwe. These regions are dominated by

large urban areas such as Bulawayo, Gweru and Kwekwe and other rural districts characterised

by formal and illegal mining (predominantly artisanal) activities. The occurrence of TB hot-

spots and clusters in these areas may be associated with high population resulting in over-

crowding hence ease transmission of the disease. These results are similar to findings by

Chirenda [14] who found that TB hotspots and clusters are common in urban areas due to

large populations and inadequate health care services. Consistently across the four years, and

especially in 2017, the districts along the Great Dyke exhibited TB hotspots. The Great Dyke

region is rich in minerals and has a high concentration of illegal and commercial mining activ-

ities. As illustrated by previous studies [26, 63], mining activities expose miners to silica dust

which increases the vulnerability of the populations to TB. Characteristics that increase the

risk of small scale artisanal miners are reduced access to health care services, inadequate per-

sonal protective equipment and the relatively young age. Other health challenges like sexually

transmitted infections and HIV infection have been found to be common among this popula-

tion. All these further confound the increased risk of hotspot and clustering observed in this

study.

The tendency of TB cases to cluster in specific localities is of interest to public health

response. Significant interventions such as targeted active case finding, early treatment and

DOTS could focus on these hotspots. As artisanal miners are a highly mobile population, inter-

ventions such as the Zimbabwe National TB Programme could prioritise its targeted active

case finding using mobile clinics along the Great Dyke area. Although this study identified

critical areas for TB interventions, it did not explore factors explaining the observed patterns.

Fig 4. Spatial distribution of statistically significant primary and secondary TB clusters detected by purely spatial

analysis based on the Gini coefficient for a) 2015, b) 2016, c) 2017 and d) 2018.

https://doi.org/10.1371/journal.pone.0249523.g004
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Thus, further research on the possible environmental or social determinants of spatial pattern

of TB in Zimbabwe is strongly recommended.

An important result from this study is an observed decrease in relative risk associated with

TB clusters over the four year period. The result implies that there has been a general decrease

in number of TB notifications in Zimbabwe which suggests the effectiveness of interventions

implemented in the general population to reduce TB transmission. The declining TB case noti-

fication rates also coincided with the scale-up of antiretroviral therapy in Zimbabwe [64]. The

scaling up of antiretroviral therapy under the UNAIDS 90-90-90 targets is likely to result in

continued decline in TB case notification rates [39, 64].

Table 2. Significant spatial clusters of TB in Zimbabwe based on maximum reported cluster size from 2015–2018.

Year Cluster # District Radius # of Locations LLR Pvalue Observed Expected RR

1 Seke 0 1 904.05 0.001 1075 210 5.29

2 Sanyati 0 1 771.97 0.001 1024 223 4.74

3 Chiredzi 102 2 687.02 0.001 2295 970 2.50

4 Lupane 82 2 269.10 0.001 968 418 2.37

5 Matobo 76 3 175.84 0.001 1135 621 1.87

2015 6 Gweru 89 4 159.26 0.001 2147 1443 1.53

7 Umguza 45 2 131.78 0.001 2137 1491 1.47

8 Mazowe 58 3 67.12 0.001 1766 1335 1.35

9 Mutare 63 2 40.85 0.001 1165 888 1.33

10 Masvingo 0 1 17.57 0.001 766 615 1.25

11 Mt Darwin 0 1 3.76 0.02 494 436 1.14

12 Marondera 0 1 2 0.01 410 371 1.10

1 Mhondoro-Ngezi 112 8 620.61 0.001 4434 2579 1.86

2 Lupane 82 2 405.73 0.001 1143 435 2.70

3 Beitbridge 117 3 380.88 0.001 1822 899 2.10

2016 4 Mutare 0 1 132.36 0.001 767 403 1.93

5 Bulima 102 5 100.36 0.001 2800 2144 1.34

6 Mt Darwin 0 1 15.37 0.001 580 458 1.27

7 Hurungwe 92 2 13.75 0.001 1207 1037 1.17

8 Chipinge 125 5 6.62 0.001 2496 2326 1.08

2 Kwekwe 120 9 714.10 0.001 4561 2569 1.94

3 Beitbridge 117 3 305.04 0.001 1649 852 2.00

4 Seke 0 1 267.41 0.001 626 212 3.00

2017 5 Hwange 150 3 70.46 0.001 931 618 1.53

6 Hurungwe 92 2 50.08 0.001 1316 992 1.34

7 Mutare 0 1 34.13 0.001 554 383 1.46

8 Mt Darwin 0 1 33.94 0.001 617 436 1.43

9 Insiza 90 5 24.28 0.001 2546 2225 1.16

1 Mhondoro-Ngezi 90 6 1254.75 0.001 4415 1953 2.49

2 Bulilima 231 14 665.80 0.001 6961 4559 1.69

2018 3 Mwenezi 90 2 127.49 0.001 1099 656 1.70

4 Mutare 0 1 111.54 0.001 774 432 1.81

5 Mt Darwin 0 1 24.45 0.001 653 492 1.34

6 Bikita 0 1 18.12 0.001 494 373 1.33

RR: Relative risk, LLR: likelihood ratio.

https://doi.org/10.1371/journal.pone.0249523.t002
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This study showed that southern districts such as Chiredzi and Beitbridge had high cluster-

ing but relatively low hotspot occurrence compared to its neighbours. Several plausible expla-

nations could be proffered to explain this observation. First, Beitbridge is a border town

characterised by high population movements between South Africa and Zimbabwe and is con-

sidered the gateway to South Africa. High migration activities might explain the volume of

cases reported in Beitbridge district but may not necessarily explain transmission. Secondly,

Chiredzi and Mwenezi districts which consistently showed high TB clusters throughout the

four years and these are sugarcane growing districts. Studies describing high TB prevalence in

agricultural settings are few and the findings of this study require further interrogation to

assess the contribution of the agricultural sector to the burden of TB. However, because of the

high economic activities from the agricultural business, there could be high local transmission

and immigration associated with overcrowding in these areas [65]. Although the potential risk

factors that can explain the clustering of TB were not explored in this study, previous studies

demonstrated that the TB epidemic in Zimbabwe is largely driven by HIV [64]. Interestingly,

areas where TB clusters were detected coincide with areas where clusters of HIV prevalence

were also detected [66] suggesting possible co-infection by these two diseases [39].

The use of spatial statistics to explore the distribution and aggregation of TB may be useful

in understanding the pattern of TB hotspots [12]. Therefore, TB interventions may not be able

to use the “one size fits all” approach across different districts. Districts with high disease rates

as a result of the social determinants of disease will require more focussed attention than areas

with a low risk [21]. Areas where hotspots and clusters of TB cases were detected may be used

as priority areas for targeted control to achieve high impact [44, 29]. Thus, to achieve the set

targets under the UNSDGs there is need to implement more effective and stronger measures

to control TB transmission in these clusters. Policymakers and health authorities will need to

strengthen resource mobilization for improved TB prevention and control measures.

The strengths of this study is that the detection of TB hotspots and clusters were performed

at district level which is the spatial epidemiological unit at which interventions are planned

hence they are likely to be more relevant to policymakers. Performing analysis at district level

improves our understanding of the spatial pattern of TB at a wider geographic scale in contrast

to most studies which mostly focussed on urban areas [67]. The four years considered in this

study may also be sufficient to assess the spatial pattern and stability of hotspots and clusters of

the disease in the country as previous studies have focussed on a short time period of about a

year. The utility of SaTscan and Getis-Ord Gi
� in differentiating districts with high incidence

of TB cases, from those districts where active transmission may actually be common is signifi-

cant. This may indicate that focussing resources in districts showing high incidence of TB dis-

ease may not address transmission with the associated risk factors. We therefore recommend

that the NTP complements the surveillance data with geospatial techniques to identify districts

with active transmission from those with cold spots.

Although scan statistics and Getis were successfully used to understand TB clusters and hot-

spots, there are limitations associated with this study. The TB cases reported in each district

may be affected by under reporting which influences the detection of hotspots and clusters

[12]. Under reporting is a major limitation for all studies that use TB notification data particu-

larly in low income countries without health information management systems [68]. TB notifi-

cation is dependent on programmatic responses such as ability to test, diagnose and treat

individuals including accessibility of heath care services. Some previous studies have found

that high TB notification rates in some areas may be associated with better access to TB diag-

nostic services rather than increased burden or transmission [68]. This may be common in

areas with sparse health services. Under reporting impacts negatively on the capacity to accu-

rately evaluate the epidemiology of the disease [68]. However, TB notifications are an
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important source of information in the context of local health systems as they can be used as a

basis for intervention or programmatic efforts. The information obtained from spatial analysis

of TB notifications can be used to prioritise areas requiring further supervision and to tailor

interventions to local needs.

A potential drawback in the detection of hotspots in this study is data timeliness. Most of the

heath data takes time to compile making it difficult for relevant information to be extracted on

time to guide interventions. However, through this retrospective study useful insights on the

spatial dynamics of TB occurrence were generated across districts of Zimbabwe. Another poten-

tial limitation of this study is that the district TB notification rates are based on data recorded at

each health facility. It is therefore possible that a patient can visit more than one health facility

resulting in double counting which introduces bias and subsequently affects the detection of TB

hotspots and clusters. This is likely to happen in instances where health facilities are in close

proximity to each other as well as in referral cases. This means the data recorded in such areas

are unlikely to be independent of each other which increase the risk of over-reporting.

Furthermore, TB clusters detected in this study were assumed to be circular and given the

irregularity of the administrative boundaries of districts in Zimbabwe, this could result in the

exclusion of districts with excess risk. Moreso the results of this study are population-based

making it difficult to apply them at individual level. Despite these limitations, this study

applied GIS and spatial statistics to identify TB hotspots and clusters at the district level which

is important for decision making and resource allocation. Future research need to focus on

relationship between TB occurrence and various socio-economic and environmental risk fac-

tors to enhance understanding of the pattern of the disease.

Conclusion

GIS and scan statistics were successfully applied to determine the extent to which TB cases

were clustered in space at district level in Zimbabwe. The observed hotspots and clustering in

districts with intense small scale mining activities may indicate social determinants of TB dis-

ease aiding high transmission. The information generated from this study is useful in provid-

ing detailed knowledge on the spatial pattern of TB occurrence which is critical for targeted

TB interventions. This is particularly important in developing countries where there is need to

prioritise allocation of limited resources by focussing on areas with greatest need which results

in high impact in terms of disease control.
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