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Abstract: Metformin is an orally effective insulin-sensitizing drug widely prescribed for treating
type 2 diabetes mellitus (T2DM). Metformin has been reported to alter lipid metabolism. However,
the molecular mechanisms behind its impact on lipid metabolism remain partially explored and
understood. In the current study, mass spectrometry-based lipid profiling was used to investigate
the lipidomic changes in the serum of 26 healthy individuals after a single-dose intake of metformin.
Samples were analyzed at five-time points: preadministration, before the maximum concentration of
metformin (Cmax), Cmax, after Cmax, and 36 h post-administration. A total of 762 molecules were
significantly altered between the five-time points. Based on a comparison between baseline level and
Cmax, metformin significantly increased and decreased the level of 33 and 192 lipids, respectively
(FDR ≤ 0.05 and fold change cutoff of 1.5). The altered lipids are mainly involved in arachidonic
acid metabolism, steroid hormone biosynthesis, and glycerophospholipid metabolism. Furthermore,
several lipids acted in an opposed or similar manner to metformin levels and included fatty acyls,
sterol lipids, glycerolipids, and glycerophospholipids. The significantly altered lipid species pointed
to fundamental lipid signaling pathways that could be linked to the pleiotropic effects of metformin
in T2DM, insulin resistance, polycystic ovary syndrome, cancer, and cardiovascular diseases.

Keywords: metformin; arachidonic acid; sphingosine-1-phosphate; hydroxyeicosatetraenoic acids
(HETE); glycerophospholipid; cancer; T2DM

1. Introduction

Metformin, a synthetic dimethyl biguanide, is an orally effective insulin-sensitizing
drug widely prescribed for treating type 2 diabetes mellitus (T2DM) as a monotherapy or
adjunct therapy to other antihyperglycemic medications [1–4]. It is a relatively inexpensive
and well-tolerated drug with minimal side effects. Gastrointestinal-related side effects such
as abdominal pain, bloating, diarrhea, nausea, and vomiting are very common, occurring
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in 20–30% of patients taking metformin [5]. Lactic acidosis is the most serious side effect
associated with metformin; however, it is very rare (incident rate of 1 in 30,000 patients)
and can be prevented by inhibiting metformin intake in liver and kidney dysfunction
patients [5,6].

The antidiabetic effect of metformin has been related to its ability to inhibit glu-
coneogenesis by activating adenosine monophosphate (AMP)-activated protein kinase
(AMPK), which is considered a central modulator of energy metabolism and glucose home-
ostasis [7–9]. Moreover, metformin reduces intestinal glucose absorption and improves
peripheral glucose uptake and insulin sensitivity [10]. Metformin acts on multiple tissues
and targets different pathways. In addition to its glucose-lowering effect, it has been
reported to exert other beneficial effects, including cardiovascular and neuroprotective
effects [5,11,12], weight loss in overweight and obese patients [13], treating metabolic
and reproductive abnormalities of polycystic ovary syndrome (PCOS) [14], attenuating
tumorigenesis [5,15] and oxidative stress [16,17], and delaying aging [18].

Lipids serve as integral metabolites for diverse biological processes. They are es-
sential structural components of cell membranes and energy storage molecules and play
a pivotal role in the pathogenesis of several disorders [19]. The effect of metformin on
improving insulin sensitivity is considered a consequence of the changes it induces in
lipid metabolism [20]. Clinical studies have demonstrated a lipid-modifying effect of
metformin [21,22] by altering fatty acid de novo synthesis, mitochondrial lipid channel-
ing, and β-oxidation [23]. However, the molecular mechanism behind its impact on lipid
metabolism remains partially explored and understood.

The expanding development of omics approaches has allowed for a holistic view of
various therapeutics’ molecular mechanisms and provided a promising strategy to monitor
drugs and innovative compounds [24,25]. Lipids are directly exposed to the biochemical
changes linked to pathological processes or drug treatment. Therefore, investigating the
lipidome is expected to provide a window to biochemical anomalies associated with the
pathophysiology of diseases or drug efficiency and adverse effects [26]. Lipid profiling
using mass spectrometry (MS) is a key and advanced analytical strategy capable of iden-
tifying and quantifying various lipid species and highlighting the perturbations in lipid
metabolism and lipid-mediated signaling processes [27]. Metformin has been reported to
induce specific changes in the serum lipidome of women with PCOS [28], and patients
with T2DM [29]. However, studying the effect of metformin under pathological conditions
might lead to the identification of lipids that are not necessarily altered due to metformin,
particularly since most patients undertake metformin as an adjunct therapy to other medi-
cations. Therefore, using healthy subjects will identify endogenous metabolites and lipids
that are altered specifically due to changes in metformin levels. Recently, we reported the
effect of metformin on the biochemical processes in a cohort of healthy volunteers using
an MS-based untargeted metabolomics approach where lipid metabolism was among the
significantly altered pathways [30]. Therefore, in the current study, an MS-based shotgun
approach was used to investigate the alteration in the plasma lipidome (at multiple time
points) in healthy subjects in response to acute metformin intake. The above should aid in
identifying a potential panel of lipid species disturbed due to metformin administration
and thus provide a deeper understanding of the role of metformin in lipid metabolism.

2. Results
2.1. Clinical and Demographic Data of Study Subjects

The demographic and clinical data of the 26 healthy nondiabetic male participants are
presented in Table 1. All lab tests performed during screening and follow-up periods were
within the normal range for all subjects, with no significant difference between the two
periods. One exception is the level of the liver enzyme alkaline phosphatase (ALP), which
was significantly lower in the follow-up period (86 ± 16) compared to the screening period
(105 ± 19), Table 1.
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Table 1. Clinical and demographic data of recruited subjects (n = 26 male) during screening and
follow-up periods.

Clinical and Demographic Data
Mean ± SD.

Screening Follow-Up

Body mass index (BMI, kg/m2), (range) 25 ± 3.8, (19.2–29.3) -
Age (years) 31 ± 9.2 -
Blood pressure (mm Hg) ≤120/80 ≤120/80
Heart rate (beat/minute) 69.6 ± 4 71.9 ± 6.5
Glucose (mmole/L) 5.45 ± 0.44 5.08 ± 0.54
Urea (mmole/L) 10.64 ± 2.11 11.17 ± 2.39
Creatinine (umole/L) 91.96 ± 12.38 95.45 ± 9.73
Sodium (mEq/L) 143.2 ± 2.7 143 ± 1.9
Potassium (mEq/L) 4.3 ± 0.2 4.2 ± 0.17
AST (IU/L) 21.2 ± 6.9 26 ± 17.0
ALT (IU/L) 26.2 ± 11.1 30 ± 34.0
ALP a (IU/L) 105 ± 19.0 86 ± 16.0 *
Total protein (g/dL) 7.4 ± 0.5 7.7 ± 0.5
Total bilirubin (umole/L) 8.04 ± 2.40 8.55 ± 0.5
HbA1c (%) 5.2 ± 0.23 -

Data are presented as mean ± standard deviation. Results of hematology and differential leucocytes count are
presented in our previous publication [30]. Examinations during the screening period were performed up to
14 days of pre-metformin administration, while follow-up examinations for the same subjects were performed up
to 7 days post-metformin administration. All lab tests were within the normal range with no significant difference
between screening and follow-up periods except ALK. a Lab test values were significantly different between
screening and follow-up periods (independent t-test, * p-value ≤ 0.05). AST: aspartate transaminase, ALT: alanine
transaminase, ALP: Alkaline phosphatase.

2.2. Lipid Detection and Data Overview Using Multivariate Analysis

Positive and negative ionization modes collectively detected 9017 mass ions, of which
only 2499 mass features remained after applying the missing value filters. The 2499 lipid
species were exported for multivariate analysis to overview the data set at the five-time
points and identify outliers and possible group clustering and separation (Figure 1). The
data were deposited in MetaboLight (accession Number MTBLS2949)

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 19 
 

 

 
(A) 

  
(B) (C) 

Figure 1. Score plots of the lipidome of serum samples were obtained from 26 healthy subjects after 
a single dose of metformin at five−time points: predose (baseline level, light blue), 1.5 h before Cmax 

(red), Cmax (purple), 2 h after Cmax (dark blue), and 36 h post−drug administration (green). (A) 

PCA (R2X = 0.68, Q2 = 0.42), (B) PLS−DA (R2X = 0.28, R2Y = 0.39, Q2 = 0.15) and (C) OPLS−DA (R2X 
= 0.30, R2Y = 0.39, Q2 = 0.23). 
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PCA model (Figure 1A). The results of the lab tests for this subject showed an increased 
level of the two liver enzymes, aspartate transaminase (AST, also known as aspartate ami-
notransferase) and alanine transaminase (ALT, also known as alanine aminotransferase), 
during the follow-up period compared to screening tests. It is expected that this subject 
has a different metabolism than the remaining participants, resulting in a distinguished 
lipid profile pattern. This is consistent with our previous work where the same subject 
showed different metabolic profiles at all time points compared to the remaining partici-
pants [30]. This unique profile is most probably independent of metformin since even the 
baseline lipid pattern was different from the remaining individuals. However, this finding 
might indicate that this subject, due to his different metabolism, was affected by metfor-
min intake, which resulted in the increase in AST and ALT levels. The above specifies that 
subjects could vary in response to metformin and show the key role of omics in identifying 
these subjects. For data analysis purposes, this subject was considered an outlier, and his 
data were removed from the upcoming analyses. 

Supervised analysis using partial least-squares discriminative analysis (PLS-DA) and 
orthogonal PLS-DA (OPLS-DA) showed no clear separation between the five time points, 

      

Figure 1. Score plots of the lipidome of serum samples were obtained from 26 healthy subjects after
a single dose of metformin at five−time points: predose (baseline level, light blue), 1.5 h before
Cmax (red), Cmax (purple), 2 h after Cmax (dark blue), and 36 h post−drug administration (green).
(A) PCA (R2X = 0.68, Q2 = 0.42), (B) PLS−DA (R2X = 0.28, R2Y = 0.39, Q2 = 0.15) and (C) OPLS−DA
(R2X = 0.30, R2Y = 0.39, Q2 = 0.23).
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The principal component analysis (PCA) scores plot (Figure 1A) showed an overlap
between the datasets with no apparent separation between the five−time points. Clearly,
the lipidome of one subject at all time points was outside the confidence interval of the
PCA model (Figure 1A). The results of the lab tests for this subject showed an increased
level of the two liver enzymes, aspartate transaminase (AST, also known as aspartate
aminotransferase) and alanine transaminase (ALT, also known as alanine aminotransferase),
during the follow-up period compared to screening tests. It is expected that this subject has
a different metabolism than the remaining participants, resulting in a distinguished lipid
profile pattern. This is consistent with our previous work where the same subject showed
different metabolic profiles at all time points compared to the remaining participants [30].
This unique profile is most probably independent of metformin since even the baseline
lipid pattern was different from the remaining individuals. However, this finding might
indicate that this subject, due to his different metabolism, was affected by metformin intake,
which resulted in the increase in AST and ALT levels. The above specifies that subjects
could vary in response to metformin and show the key role of omics in identifying these
subjects. For data analysis purposes, this subject was considered an outlier, and his data
were removed from the upcoming analyses.

Supervised analysis using partial least-squares discriminative analysis (PLS-DA) and
orthogonal PLS-DA (OPLS-DA) showed no clear separation between the five time points,
Figure 1B,C, respectively. However, in both models, the predose and 36 h postdose samples
were separated from the other time points, with better separation evident in the OPLS-DA
score plot (Figure 1C).

2.3. The Effect of Metformin on the Lipidome at Four Time Points after Metformin Intake

The 2499 identified molecular species were statistically evaluated among the five-
time points using one-way ANOVA with Tukey’s post hoc analysis. A total of 762 lipids
were significantly altered between the five-time points. Statistical comparison between
post-metformin administration time points (before the maximum concentration of met-
formin in the serum (Cmax), Cmax, after Cmax, or 36 h post-administration and predose
sample (baseline level) is presented in the Venn diagram shown in Figure 2A. Expectedly,
metformin-induced the largest change in the lipidome at its Cmax, with 403 metabolites
significantly altered compared to the predose sample. Interestingly, after 36 h of metformin
administration, the lipidome did not retain to a level close to the baseline, as 160 lipids
were significantly altered between the predose and 36 h samples (Figure 2A). This finding
is consistent with the results obtained from the score plot of the OPLS-DA model, where
the last two groups showed an apparent separation reflecting different metabolic signatures
between the two-time points (Figure 1C). Metformin could not be detected in the circulation
after 36 h of intake. Our findings possibly indicate that the effect of metformin on the serum
lipidome lasts more than 36 h, and a longer time is needed for the lipidome to return to its
baseline level in circulation.

Compared to the baseline level, the Venn diagram revealed a group of 22 features,
including metformin, that were commonly dysregulated at the four post-metformin admin-
istration time points (Figure 2A,B). Among these altered mass ions are lysosphingolipid
(e.g., sphingosine-1-phosphate (S1P)), fatty acids (e.g., 2-hydroxyhexadecanoic acid), glyc-
erophosphates, and glycerophosphocholines. A heat map representing the change in the
level of the 22 ion species at the five time points is presented in Figure 2B.
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Figure 2. Significantly altered lipids between the post-metformin administration time points com-
pared to the predose sample (baseline level). (A) A Venn diagram illustrating the overlap between
the post−metformin administration time points (before Cmax, Cmax, after Cmax, 36 h) compared
to the predose sample with the number of significantly altered lipids (n). A group of 22 features,
including metformin, are consistently dysregulated within the five−ime points. Data were analyzed
using one-way ANOVA using Tukey’s post hoc analysis. (B) Heatmap and hierarchical cluster
analysis of 22 features dysregulated between the four−time points after metformin administration
and predose sample. Time points 0, 1, 2, 3, and 4 refer to baseline, before Cmax, Cmax, after Cmax and
36 h post−metformin administration. Metformin is 1,1-Dimethylbiguanide.
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2.4. Effect of Metformin on Serum Lipidome at Its Cmax

Metformin had the most impactful effect on lipid profile or lipidome at its Cmax. The
OPLS-DA score plots for serum lipidome at baseline (predose) and Cmax exhibited a clear
separation between the two groups, Figure 3A. A volcano plot using a false discovery
rate (FDR) value cutoff ≤ 0.05 and a fold change (FC) cutoff of 1.5 revealed a significant
dysregulation in the level of 225 features, where the level of 33 and 192 features increased
and decreased, respectively, upon metformin administration (Figure 3B). The identity
of these compounds together with their changed level are presented in Table S1 in the
supplementary material. The altered lipids are involved in various biological processes,
including arachidonic acid (AA) metabolism (e.g., 8-hydroxyeicosatetraenoic acid (8-HETE),
prostaglandinF2α (PGF2α)), steroid hormone biosynthesis (e.g., androstenedione), and
glycerophospholipid metabolism. Furthermore, metformin significantly perturbed the
level of bioactive lipid mediators with vital structural and signaling functions such as the
sphingolipid, S1P, Table S1.
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Figure 3. Differentially expressed lipids obtained from 26 subjects after metformin administration
based on a binary comparison between baseline level (predose) and Cmax level. (A) OPLS-DA
(R2X = 0.26, R2Y = 0.92, Q2 = 0.62) score plot predose (light blue) and at Cmax (purple). (B) Volcano
plot (FDR value ≤ 0.05, FC 1.5) of upregulated (red, n = 33) and downregulated (blue, n = 192)
features. Light blue and orange squares refer to lipids that failed to pass fold change cutoffs and were
up- and downregulated, respectively. Gray square lipids failed to pass both cutoffs.

2.5. Metformin-Dependent Lipids

The level of the 225 differentially altered metabolites (Section 2.4) was compared
between the five time points to identify lipids with a similar or opposite change in their level
relative to the metformin pattern (metformin-dependent lipids). The Pearson similarity test
revealed that five metabolites (excluding metformin) displayed a similar change in their
level compared to metformin, among which are monoglycerols (Figure 4). A larger number
of lipids acted in an opposed manner to metformin levels, as presented in Figure 5 and
Table 2.
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Figure 4. (A) Metformin-dependent lipids and metabolites with similar kinetics to metformin.
(B) Example of the metformin dependent lipid, 1,3-Dihydroxy-2-propanyl 11-methyldodecanoate,
showing similar change in its level as metformin. (C) Hierarchal clustering (HAC) and heatmap anal-
ysis of five metformin-dependent biomolecules showing similar changes in their level to metformin.
Time points 0, 1, 2, 3, and 4 refer to predose, before Cmax, Cmax, after Cmax and 36 h post-metformin
administration. Metformin is 1,1-Dimethylbiguanide.

Lipids with opposed levels to metformin patterns included fatty acyls (fatty esters,
fatty acids, and eicosanoids), sterol lipids, glycerolipids, and glycerophospholipids (glyc-
erophosphocholines, glycerophosphoinositols).

Heatmaps of metformin-dependent lipids and their levels as similar or opposed to
metformin patterns at the five time points are shown in Figures 4C and 5C, respectively.
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Figure 5. (A) Metformin-dependent lipids and metabolites with opposite kinetics to metformin.
(B) Example of the metformin-dependent lipid, PC (20:1/0:0), showing opposite change in
its level compared to metformin. (C) Hierarchal clustering (HAC) and heatmap analysis of
12 metformin−dependent biomolecules showing an opposed change in their level compared to
metformin. Time points 0, 1, 2, 3, and 4 refer to predose, before Cmax, Cmax, after Cmax, and 36 h
post−metformin administration.
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Table 2. Metformin-dependent lipids and their classification.

Category Common Name Systematic Name Abbrev Main Class Sub Class Level Change Compared
to Metformin

Fatty Acyls

2E,4E,6Z-Nonatrienal 2E,4E,6Z-Nonatrienal FAL 9:3 Fatty aldehydes N.A. Opposite

O-linoleoylcarnitine 3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-4-
(trimethylazaniumyl) butanoate CAR 18:2

Fatty esters Fatty acids and conjugates
Unsaturated fatty acids Opposite

Fatty acyl carnitines

Sufac#1 13-methyl-10-
(sulfooxy)tetradecanoic acid Fatty acids and conjugates Branched fatty acids Opposite

Carduusyne C 16S-methoxytricos-8E-en-4,6,17,19-tetraynoic acid FA 24:9;O Fatty acids and conjugates Methoxy fatty acids Opposite

8-iso-15-keto-PGE2 9,15-dioxo-11R-hydroxy-5Z,13E-prostadienoic
acid-cyclo [8S,12R] FA 20:5;O3 Eicosanoids Isoprostanes Opposite

Glycerophospholipids

PC(14:0/20:4(5Z,8Z,11Z,14Z)) 1-tetradecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-
sn-glycero-3-phosphocholine PC 34:4 Glycerophosphocholines Diacylglycerophosphocholines Opposite

PC(20:1(9Z)/0:0) 1-(9Z-eicosenoyl)-sn-glycero-3-phosphocholine LPC 20:1 Glycerophosphocholines Monoacylglycerophosphocholines Opposite

PE(P-16:0/0:0) 1-(1Z-hexadecenyl)-sn-glycero-3-
phosphoethanolamine LPE O-16:1 Glycerophosphoethanolamines 1Z-

alkenylglycerophosphoethanolamines Opposite

PI(18:2(9Z,12Z)/0:0) 1-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1′-
myo-inositol) LPI 18:2 Glycerophosphoinositols Monoacylglycerophosphoinositols Opposite

Lipids’ systematic names and classes were obtained from LIPID MAPS® Structure Database.



Int. J. Mol. Sci. 2022, 23, 11478 10 of 18

3. Discussion

Metformin is an orally effective insulin-sensitizing biguanide widely prescribed for
treating T2DM. Moreover, metformin possesses effective roles in cancer, PCOS, dyslipi-
demia, and obesity. Using the MS-based metabolomics approach, we previously reported a
significant alteration in the lipid metabolism pathway induced by metformin in healthy
subjects [30]. Although the effect of metformin on improving insulin sensitivity is con-
sidered a consequence of its impact on lipid metabolism, little is known about this effect.
Therefore, we used a shotgun lipidomics approach on serum samples from the same healthy
subjects to further investigate the role of metformin in lipid metabolism and pathways.
Normally, for metformin dosing, the starting dose is 500 mg, then the maintenance will be
850–2550 mg/day for diabetic patients. Herein, the study included healthy subjects as part
of a bioequivalent study to monitor the initial and primary metabolic effect of metformin
in the dynamic range (<36 h), not at the therapeutic (steady state). Therefore, a single dose
of 500 mg of metformin was used.

Our findings revealed that metformin induced a significant dysregulation in AA
metabolism, evident by the downregulation in the level of several lipids involved in this
pathway (Figure 6). AA is an important polyunsaturated fatty acid (PUFAs) formed
endogenously from its essential fatty acid precursor, linoleic acid (LA 18:2n-6). LA is
metabolized to gamma-linolenic acid (GLA), which will be used to generate dihomogamma-
linolenic acid (DGLA) and finally AA [31]. However, most of the AA is released from
membrane-bound phospholipids by the action of phospholipase enzymes [32], (Figure 6).
AA will be further metabolized via three different enzyme pathways: cyclooxygenases
(COXs), lipoxygenases (LOXs), and cytochrome P450 enzymes to generate an assortment of
biologically active fatty acid mediators, as shown in Figure 6.
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Figure 6. Overview of the arachidonic acid (AA) metabolism pathways. Phospholipases are re-
sponsible for releasing AA from membrane-bound phospholipids. AA can also be generated from
dihomo-γ-linoleic acid. AA will be metabolized by three pathways: cyclooxygenase (COX), cy-
tochrome P450, and lipoxygenase. PG: prostaglandin, TX: thromboxane, EET: epoxyeicosatrienoic
acids, HETE: hydroxyeicosatetraenoic acid, DHETs: dihydroxyeicosatrienoic, LT: leukotrienes. Blue
arrows indicate downregulated lipids after metformin administration (based on a comparison be-
tween baseline level (predose) and Cmax level.

The well-known multiple effects of metformin might be linked to its effect on AA
metabolism. The AA metabolism pathway provides a spectrum of substrates essential
for several key signaling pathways modulating insulin secretion [31]. Moreover, AA
and its derivatives activate separate, sometimes overlapping pathways, and thus are
considered paramount in several key physiological processes, including inflammation,
cardiovascular biology, diabetes, carcinogenesis, and human fertility [31,33]. In the current
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work, metformin alterations in AA metabolism were manifested in the form of a reduction
in the level of GLA and various prostanoids produced via the COX pathway, including
PGF2α, PGA2, and TXB2, and eicosanoids produced via the cytochrome P450 and the LOX
pathways including 8-HETE and 11-HETE (Figure 6).

The two prostanoids, PGI2 and TXA2 (hydrolyzed toTXB2), are the major platelet
aggregation inhibitor and promotors, respectively, that maintain vascular homeostasis and
platelet aggregation. Increased levels of TXA2, and consequently TXB2, can contribute
to the development of various thrombotic diseases [34]. The level of serum TXB2 is used
to reflect the maximum platelet production of TXA2 [35]. T2DM is a well-known risk
factor for cardiovascular disease, and higher TXB platelet biosynthesis was reported in
patients with T2DM [36,37]. Moreover, T2DM is associated with greater production of
8-iso-prostaglandin PGF2α [38]. PGF2α increases reactive oxygen species (ROS), induces a
hypertrophic effect [39], and activates platelet aggregation [38]. The lower level of TXB2
and PGF2α detected herein as of metformin administration indicates that metformin might
exert its cardiovascular protective effect by affecting platelet aggregation and decreasing
oxidative stress. Our findings are consistent with a previous study where metformin
was associated with a significant decrease in 11-dehydro-TXB2 and 8-iso-PGF2α in newly
diagnosed T2DM patients [40].

Metformin has also decreased the level of eicosanoids, as reflected by the significant
reduction in the level of the two hydroxyeicosatetraenoic acids (HETEs), 8-HETE and 11-
HETE. Eicosanoids are much appreciated for their roles in various pathological conditions,
including inflammation, free radical generation, metabolic syndrome, and cancer [41,42].
Moreover, HETEs are involved in the development and progression of different solid
tumors [43]. The serum concentrations of mid-chain HETE, including 8- and 11-HETE, were
elevated in patients with advanced prostate cancer [44], and 11-HETE was also significantly
higher in patients with colon hyperplastic polyps and adenomas compared to those with
no polyps [45]. Additionally, the level of 11-HETE could be linked to the pathophysiology
of diabetes and cardiovascular diseases. A high level of circulating 11-HETE is considered
a marker of lipid peroxidation and indicative of oxidative stress conditions and increased
ROS [45,46]. All of the above contribute to the peripheral vascular resistance and endothelial
dysfunction seen in hypertension and diabetes, respectively [31,36]. Given our findings,
metformin may contribute to its reported effect in preventing cancer and tumor progression,
protecting against coronary heart diseases, and improving insulin sensitivity by lowering
mid-chain HETEs, particularly 11-HETE. To the best of our knowledge, this is the first
study to report the effect of metformin in 11-HETE. It is worth noting that 20-HETE remains
the best-studied lipid of the HETEs family [34,47] while still, limited literature is available
on the physiological role of 11-HETE. This urges the need to investigate further the role of
mid-chain HETEs in serious conditions such as T2DM, cancer, and cardiovascular diseases.

In the current work, metformin significantly decreased the level of the bioactive sig-
naling lipid S1P generated by converting ceramide to sphingosine. S1P is involved in many
cellular and physiological processes, such as inflammation, immunity and cell survival,
proliferation, and migration [48]. Several studies have demonstrated that S1P signaling is
closely linked to cancer progression and tumor growth [49,50]. Moreover, growing evidence
has highlighted S1P signaling as a potential cancer therapeutic approach by selectively
targeting S1P receptors or reducing the levels of S1P itself [49,50]. Considerable effort has
been expended in clarifying the beneficial role of metformin in cancer. Our finding suggests
that one mechanism by which metformin inhibits tumor growth could be by altering S1P
signaling and reducing S1P levels. In line with our work, significantly reduced serum
S1P levels have been reported in ovarian cancer patients taking metformin [51]. The same
study suggested sphingolipid signaling as a metabolic target of metformin in cancer [51].
Noteworthy, S1P levels have also been associated with the development of obesity, insulin
resistance, and T2D [52]. However, this link remains discrepant, and more work is still
needed to understand the role of S1P in the development of diabetes.
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Growing evidence has underlined the importance of acylcarnitines in various physio-
logical processes such as fatty acid oxidation, energy homeostasis, and insulin secretion
and sensitivity regulation, and proliferation of cancer cells [53–55]. Herein, metformin
disturbed the acylcarnitine pool (mainly long- and short-chain), which could also contribute
to its influence on dyslipidemia and T2DM. In addition, the decrease in the level of the two
steroidal hormones androstenedione and hydroxyprogesterone induced by metformin can
be added to its effect in reducing insulin resistance in PCOS, as both hormones play roles
in the pathology of PCOS [28,56,57].

Our results revealed a few lipids that acted similarly to metformin levels, among which
are monoglycerol and digalactosyldiacylglycerol (DGDG), respectively (Table 2). The level
of these metformin-dependent lipids was increased/decreased upon metformin administra-
tion and reserved to baseline level at 36 h postdose. Monoglycerols (monoglycerides) and
DGDG are part of the glycerolipids category of lipids structurally characterized by a glyc-
erol backbone linked to fatty acids. Glycerolipids participate in lipid/glucose homeostasis,
interlinked with a central process called the glycerolipid/free fatty acid (GL/FFA) cycle [58].
The GL/FFA cycle has two arms: the anabolic arm, to control fatty acid esterification to
form triacylglycerol (lipogenesis); and the catabolic arm, to control glycerol release and
FFA (lipolysis). Therefore, it is obvious that any perturbations in GL/FFA cycle will result
in various illnesses, including T2DM, dyslipidemia, obesity, and insulin resistance [58].

High triacylglycerol and FFA have long contributed to obesity, insulin resistance,
and macrovascular diseases. Recent studies revealed that phospholipid alterations might
also play a role in the pathological process of metabolic disorders [59]. Phospholipids are
divided into two categories: sphingolipids, with a backbone of a sphingosine base; and
glycerophospholipids, with a backbone of hydrophobic fatty acid (tails) connected to a
hydrophilic phosphate group (head). Modifying the head of the glycerophospholipid with
organic molecules such as choline, ethanolamine, or inositol results in the formation of
phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol, respectively [60].
Phosphatidylcholine and phosphatidylethanolamine are the most abundant phospholipids
in the plasma membrane. Therefore, most clinical studies have investigated the relation-
ship between these two glycerophospholipids’ levels, fatty acid composition, and insulin
sensitivity. Phosphatidylcholine and phosphatidylethanolamine have been suggested as
critical modulators of insulin sensitivity in several ways, altering the fatty acid composition
of glycerophospholipids [59]. In a recent large cohort of Chinese individuals, eight plasma
glycerophospholipids, especially phosphatidylcholine, were positively associated with
the incidence of diabetes [61]. Moreover, glycerophospholipids are associated with the
pathophysiology of PCOS [62], and enzymes involved in the glycerophospholipid pathway
have been suggested as promising anticancer therapeutic targets [63]. Our results showed
that metformin acutely induced a decrease in the level of some glycerophospholipids (e.g.,
phosphatidylcholine and phosphatidylethanolamine) in an opposed manner to its pattern
at the five time points. In line with our data, the level of eight glycerophospholipids
declined after 12 weeks of metformin treatment in PCOS patients [28].

Metformin has been reported to have body-weight-lowering effects. Many studies
support that metformin can promote weight loss in overweight or obese patients [64–66].
Metformin therapy during gestation reduces weight gain and visceral white adipose tissue
mass. It offers plenty of effects suitable for inhibiting obesity’s key mechanisms in visceral
white adipose tissue, such as inflammation, oxidative stress, and tissue dysfunction [67].
A previous animal study found that metformin has a dual effect on the differentiation
of 3T3-L1 preadipocyte cells by promoting or suppressing adipogenesis and that lower
concentrations of metformin induce 3T3-L1 preadipocyte differentiation. In comparison,
higher concentrations of metformin inhibit adipogenesis [68]. The rat adipocytes culture in
a high glucose concentration promoted the basal rate of glycerol release and significantly
enhanced the lipolytic action stimulated by either TNF-α or isoproterenol. Metformin
inhibits basal lipolysis stimulated by high glucose. It suppresses the high-glucose-enhanced
lipolysis response to TNF-α or isoproterenol, reducing free fatty acid concentration and
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thus improving insulin sensitivity in obese patients and the hyperglycemic conditions of
T2DM [69].

It is worth mentioning that literature has pointed to the effect of metformin on clinical
lipid profile (e.g., HDL, LDL, triglyceride); however, this effect is pronounced after long-
term therapy (>3–6 months) and mainly in diabetic patients [21,70]. Therefore, the effect
of metformin on lipid profile (e.g., HDL, LDL, triglyceride) was not measured herein, as
only a single dose of metformin was given to healthy subjects, and its effect on the serum
lipidome was monitored for 36 h. The association identified herein between several lipid
molecular species and metformin suggests that the pleiotropic effect of metformin could
be linked to its effect in lipid metabolism and lipid signaling pathways. The alteration in
the lipid level was induced acutely after a single dose of metformin. Further investigation
is warranted to gain better insights into the functional significance of the current findings
under chronic conditions and to validate the potential of metformin-dependent lipids to
act as biomarkers to monitor the pharmacological effects of metformin.

4. Materials and Methods
4.1. Subject Recruitment and Study Design

The detailed study design was published in our recent work [30]. Briefly, 26 healthy
male subjects aged 18–50 years were enrolled in the study after obtaining ethical approval
(IRB-01-R02) and written informed consent. Subject recruitment and blood sample collec-
tion were conducted at Jordan Center for Pharmaceutical Research, Amman, Jordan. Each
participant received a single oral dose of 500 mg metformin hydrochloride film-coated
tablet under standard fed conditions [30]. For each subject, blood samples were collected
at five time points; pre-metformin administration, 1.5 h before the Cmax, Cmax, 2 h after
Cmax, and 36 h post-metformin administration, to provide a comprehensive view of the
changes in the lipid pattern induced by metformin. Participants’ different clinical data
were obtained as specified in our previous study [30]. This included physical examination
and measurements of blood pressure, heart rate, blood glucose levels, and HbA1c value.
Details on examinations performed during screening and follow-up periods are included
in our previous work [30].

4.2. Liquid Chromatography–Mass Spectrometry (LC-MS/MS) Lipid Profiling

A total of 130 serum samples (representing five time-point serum samples for each par-
ticipant) were analyzed using liquid chromatography–high resolution mass spectrometry
(LC-MS/MS). Initially, metabolites and lipids were extracted as previously described [71].
Lipid profiling was carried out using QExactive MS coupled with Ultimate 3000 LC (Thermo
Fisher Scientific, Santa Clara, CA, USA). Mass ions were separated using an ACQUITY
UPLC HSS T3 column (Cat#186003539) (Waters, Milford, MA, USA) and a binary mobile
phase composed of 0.05% formic acid (Cat# F0507, Sigma, Burlington, MA, USA) as sol-
vent A and acetonitrile (Cat#: 34851, Sigma) as solvent B. Gradient elution was applied
over 16 min at 300 µL/min flow rate. MS spectra were acquired under positive and neg-
ative electrospray ionization modes (ESI+, ESI−) with 25,000 enhanced mass resolution
in full MS scan (m/z 50–1500) using data-dependent MS/MS (dd MS/MS) scan mode.
Chromatographic and MS parameters were kept as described previously [71].

4.3. Data Processing and Lipids Identification

The acquired MS raw data were processed using the Progenesis QI v3.0 software from
Waters (Waters Technologies, Milford, MA, USA). A standard pipeline for data processing
was followed, starting with peak alignment based on the m/z value and the ion signals’
retention time, peak picking, and then signal filtering based on the peak quality. Features
detected in at least 50% of the samples were retained for further analyses. The identity of
lipid molecules was depicted mainly by ChemSpider tool on lipid species. The precursor
mass and theoretical MS/MS fragmentation tolerance values were set to a 5 ppm mass
window and filtered by elemental composition and an isotope similarity score of 80%.
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Additionally, lipids were identified by matching the MS data obtained with free databases:
the Human Metabolome Database (www.hmdb.ca, accessed on 11 November 2021) and
LipidMaps (https://www.lipidmaps.org, accessed on 10 November 2021); then LipidBlast,
a computer-generated MS/MS database produced by the Metabolomics Fiehn Lab [72],
and METLIN (www.metlin.scripps.edu, accessed on 15 November 2021).

4.4. Statistical Analysis

Multivariate statistical analysis was performed using SIMCAP+14 (Umetrics AB,
Umeå, Sweden). The imported datasets (mass ions with their normalized abundances) were
Pareto-scaled, log-transformed, and then used to generate PCA, PLS-DA, and OPLS-DA
models. PLS-DA and OPLS-DA models created were evaluated using the fitness-of-model
(R2Y) and predictive ability (Q2) values [73]. The model is considered robust when R2Y
values are close to 1, and Q2 values are more than 0.5 [73].

Univariate analysis was performed using Mass Profiler Professional v15.0 (MPP) Software
(Agilent Inc., Santa Clara, CA, USA). The total sample median was used to normalize the
signal and ensure normal distribution. One-way analysis of variance (ANOVA) with Tukey’s
post hoc analysis was performed among the five-time points with a significant value of less
than 0.05 for the FDR corrected p-value. Volcano plot representation was used to identify
significantly altered mass features based on an FC cutoff of 1.5 and FDR < 0.05. Venn dia-
grams and the Pearson similarity test were developed using MPP Software v15.0 (Agilent Inc.,
Santa Clara, CA, USA) [74]. Heatmap analysis for altered features was performed using the
distance measure Pearson. According to the Pearson similarity test, significantly altered lipid
species showing similar/adverse kinetics to metformin were classified according to LipidMaps
(https://www.lipidmaps.org, accessed on 15 November 2021).

5. Conclusions

MS-based lipid profiling for serum samples collected at different time points was
applied to unravel the effect of metformin on lipid metabolism in healthy subjects. Our
findings revealed that metformin significantly altered AA metabolism by decreasing the
level of several prostanoids, eicosanoids, and S1P signaling pathways by suppressing the
level of S1P. Moreover, some glycerolipids and glycerophospholipids showed a change
in their level as opposed to the metformin pattern. The altered lipids and metformin-
dependent lipids could be linked to the well-known favorable effects of metformin in T2DM,
insulin resistance, PCOS, cancer, and cardiovascular diseases. A more comprehensive
understanding of the mechanisms by which metformin is affecting the S1P signaling
pathway remains to be explored in future studies.

One limitation of the study is the absence of samples from females due to the restricted
conditions followed in the study design to limit the variations. Subjects lived in a controlled
environment (e.g., diet, health status, etc.) and were under clinical monitoring in the center
during the metformin intake and the follow-up period, which largely limited the participa-
tion of females. Therefore, investigating the level of metformin-dependent lipids in females
newly diagnosed with PCOS before and after treatment with metformin remains crucial to
validate the role of the discovered potential biomarkers in PCOS. Moreover, further research
is warranted to highlight the effect of metformin in the identified dysregulated lipid pattern
under pathological conditions, including diabetes. Once validated, metformin-dependent
lipids might be used as promising biomarkers to monitor the effect of metformin and
predict the potential effect of other therapeutics and chemical compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911478/s1.

Author Contributions: Conceptualization, A.M.A.R.; data curation, M.M.; formal analysis, L.A.D.,
R.H.A., A.A.A. and H.B.; funding acquisition, M.M.; investigation, L.A.D., T.A. and A.M.A.R.;
methodology, T.A.; resources, L.A.D., T.A. and A.M.A.R.; software, R.H.A.; supervision, A.M.A.R.;

www.hmdb.ca
https://www.lipidmaps.org
www.metlin.scripps.edu
https://www.lipidmaps.org
https://www.mdpi.com/article/10.3390/ijms231911478/s1
https://www.mdpi.com/article/10.3390/ijms231911478/s1


Int. J. Mol. Sci. 2022, 23, 11478 15 of 18

writing—original draft, L.A.D.; writing—review and editing, R.H.A., T.A., A.A.A., H.B. and A.M.A.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University Diabetes Center, King Saud University.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Jordan Center for Pharmaceutical
Research (IRB-01-R02).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The raw data of this study were deposited to MetaboLights, and
can be accessed through this link https://www.ebi.ac.uk/metabolights/editor/www.ebi.ac.uk/
metabolights/MTBLS2949, accessed on 11 November 2021.

Acknowledgments: The authors would like to express their gratitude to the Executive Director of
the Center for Genome Medicine, Chairman of the Department of Clinical Genomics, King Faisal
Specialist Hospital and Research Centre, for the support and subjects, contributed to this project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 Update to:

Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and
the European Association for the Study of Diabetes (EASD). Diabetes Care 2020, 43, 487–493. [CrossRef]

2. Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B.
Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and
the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [CrossRef]

3. Rojas, L.B.A.; Gomes, M.B. Metformin: An old but still the best treatment for type 2 diabetes. Diabetol. Metab. Syndr. 2013, 5, 6.
[CrossRef] [PubMed]

4. Baker, C.; Retzik-Stahr, C.; Singh, V.; Plomondon, R.; Anderson, V.; Rasouli, N. Should metformin remain the first-line therapy for
treatment of type 2 diabetes? Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018820980225. [CrossRef]

5. Wang, Y.-W.; He, S.-J.; Feng, X.; Cheng, J.; Luo, Y.-T.; Tian, L.; Huang, Q. Metformin: A review of its potential indications. Drug
Des. Dev. Ther. 2017, 11, 2421–2429. [CrossRef] [PubMed]

6. Huang, W.; Castelino, R.L.; Peterson, G.M. Lactate Levels with Chronic Metformin Use: A Narrative Review. Clin. Drug Investig.
2017, 37, 991–1007. [CrossRef]

7. Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [CrossRef]
8. Viollet, B.; Guigas, B.; Garcia, N.S.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: An

overview. Clin. Sci. 2012, 122, 253–270. [CrossRef]
9. Zhang, B.B.; Zhou, G.; Li, C. AMPK: An Emerging Drug Target for Diabetes and the Metabolic Syndrome. Cell Metab. 2009, 9,

407–416. [CrossRef]
10. Grzybowska, M.; Bober, J.; Olszewska, M. Metformin—Mechanisms of action and use for the treatment of type 2 diabetes mellitus.

Postepy Hig. I Med. Dosw. 2011, 65, 277–285. [CrossRef]
11. Driver, C.; Bamitale, K.D.S.; Kazi, A.; Olla, M.; Nyane, N.A.; Owira, P.M.O. Cardioprotective Effects of Metformin. J. Cardiovasc.

Pharmacol. 2018, 72, 121–127. [CrossRef] [PubMed]
12. Guo, M.; Mi, J.; Jiang, Q.-M.; Xu, J.-M.; Tang, Y.-Y.; Tian, G.; Wang, B. Metformin may produce antidepressant effects through

improvement of cognitive function among depressed patients with diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 2014, 41,
650–656. [CrossRef] [PubMed]

13. Seifarth, C.; Schehler, B.; Schneider, H.J. Effectiveness of Metformin on Weight Loss in Non-Diabetic Individuals with Obesity.
Exp. Clin. Endocrinol. Diabetes 2013, 121, 27–31. [CrossRef] [PubMed]

14. Barbieri, R.L. Metformin for the treatment of polycystic ovary syndrome. Obstet. Gynecol. 2003, 101, 785–793. [CrossRef]
15. Yu, X.; Mao, W.; Zhai, Y.; Tong, C.; Liu, M.; Ma, L.; Yu, X.; Li, S. Anti-tumor activity of metformin: From metabolic and epigenetic

perspectives. Oncotarget 2016, 8, 5619–5628. [CrossRef]
16. Bonnefont-Rousselot, D.; Raji, B.; Walrand, S.; Gardès-Albert, M.; Jore, D.; Legrand, A.; Peynet, J.; Vasson, M. An intracellular

modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism
Clin. Exp. 2003, 52, 586–589. [CrossRef]

17. Kane, D.A.; Anderson, E.J.; Price, J.W., III; Woodlief, T.; Lin, C.-T.; Bikman, B.T.; Cortright, R.N.; Neufer, P.D. Metformin selectively
attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats. Free Radic. Biol.
Med. 2010, 49, 1082–1087. [CrossRef]

18. Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A Critical Review of the Evidence That Metformin Is a Putative
Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front. Endocrinol. 2021, 12, 718942. [CrossRef]

19. Ott, J.; Hiesgen, C.; Mayer, K. Lipids in critical care medicine. Prostaglandins Leukot. Essent. Fat. Acids 2011, 85, 267–273. [CrossRef]

https://www.ebi.ac.uk/metabolights/editor/www.ebi.ac.uk/metabolights/MTBLS2949
https://www.ebi.ac.uk/metabolights/editor/www.ebi.ac.uk/metabolights/MTBLS2949
http://doi.org/10.2337/dci19-0066
http://doi.org/10.2337/dci18-0033
http://doi.org/10.1186/1758-5996-5-6
http://www.ncbi.nlm.nih.gov/pubmed/23415113
http://doi.org/10.1177/2042018820980225
http://doi.org/10.2147/DDDT.S141675
http://www.ncbi.nlm.nih.gov/pubmed/28860713
http://doi.org/10.1007/s40261-017-0564-6
http://doi.org/10.1007/s00125-017-4342-z
http://doi.org/10.1042/CS20110386
http://doi.org/10.1016/j.cmet.2009.03.012
http://doi.org/10.5604/17322693.941655
http://doi.org/10.1097/FJC.0000000000000599
http://www.ncbi.nlm.nih.gov/pubmed/29738369
http://doi.org/10.1111/1440-1681.12265
http://www.ncbi.nlm.nih.gov/pubmed/24862430
http://doi.org/10.1055/s-0032-1327734
http://www.ncbi.nlm.nih.gov/pubmed/23147210
http://doi.org/10.1016/s0029-7844(03)00045-0
http://doi.org/10.18632/oncotarget.13639
http://doi.org/10.1053/meta.2003.50093
http://doi.org/10.1016/j.freeradbiomed.2010.06.022
http://doi.org/10.3389/fendo.2021.718942
http://doi.org/10.1016/j.plefa.2011.04.011


Int. J. Mol. Sci. 2022, 23, 11478 16 of 18

20. Pernicova, I.; Korbonits, M. Metformin—Mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol.
2014, 10, 143–156. [CrossRef]

21. Lin, S.H.; Cheng, P.C.; Tu, S.T.; Hsu, S.R.; Cheng, Y.C.; Liu, Y.H. Effect of metformin monotherapy on serum lipid profile in
statin-naïve individuals with newly diagnosed type 2 diabetes mellitus: A cohort study. PeerJ 2018, 6, e4578. [CrossRef] [PubMed]

22. Kashi, Z.; Mahrooz, A.; Kianmehr, A.; Alizadeh, A. The Role of Metformin Response in Lipid Metabolism in Patients with
Recent-Onset Type 2 Diabetes: HbA1c Level as a Criterion for Designating Patients as Responders or Nonresponders to Metformin.
PLoS ONE 2016, 11, e0151543. [CrossRef] [PubMed]

23. Zabielski, P.; Hady, H.R.; Chacinska, M.; Roszczyc, K.; Górski, J.; Blachnio-Zabielska, A.U. The effect of high fat diet and
metformin treatment on liver lipids accumulation and their impact on insulin action. Sci. Rep. 2018, 8, 7249. [CrossRef] [PubMed]

24. Dahabiyeh, L.A.; Malkawi, A.K.; Wang, X.; Colak, D.; Mujamammi, A.H.; Sabi, E.M.; Li, L.; Dasouki, M.; Rahman, A.M.A.
Dexamethasone-Induced Perturbations in Tissue Metabolomics Revealed by Chemical Isotope Labeling LC-MS Analysis. Metabo-
lites 2020, 10, 42. [CrossRef] [PubMed]

25. Dahabiyeh, L.; Mahmoud, N.; Al-Natour, M.; Safo, L.; Kim, D.-H.; Khalil, E.; Abu-Dahab, R. Phospholipid-Gold Nanorods Induce
Energy Crisis in MCF-7 Cells: Cytotoxicity Evaluation Using LC-MS-Based Metabolomics Approach. Biomolecules 2021, 11, 364.
[CrossRef] [PubMed]

26. Stephenson, D.J.; Hoeferlin, L.A.; Chalfant, C.E. Lipidomics in translational research and the clinical significance of lipid-based
biomarkers. Transl. Res. 2017, 189, 13–29. [CrossRef]

27. Spener, F.; Lagarde, M.; Géloên, A.; Record, M. What is lipidomics? Eur. J. Lipid Sci. Technol. 2003, 105, 481–482. [CrossRef]
28. Pradas, I.; Rovira-Llopis, S.; Naudí, A.; Bañuls, C.; Rocha, M.; Hernandez-Mijares, A.; Pamplona, R.; Victor, V.M.; Jové, M.

Metformin induces lipid changes on sphingolipid species and oxidized lipids in polycystic ovary syndrome women. Sci. Rep.
2019, 9, 16033. [CrossRef]

29. Zhang, Y.; Hu, C.; Hong, J.; Zeng, J.; Lai, S.; Lv, A.; Su, Q.; Dong, Y.; Zhou, Z.; Tang, W.; et al. Lipid Profiling Reveals Different
Therapeutic Effects of Metformin and Glipizide in Patients with Type 2 Diabetes and Coronary Artery Disease. Diabetes Care 2014,
37, 2804–2812. [CrossRef]

30. Dahabiyeh, L.A.; Mujammami, M.; Arafat, T.; Benabdelkamel, H.; Alfadda, A.A.; Rahman, A.M.A. A Metabolic Pattern in Healthy
Subjects Given a Single Dose of Metformin: A Metabolomics Approach. Front. Pharmacol. 2021, 12, 678838. [CrossRef]

31. Das, U.N. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: A review. J. Adv. Res. 2018,
11, 43–55. [CrossRef] [PubMed]

32. Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 41–48. [CrossRef]
[PubMed]

33. Szczuko, M.; Kikut, J.; Komorniak, N.; Bilicki, J.; Celewicz, Z.; Ziętek, M. The Role of Arachidonic and Linoleic Acid Derivatives
in Pathological Pregnancies and the Human Reproduction Process. Int. J. Mol. Sci. 2020, 21, 9628. [CrossRef] [PubMed]

34. Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids:
Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [CrossRef] [PubMed]
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