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RECENTLY we have shown (Laird, 1964) that the growth of a variety of tumors
of the mouse, rat and rabbit, whether transplanted or primary, is well described
by a Gompertzian equation. Such growth may be regarded as an exponential
process limited by an exponential retardation, and tumor growth was therefore
interpreted as being due mainly, if not entirely, to an exponential proliferation of
tumor cells whose successive mean generation times increase according to an
exponential equation.

For the present study, corresponding points on the growth curves of different
tumors have been defined, and the growth rates of the tumors compared at these
points. In addition, the growth curves have been extrapolated back to a tumor
size of one cell, and the time at which the tumor would have existed as a single
cell, the initial rate of tumor growth, and the range of tumor growth from a single
cell to the theoretical limiting size have been computed for each tumor. From this
analysis several constant relations have emerged, which provide further insight
into the general nature of tumor growth.

ANALYSIS OF TUMOR GROWTH

For the present study the same tumor data were used as in the first paper of
this series (Laird, 1964). The tumors are 19 examples of 12 different tumors of
the mouse, rat, and rabbit. The following analysis is based on the same Gompert-
zian growth equation* as used in the original paper:

W - Woe(la)(1-e-at) (1)

where WO is the tumor size at time zero, W is the tumor size at time t, and A and a
are constants.

Fig. 1 shows the computed Gompertz curve fitted to the E14 tumor, high dose.
This example illustrates several pertinent properties of the Gompertz curve : In
its early stages the curve is concave upward, it then passes through an inflection
point which occurs at about 37 % of the final limiting tumor size, and the curve is
then concave downward as it approaches the asymptote. Because of the mathe-
matical nature of the Gompertz function, any Gompertz curve can be considered
to begin as a simple exponential process which then is retarded exponentially as

* The special form of the Gompertz function used here was developed several years ago by S. A.
Tyler of Argonne National Laboratory, for representing our model of exponential growth retarded
by an exponential decay of the specific growth rate.
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time continues. In Fig. 1, in addition to the computed Gompertz curve, we have
shown the exponential curve that corresponds to the initial exponential growth of
the E14 tumor at the time of the first data point; this is the curve tumor growth
would have followed if no retardation had occurred.
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FIG. 1.-A plot of the growth data of the El4 tumor at high dose. The theoretical Gompertz

curve that best fits the data is shown; the data cover a wide range of the curve, and ap-
proach the asymptote. A simple exponential curve is also shown, constructed on the
basis that the doubling time observed at the time of the first data point remains constant
throughout growth of the tumor; the great deviation from simple exponential growth is
obvious.

The growth data for many other tumors show proportionally less retardation
during the period of observation; in these cases the Gompertz function will fit
the data best in a region of the curve further to the left than is the case for the
E14 tumor shown in Fig. 1. The growth of the 6C3HED, high dose, is illustrated
in Fig. 2; the best fit of the Gompertz curve for this tumor occurs in the region
either side of the inflection point, where the curve is relatively straight. In Fig. 3
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is shown a plot of the growth data for the W26b 1, aIn example of the Walker tumor
of the rat ; in this case so little retardation of the initial growth was experienced
by the tumor that one would have obtained a reasonably good fit using a simple
exponential function. However, if instead of trying to fit all the data points,
we again observe the retardation of the specific growth rate from the first point on,
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Finr. 2. The grvowth data of the 6C3HED tumor at high dose. The growth of this tumor lies
a short distance on either side of the inflection point, and because of its position in the
midd'le of the siginoid curve, it approximates a straight line. In this region, the growth
curve deviates appreciablv from a simple exponential ecurve.

we see that a regularly increasing retardation did indeed occur for this tumor
as well, as illustrated in Fig. 3. This retardation is statistically significant.
However, for one of the Walker tumors, the WlOb4, the retardation was so small
that growth of this tumor was not significantly different from simple exponential
growth. Even this tumor does not constitute an exception to our model of tumor
growth, however, because simple exponential growth may be regarded as a
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special case of Gompertzian growth, in which the decay constant, a, is not signi-
ficantly different from zero (Laird, 1964).

.\Tormalized growth curve
After the individual Gompertz curves have been computed for each tumor,

it is possible to normalize the time and size scales of these computed curves, and to
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Fi(:. 3.---One of the Walker- tumors, the W26bl. Deviation from simple exponential growth

is smnall, but statistically significant.

superimpose all the tumor growth data on a single figure. The data for the 19
tumors included in the present report are plotted in this manner in Fig. 4.

For this figure, the inflection point was chosen as the point of reference, and the
Gompertzian curves for the individual tumors were normalized on the basis of
the calculated doubling of tumor size immediately preceding the inflection point,
whether the tumors actually reached this size during growth or not. For each
tumor, the computed asymptote was normalized to the value 1-00, and then the
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original data points were reduced to appropriate fractions of the asymptote so
defined. The time scale for each tumor was multiplied by the factor required
to make the time for the calculated doubling preceding the inflection point equal
to 1. The zero point on the normalized time scale was set at the inflection point,
and consequently, for each tumor, the doubling of tumor size immediately pre-
ceding the inflection point extends from -1 to 0.
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FIG. 4.- A " normalized " Gompertzian plot, in which the growth data for 19 examples of
12 different tumors of the rat, mouse and rabbit have been superimposed after adjustment
of the units on the two axes; the point of reference, at the intersection of the two scales,
is the inflection point of the growth curve. The units on the ordinate (tumor size) are
decimal fractions of the asymptotic tumor size; the unit of time on the abscissa is the
time required for the doubling immediately preceding the inflection point (extending from
-1 to 0 in this figure).

The number of cells and time in days actually associated with the standard
doubling are given for each tumor in Table I.

It is apparent from Fig. 4 that an extensive range of Gompertzian growth is
represented by this series of tumors considered as a whole. This fact is a conse-
quence of the wide range in degree of retardation experienced by this sample of
tumors, from a statistically insignificant retardation in the case of the WlOb4
(the cluster of points farthest to the left in Fig. 4) to so great a retardation, in the
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TABLE I.-Normalization of Gompertzian Growth Curves

Tumour
.Mo8e

MC1M
Ehrlich
Osteosarcomas
Krebs
El 4-low dose
El 4-high dose
DBA lymphoma
6C3HED-high
6C2HED-low
E0771

Standard doublingt

Time
Ref. Cells (days)

(1)
(1)
(2)
(3)
(4)
(4)
(4)
(4)
(4)
(5)

8-47 x 107
4-71 x 108
4.94x108*
1-79x 108
2-47 x 108
2-31 x 108
1- 94 x 108
2-45 x 108
4-13 x 108
8-97 x109*

1-5
2-4

23-3
1-3
1 -2
1-0
0-9
1-8
1-9
8-3

Range of observed growth
IA - 5

Timet

-3-48 to +4-42
-3-94 to +1-35
-3-24 to +1-0
-4-12 to +2-71
-2-82 to +4-94
-1-76 to +8- 71
-2-47 to +10-6
-1-71 to +1-59
-2-71 to -0-06
-3-71 to -0-47

Size§

3-8xlO-3to IOx100
5-5X10-4to 6-2x10-1
9-6x10-4to 7-2x10-1
1-1 xlO-3 to 7-7x10-1
1-4x 10-2 to 9-4x 10-1
1.2 x 10-' to 1-0 x 100
5X3x 10-2 to 9 -5x10-1
7X5x 10-2 to 6-7 x 10-
2-4x 10-2 to 3-5 x 10-1
2-5x10-4to 2-8x10-'

Rat-
Walker 256:
W26bl
W12a7
WlOa6
WlOb4

R39 Sarcoma:
R3a7
R4C4
a7R3

Flexner-Jobling

Rabbit

(6)
(7)
(7)
(7)

(8)
(8)
(8)
(9)

7 - 83 x 1011*
3-17 x 1012*
1 - 91 x 1011*
5 - 31 x 1031*

1 -06 x 1015*
2- 12 x 1015*
1- 19 x 101'*
2-20 x 101l*

24-1
25-7
13-5

174-0

4-2
6-8
8-4
10-9

-4-12to -2-59
-4-82 to -3-3
-4-24 to -1-53
-6-95 to -6-48

-3-23 to + 3- 36
-3-23 to +0- 88
-3-71 to +1-59
-3-36 to -0-12

8 -2 x10- to 1 -8 X 10-2
5-7x10-8 to 2-9x10-3
6-2 X 10-4 to 1.1x 10-1
1-6 x 10-19 to 9-3 x 10-12

2-6x10-3to 9 1x10-1
2X3 x 10-3 to 5 9 x 10-
1-4x10-4 to 8-3x 10-'
2-3x10-3 to 3-6x 10-1

Brown-Pearce:
B18a5 . (8) 5.60x 1014* 3-1 -2-88to +6-18 6-8x10-3to9-6x10-1

* For these solid tumors it was assumed that 450x 106 cells occupied one gram; this is the
observed number of tumor cells per gram for a number of rat tumors (Laird, 1954).

t The time interval and number of cells required for the doubling of the calculated tumor size
immediately preceding the inflection point.

$ Time at first and last data points, on the time scale shown in Fig. 4. On this normzlized time
scale, the inflection point is designated zero.

§ Calculated size at first and last data points, expressed as a fraction of the computed asymptote.
At the inflection point, this fraction is 0 -37.

Literature references: (1) Klein and Revesz, 1953; (2) Finkel, Bergstrand and Biskis, 1961
(3) Patt and Blackford, 1954; (4) Revesz and Klein, 1954; (5) Ting, 1952; (6) Shrek, 1936a;
(7) Shrek, 1935; (8) Shrek, 1936b; and (9) Sugiura and Benedict, 1920.

case of the MC1M and the El4 tumors, at high dose, that the last data points show
no consistent increase in the size of the tumor.

In general, the mouse tumors all approach the asymptote rather closely.
Among the rat tumors, the Walker 256 lies far to the left of the inflection point,
in all its examples, but the R39 sarcoma and the Flexner-Jobling resemble the
mouse tumors more closely, in approaching or passing through the inflection point.
The single example of the Brown-Pearce tumor studied here covers a wide range
of growth and extends well beyond the inflection point.

Thus some tumors show strong retardation within the life of the host, while
others, although conforming to the Gompertzian model, deviate relatively little
from exponential growth during the period of- observation. This finding lends
further support to the conclusion expressed in the first paper of this series, that
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the Gompertzian retardation of growth is not a fortuitous result of the failure of
the dying host to afford nutritional support to tumor growth, but is a characteristic
property of the growth of tumors in the animal host.

Comparison of growth rates
If tumor growth followed a simple exponential curve, the time required to

double the tumor mass would remain constant throughout growth. However
tumor growth is better described by a Gompertzian equation in which the exponen-
tial growth process undergoes an exponentially increasing retardation (Laird,
1964). Therefore the exponential growth rate is constantly changing (decreasing)
as growth progresses, and if growth rates of different tumors are to be compared
it is necessary to make the comparison at corresponding points in the growth
process.

The relative position of any point on the growth curve can be defined by the
ratio of the tumor size at that point to the computed tumor size at the asymptote,
and points on different Gompertzian curves are corresponding points if the ratio
of the tumor size at each of these points to the asymptote of its own curve is the
same. (The mathematical analysis necessary to demonstrate this relation is
presented in another paper (Laird, Tyler and Barton, unpublished data).

The point chosen for the comparison of growth rates in the following example
is that at which the above ratio is 0-137, which lies in the region of overlap of most
of the data (Table I); this point has the advantage that nearly all the tumors
actually passed through this phase of the growth process, the only exceptions
being the Walker tumors of the rat. In Table II are given the time after the
authors' original time zero at which this point occurred, the number of cells
already present, and the rate of growth of each tumor expressed both as the
instantaneous daily rate of production of new cells and the instantaneous doubling
time at that point. It should be noted that since the doubling times increase
according to an exponential function throughout the growth process (Laird, 1964)
the actual time required to double the tumor size would itself be lengthening
appreciably during the doubling process.

At the point taken for comparison, the tumors of this series differ greatly in
size (Table II). Most of the transplanted mouse tumors consist of only a few
hundred million cells at this time, and the primary mouse tumors, the osteo-
sarcomas, are sma.ller than the transplanted tumors by a factor of 10. On the
other hand, the rabbit and rat tumors, with the exception of the Flexner-Jobling,
are from 1000 to many millions of times bigger than the mouse tumors at corres-
ponding points in the growth process. Since each tumor has arrived at this size
by an exponential process of cell multiplication, we can conclude that at corres-
ponding points in Gompertzian growth, the rabbit and rat tumors have passed
through many more cell generations than have the mouse tumors. This conclusion
is supported by other findings in our analysis, as described below and shown in
Tables III and IV.

The time after the authors' original time zero at which tumor size corresponds
to 0.137 of the asymptotic size also differs from tumor to tumor, as we might expect,
since the tumors were implanted under a variety of experimental conditions,
without reference to a Gompertzian growth curve.

The instantaneous rates of growth of these tumors also differ greatly from
one another, and show only a moderate degree of correlation with the size already
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TABLE II.-Rates of Growth of Various Turmors at a Size Corresponding
to 0-137 Times the Asymptote

Time from Cells already Rate of growth Doubling
Tumor To (davs) present ( x 10-6) cells/day x 10-6 time (days)*

Mouse-
MC,M . . 398 . 63 . 44-1 . 1-4
Ehrlich 6-83 . 350 . 150 . 3
Osteosarcomas . 51-20 . 367 . 16-6 22 -0
Krebs . . 4-53 . 134 . 109 1-2

E14-lowdose . 374 . 183 166 . 11
El4-high dose . . 240 171 . 187 . 0 9
DBA lymphoma. . 3 07 . 144 . 164 0 9
6C3HED-high 1-72 . 182 . 105 17
6C3HED-low . 3-60 . 307 . 169 18
E0771 . . . 26- 20 . 6,665 . 840 7- 9

Rat-
Walker 256:
W26bl 74- 2 580,000 25,000 23
W12a7 . . 104-0 561 x106 . 229x106 . 25
WlOa6 . 39- 4 33- 9x10 . 64x106 13
WlOb4 . 1018-0 945x1018 570x 1018 166

R39 Sarcoma:
R3a7 . . 13- 2 . 1-6x106 388,000 4-1
R4C4 16- 0 3- 8x106 585,000 d)5
a7R3 . 28 4 2-1x106 261,000 8 0

Flexner-Jobling 29 0 1644 159 10- 2

Rabbit-
Brown-Pearce:

B18a5 . 7 8 986,000 332,000 . 30

* This is an"instantaneous " doubling time; that is. it is the time that would be required to
double the number of cells already present when the tumor'has reached a size equal to 0- 137 times
the asymptote, if growth continued at the rate occurring at that instant. Since the doubling time is
constantly increasing, by an exponential process (Laird, 1964), the time required to double the tumor
size would itself be lengthening appreciably during the doubling process.

achieved by the tumor. Because the doubling time as given in TableII is calcu-
lated as the time in days that would be required to double the size already
attained, at the instantaneous rate of growth present at this point, the range in
doubling times will necessarily reflect the degree of correlation between tumor
size and growth rate. For example, at the point chosen for this comparison, the
daily production of new cells for most of the transplanted mouse tumors is alarge

fraction of the number of cells already present, and in two cases is even greater
than the size already attained; hence the doubling time for these tumors at this
point will be about one day. In the case of other tumors where the daily rate of
proliferation is only a small fraction of the number of cells already present, many

days will be required to double the tumor size. This relationship is illustrated
by the rat tumors generally, and by the primary osteosarcomas of the mouse.

If we chose any other set of corresponding points at which to compare these
tumors, the same relationships would hold among the tumors; only the absolute
magnitude of each of these parameters of tumor growth would be increased or

decreased by a constant ratio, as we shift our attention from point to point along
the growth curve.
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TABLE III.-Extrapolation of Growth Curve to a Tumor Size of One Cell
Time at Initial Number doublings,
one cell growth rate one cell to

Tumor (days*) (cells/day) asymptote
Mouse-

MC1M . . 2-56 . 7O00 . 28* 8
Ehrlich . . . 4- 23 . 4- 67 . 31 3
Osteosarcomas . . 537 . 049 . 31*3
Krebs . . 1-17 . 850 . 29 8
E14-low dose . 144 956 . 30 4
E14-high dose . 1-87 . 11-5 . 304
DBA lymphoma . 102 . 11.9 30*0
6C3HED-high dose . 640 . 6-10 . 30 3
6C3HED-lowdose . 500 . 597 . 31-0
E0771 . . 134 . 156 35.5

Rat-
Walker 256:
W26bl . 48*6 . 0*63 . 41-9
W12a7 . . 39.4 . 0 77 54-0
WlOa6 337 . 135 . 50.0
WlOb4 . . 136 . 0 20 . 94 2

R39 Sarcoma:
R3a7 . . 9 0 . 3 94 . 45.7
R4C4 . . 19 8 2-52 46- 7
a7R3 . . 15.9 . 1 99 . 46-0

Flexner-Jobling . 216 . 1 12 . 33.5

Rabbit-
Brown-Pearce:
B18a5 . . 81 . 5 00 . 42*7

* Days before the time zero of the original data.

Extrapolation of growth curve to tumor size of one cell
A point of great biological significance at which to compare the tumors is that

at which the size is one cell. The growth curve can easily be extrapolated back
to this value, by solving equation (1) for W = 1 cell.

In Table III the tumors are compared at this size with respect to (1) the time
before the authors' time zero at which the tumors would have had a size of one
cell; (2) the initial rate of cell proliferation, in cells per day; and (3) the number
of doublings of tumor size required to reach the computed limiting size if growth
had started in the present host from a single cell.

The values computed for the time at which these tumors would have existed
as a single cell are entirely plausible. For the transplanted tumors of the mouse
this time ranges from about 1 to 6-4 days before the time of implantation, with the
exception of the E0771. The times are distinctly longer for the rat tumors,
ranging from about 1 to 7 weeks, with the exception of the very slow-growing
Walker tumor, the WlOb4. These values are plausible but difficult to judge
critically. On the other hand, the one set of primary tumors, the osteosarcomas,
give us the opportunity for a much more critical analysis. The time zero defined
by the original authors is the time at which the tumors first became visible on an
X-ray film (Finkel, Bergstrand and Biskis, 1961); however, in no case was a tumor
detected before 77 days after the administration of the carcinogen. Therefore
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TABLE IV.-Time Intervals Between Selected Points on Growth Curves
Time interval Time interval

0- 137 to 037 of asymptote onecellto 037 of asymptote
A-

Tumor a* Days Days x a Days Days X a
Mou?se

MC1M . 0-352 1-95 0-686 6-55 2-31
Ehrlich 0-216 3-16 0-684 . 111 2-39
Osteosarcomas 0-023 . 302 0686 . 105 2-41
Krebs 0-411 1-67 0-686 . 570 2-34
El,1-lowdose . 0 455 1-52 0693 518 2-36
E14-high dose . 0551 1-25 0-688 4-27 2-36
DBAlymphoma . 0 572 . 120 0685 . 4.09 2-34
6C3HED-high 0290 2*37 (0686 8-12 2 35
6C3HED-low . 0P277 248 0686 8-58 2-38
E0771 . 0 063 . 109 0*686 . 396 2049

Rat-
Walker 256:
W26bl . 0-0218 . 31*5 0*686 . 123 2-68
W12a7 00205 . 33-6 0688 . 141 2-89
WlOa6 . 0390 . 17-6 0686 72 2"81
WlOb4 . 0*00303 . 227 0 686 . 1146 3-47

R39 Sarcoma:
R3a7 . 0124 . 55 0686 . 21-8 2-78
R4C4 .

.

0779 8-9 0*692 . 35*2 2 79
a7R3 0'0626 . 11i0 0692 43 5 2-78

Flexner-Jobling 00485 14 2 0689 50.5 2-47

Rabbit-
Brown-Pearce . .0169 . 441 0693 . 159 270

(Bl8a5)
* The values given here for a are those obtained when the time units of all the tumors are converted

to days; they differ from the values given in the previous paper (Laird, 1964) for those tumors whose
time units were originally given in hours or weeks.

our extrapolation of 54 days back to a tumor size of one cell leaves a minimum
time of 23 days for the production of the first tumor cell. This value is similar to
the minimum time required for the initiation of liver tumors in the rat (Laird and
Barton, 1961).

The initial rate of cell proliferation is given in TableIII. The rates are some-

what faster than would be anticipated on the basis of radioautographic studies of
the mitotic cycle (Hornsey and Howard, 1956; Reiskin and Mendelsohn, 1964).
However, it must be remembered that these figures are obtained by an extra-
polation that spans 12 to 20 doublings on the theoretical curve; the doubling times
determined at a period in tumor growth covered by the actual data (TableII)
are in good agreement with the radioautographic findings.

The number of doublings of tumor size between one cell and the computed
limiting size is a direct function of the ratio found for A/oc when W0 in the growth
equation equals one cell (Laird, 1964; Laird, Tyler and Barton, unpublished
data). For the tumors included in this study, the number of doublings from
one cell to the computed asymptote falls into a regular pattern (Table III). All
the mouse tumors except the E0771 have almost exactly the same values, varying
only ±5 %. Among the rat tumors, the R39 sarcomas show a similar constancy,
but at a different value. Although the values for the Walker tumors are much
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more variable, these tumors appear to constitute a distinct familv, especially if we
omit the extreme exception, the WlOb4. Individual examples of the Flexlner-
Jobling, the E0771, and the Brown-Pearce tumors have values within the range
of the other groups.

Although the range of tumor growth, defined by the effective number of cell
generations required for a tumor to grow from a single cell to the computed upper
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Fi(. 5. Theoretical Gompertzian curves previously fitted to the growth (lata for the E 14
an(1 6C3HED tumors. These two tumors grew at different rates, and therefoie the in(li-
vidual values for A an(d a are quite different. However, these tumors approached almost
exact!.y the samne asymptote, and hence the ratio of A/a is almost exactly the same, when
the equation (1) for the two tumors is solved for W = I cell.

limit of its growth, is apparently specifically defined for many types of tumors, it
should be noted that the rate at which a tumor grows seems to be a highlv indi-
vidual characteristic of a given implant. An1 illustrationi of the difference in the
growth curves obtainied for two tumors growing over the same range of growth,
but at differeint growth rates, and hence with different parameters, is showil in
Fig. 5. The steeper growth curve of the El14 tumor is associated with higher
values of A and a, although the ratio of A to a, and hence the numher of doul;lings
from one cell to the asymptote, is almost exactly the same for the two tumors.
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Tiqne constants of tuanor growth
The poinits at which each tumor has a size equal to 0-137 and 0370 of its

comnputted upper limit are considered in Table IV. We see that when the time
between- two such defined points is multiplied by the characteristic value of a for
each tumor, the product is constant. (The mathematical derivation of ti-Lis relation
is given in Laird, Tyler and Barton, unpublished data.) Therefore a may be
considered to be a " normnalization " constant for the time scale of different
growth processes when each fits a Gompertz curve, provided of course that the
unlits in which time is expressed are the same.

However, when we determine the time required for each tumor to grow from a
single cell to one of the fixed points already defined, and multiply this time by the a
for each tumor, we find no universal constancy. Instead, the pattern of constancy
is similar to that found for the number of doublings from one cell to the computed
asymnptote for each tumor (Table III).

Hence, whether measured in time units or in terms of the ratio of one cell to
the limiting number of cells approached by the tumor in its growth, the tumors
included in the present study fall into several consistent groups: (1) all the mouse
tumors except the E0771, but including the primary osteosarcomas, have one
constant value; (2) the R39 sarcomas have a different constant value; (3) the
Walker tumors have a more variable range of growth; and (4) single examples of
three different tumors have values that lie within the range established for the
other tumors.

DISCUSSION

In the first paper of this series we showed that the growth of a variety of tumors
of the mouse, rat and rabbit could be described very well by a Gompertz functionl
(Equation 1). In the present paper our analysis of tumor growth has been
extended by making use of the mathematical properties of this growth equation,
aind several fundamental characteristics of tumor growth have become apparent.

In the first place, although the growth of each of these tumors can be approxi-
mated bv a Gompertz curve, the region of such a curve occupied by a given tumor
is limited, and to some extent is characteristic of the tumor. In genieral the
mouse tumors occupy a region near the inflection point and extend well toward the
asymptote, while many of the rat tumors occupy a region well back of the inflec-
tioni poinlt. Since the amount of retardation characteristic of the Gompertz func-
tion increases as growth proceeds toward the asymptote, the rat tumors in general
experience much less retardation than do the mouse tumors; i.e., the growth of
the rat tumours resembles simple exponential growth much more closely than does
that of the mouse tumors. Conversely, it is because of the fact that the rat
tumors show much less retardation that they fit the Gompertz curve so far to the
left ; the ' fitting " of the data is essentially a fitting of contours.

Secondly, at corresponding points in the growth process, the rat and rabbit
tumors have generally passed through many more cell generations than have the
mouse tumors, and hence are larger. The time required to double the tumor size
is a function of the instantaneous rate of production of new cells in relation to the
niumber of cells already present, and hence varies from tumor to tumor, but is
generally greater for the rat tumors than for the mouse and rabbit tumors.

Thirdly, when the growth curve is extrapolated back to a tumor size of one
cell, we find plausible values for the time at which each tumor would have had this
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size. In particular, the computed time at which the primary osteosarcomas would
have started growing as a single cell is more than 23 days after the start of exposure
to the carcinogen, a time that agrees well with the findings for other carcinogenic
processes.

In the fourth place, the number of doublings of size required for a tumor to
grow from a single cell to the computed upper limit ofgrowth is essentially constant
at one value for all but one of the mouse tumors, and at another value for all
examples of the R39 sarcomas of the rat. A similar constancy is found for the
time required for such growth, when the time scale is normalized. Hence there
appears to be a strong tendency for different examples of the same tumor to be
characterized by a predetermined range of growth from one cell to a final limiting
size, which can readily be computed, but which is not usually reached before the
death of the host.

These relations suggest strongly that a tumor implanted into a new host grows
as though it were a community of cells derived in that host from a single cell at
some definite time before implantation. It grows as though it were a single
organism, rather than as a population of dissociated individual cells, each the
progenitor of an independent line of tumor cells, as presumably bacteria and
other free cells do when inoculated into a new culture medium. This relation
suggests further that the host plus tumor represents a new, integrated system of
growth whose nature we do not as yet understand.

It is clear, however, that the limitation to tumor growth expressed by the form
of the growth curve is not a simple homograft reaction, i.e., it is not due to a
uniformity in the time course of the development of an immune response, for two
different reasons: in the first place, the primary tumors of this series, the osteo-
sarcomas of Finkel, Bergstrand, and Biskis (1961), fit a Gompertzian pattern of
delayed exponential growth as readily as do the transplanted tumors, and
secondly, the same proportional decay of the specific growth rate is seen in the
normal growth of the organism and of its parts, both embryonic and post-natal
(Laird, Tyler and Barton, unpublished data), where a homograft immunity can
be ruled out with certainty.

The underlying mechanism of the proportional decay of the specific growth
rate in these systems, at the level of cell action and interaction, is not the concern
of the present study, but constitutes a subject for investigation in its own right.
Cell death has been shown to be one of the normal processes of embryonic growth,
in addition to the well-known processes of cell proliferation and cell migration
(Glucksmann, 1940). Loss of cells from the generative population to differentia-
tion has also been suggested as the mechanism responsible for retardation in
embryonic growth (Weiss and Kavanau, 1957) and in renewal systems (Till,
McCulloch and Siminovitch, 1964). If cell death, or removal of cells from the
generative to another pool, is the underlying mechanism, such a process can only
be one whose magnitude increases exponentially during the growth process, as
noted in the first paper of this series (Laird, 1964). The present investigation
furnishes no direct evidence for any of these mechanisms, except to allow us to
rule out homograft immunity as the cause of the exponential retardation.

SUMMARY
Our analysis of tumor growth based on the Gompertzian equation

W = e(A/a)(1-e-at)
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has been extended in the present paper by making use of the mathematical proper-
ties of the growth equation.

We find that the region of the Gompertzian curve fitted by each tumor is
limited and fairly characteristic for each tumor; that at corresponding points
in the growth curve the rabbit and rat tumors are very much larger than the mouse
tumors; that the time required to double the tumor size at corresponding points
on the growth curve are generally greater for the rat than for the mouse and
rabbit tumors, except for the primary mouse tumors. Plausible values are
obtained for the time at which each tumor would have existed as a single cell,
when the growth curve is extrapolated back in time. The range of tumor growth
from one cell to the final limiting tumor size is quite constant at one value for
nearly all the mouse tumors, and at another value for all examples of the R39
sarcoma of the rat.

This unanticipated finding suggests that when a tumor is implanlted into a new
host it grows as though it is a community of cells derived in that host from a
single cell, rather than as a population of independent tumor cells.

The mathematical analysis of the Gompertzian growth curve on which the
present study of tumor growth depends was carried out by A. D. Barton of
Argonne National Laboratory. The details of these mathematical procedures
will be presented in another paper.

This work was supported by the United States Atomic Energy Commission.
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