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Abstract: Synthetic tumor vaccines have been proven to be promising for cancer 

immunotherapy. However, the limitation of the specificity and efficiency of the synthetic 

tumor vaccines need further improvements. To overcome these difficulties, additional 

tumor-associated targets need to be identified, and optimized structural designs of vaccines 

need to be elaborated. In this review, we summarized the main strategies pursued in the 

design of synthetic tumor vaccines, such as multi-component, multivalency, antigen 

modification and other possible ways to improve the efficiency of synthetic tumor vaccines. 
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1. Introduction 

Tumor is one of the most dangerous diseases all over the world. Traditional therapies, such as 

surgery, chemotherapy and radiotherapy, are not always effective and may lead to serious side-effects. 

Therefore, immunotherapy is considered to be safer and more effective as a promising therapy [1]. 

In recent years, several kinds of immunotherapies have been focused on. Activated lymphocytes  

in vitro or antibodies are transported into patients to progress passive immunotherapy. Some  
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immune-related molecules, such as IL-2, are used for activating the immune system as nonspecific 

immunostimulatory agents [2]. Synthetic tumor vaccines have also been developed to elicit an  

antigen-specific immune response to remove tumor tissue and to improve the quality of lives  

of patients [3]. 

2. The Challenges of Synthetic Tumor Vaccines 

The first challenge of synthetic vaccines against tumor is to find the ―right antigens‖ as targets [3]. 

Unlike tumors caused by oncogenic virus, such as human papillomavirus, which expresses specific  

virus-associated antigens, many kinds of tumor cells express self-antigens at higher levels. Therefore, a 

perfect tumor vaccine should elicit an immune response that could not only specifically recognize and 

kill the tumor cells, but also avoid the autoimmune responses. In some kinds of vaccines, extracts of 

tumor tissue or inactivated tumor cells are directly used as a kit of antigens [4]. 

Tumor antigens can be sorted into two parts, tumor-specific antigens, which only express on 

tumor cells, and tumor-associated antigens, which also express on the surface of normal cells at 

lower levels, such as glycoproteins and glycolipids [5,6]. Tumor-associated antigens are widely 

focused on in synthetic tumor vaccines, especially carbohydrates, glycoproteins and glycopeptides. 

Glycosylation is a kind of important modification associated with the processes of cell-cell interaction, 

immunological recognition and cell-vessel adhesion. Many specific changes of carbohydrate structures 

are observed during tumor progression. Therefore, glycoproteins and carbohydrates may be the 

potential targets of the design of tumor vaccines. There are many kinds of tumor-associated 

carbohydrate antigens and glycoprotein antigens. Carbohydrate antigens, such as Tn, TF, STn, GM2, 

Globo H, PsialA, Gb3, Le
y
, GM3, STn and ST, are widely focused on in the development of tumor 

vaccines [7,8]. The appearance of these antigens may be due to the upregulation or downregulation of 

different glycosylation-associated enzymes in tumor cells. MUC1 is a well-known tumor-associated 

glycoprotein antigen, which is overexpressed in many epithelial adenomas, such as colon, prostate, 

ovary and breast [9]. Moreover, overexpression of MUC1 on tumor cells is associated with tumor 

metastasis [10–13]. In tumor cells, MUC1 distributes on all surfaces of the cells. By contrast, MUC1 

only expresses on the free surface of normal cells [14].  

The second challenge of synthetic vaccines against tumor is to elicit a high immune response 

against a certain antigen. Tumor cells may escape the immunological surveillance and cause 

immunological tolerance during tumor progression. Because of immunological tolerance to tumor 

antigens, the immunogenicity of the self-antigen, especially small carbohydrates and glycopeptides in 

synthetic vaccines, is too weak to elicit a robust immune response. Therefore, besides the specificity, 

vaccines need to be powerful enough to break the tolerance and rebuild surveillance, which is important 

for long-term protection [15]. An adjuvant is also added to the vaccine dose to improve the 

immunogenicity of the antigen, providing vaccine delivery and an immunostimulator, such as Freund’s 

Adjuvant, MF59 emulsion, QS-21 and aluminum adjuvant [16]. Improving the immunogenicity of the 

antigen is a main aim of vaccine design. 
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3. Multi-Component Vaccine 

3.1. Carrier Proteins in Vaccine Design 

Carrier proteins are widely used in commercially available combined vaccines. Carrier proteins, 

which have lots of antigens, are highly immunogenic. Therefore, the conjugation of antigens with 

carrier proteins, such as bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH) and tetanus 

toxoid (TT), could improve immune response against the desired antigens. Kunz and co-workers 

conjugated TF-modified or STn-modified MUC1 glycopeptide to TT and found that these conjugates 

elicited a high-level immune response [17,18]. The IgG antibody elicited by these vaccines recognized 

not only tumor cells, but also tumor tissues from patients [19]. Li and co-workers conjugated a series 

of MUC1 glycopeptides to BSA as vaccine candidates and found that glycosylation at the Thr residue 

in the PDTRP domain played important roles in eliciting the immune response (Figure 1) [20]. 

However, carrier proteins often elicit a high-level of immune response against themselves, which is 

probably not useful for immunotherapy against the desired antigens. 

Figure 1. Li’s vaccine consisting of the glycopeptide antigen and the T-cell epitope [20]. 

 

3.2. T-Cell Epitope in Vaccine Design 

Immunological research indicates some important processes in the pathway of immune responses.  

The B-cell epitope is recognized by the B-cell receptor (BCR) on the surface of B-lymphocytes to 

elicit a fast, low-level immune response to produce a low-affinity IgM antibody. However, activation 

of T-helper cells is necessary in the affinity maturation and class switch of antibodies. Therefore, the 

T-helper cell epitope is a potential component for improving the immune response by T-cell activation. 

Based on these previous studies, a more rational structure can be designed [21]. 

Kunz and co-workers designed a two-component vaccine conjugating MUC1 glycopeptide with the  

T-cell epitope from carrier proteins using a flexible spacer [22,23]. The same strategy was used to 

synthesize vaccines consisting of different glycosylated MUC1 peptides. Vaccines of glycosylated 

MUC1 with STn on the Thr site in the PDTRP motif elicited the highest titer [24]. Li and co-workers 

synthesized vaccines consisting of 20-residue MUC1 glycopeptide and different T-cell epitopes from 

tetanus toxoid. Immunological evaluation demonstrated that the FNNFTVSFWLRVPKVSASHLE 

sequence could adjuvant the MUC1 glycopeptide to elicit a higher-level immune response without 

extra adjuvant (Figure 2) [25].  

Figure 2. Li’s vaccine consisting of the glycopeptide antigen and the T-cell epitope [25]. 
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3.3. Toll-Like Receptor Agonist in Vaccine Design 

The Toll-like receptor (TLR) in mammals is a kind of receptor that recognizes pathogen-associated 

molecular patterns (PAMPs) [26,27]. Agonist recognized by TLR may activate the pathway to regulate 

the expression of immune-related genes to activate the innate immune system and, consequently, the 

adaptive immune system [28–30]. Therefore, the TLR agonist can be used as an adjuvant in vaccine 

design. There are several kinds of TLRs that could recognize different agonists [28]. 

Guo and co-workers designed a vaccine consisting of a GM3 carbohydrate antigen and 

monophosphoryl lipid A, an agonist of TLR4 from the cell wall of Gram-negative bacteria  

(Figure 3) [31,32].  

Figure 3. Guo’s vaccine consisting of the carbohydrate antigen and the TLR4 agonist [31]. 

 

Lipopeptide from bacteria is a kind of TLR2 agonists that can be used as a building block in the 

synthesis of vaccines [33]. Boons and co-workers built an exciting structure consisting of a bacterial 

lipopeptide of Pam3CSKKKK, a short MUC1 glycopeptide as the B-cell epitope and a T-helper cell 

epitope of KLFAVWKITYKDT from poliovirus (Figure 4). The vaccine was immunized in liposome, 

eliciting specific and effective immune responses [34,35]. The uptake process of vaccines by the 

HEK293T cell line was obviously improved by the transfection of the TLR2 gene, which proved the 

functions of lipopeptide in the vaccine. Furthermore, the vaccine was proven to be capable of slowing 

the growth of xenograft tumor [36]. Payne and co-workers synthesized tumor vaccines containing  

per-glycosylated MUC1 glycopeptide and lipopeptide of Pam3CS with an efficient condensation 

reaction, and they demonstrated that different glycosylations affected the immune response [37]. Kunz and 

co-workers constructed vaccines containing Pam3CKKKK and MUC1 glycopeptide, which  

elicited a good immune response [38]. Li and co-workers developed the method of thioether 

ligation to ligate peptide and Pam3CKKKK, and they synthesized a series of two-component and 

three-component vaccines. These vaccines improved the immune response against antigens and killed 

tumor cells by complement-dependent cytotoxicity (CDC) [39]. Toth and co-workers developed an 

oligomer of lipoamino acid as the agonist of TLR2 and further synthesized vaccines, including 

carbohydrate antigens and this agonist [40]. 

Figure 4. Boons’ vaccine consisting of the glycopeptide and the TLR2 agonist [34]. 
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Sucheck and co-workers designed multi-component vaccines in a different way [41,42]. When 

antigens are seized by antibodies, Fc domains of antibodies will interact with Fc receptors of phagocytes 

and induce the process of uptake, degradation and presentation of antigens. Therefore, Sucheck and  

co-workers first used a vaccine to elicit a high-level immune response against an unrelated antigen of 

L-rhamnose. This kind of antibodies can improve the presentation of L-rhamnose-containing  

three-component antigens by interactions between antibodies and carbohydrates and interactions 

between the Fc domains of antibodies and the Fc receptors of phagocytes. 

4. Multivalency in Vaccine Design 

The multi-component strategy is used to combine the components involved in different processes in 

the activation of the immune system. Moreover, multivalency is developed to achieve a cluster of 

antigens. It has been proven that cluster antigens could elicit a higher-level immune response than 

separated antigens, and antibodies recognized cluster antigens much better than separated  

ones [43–45]. Therefore, multivalency is another effective strategy to improve the efficiency of vaccines 

by combining several antigens in a single vaccine macromolecule [46]. Carrier proteins always bear 

several antigens in a single protein molecule, but it is hard to isolate a pure conjugate bearing a certain 

number of antigens. 

Danishyfsky and co-workers designed a vaccine containing several kinds of carbohydrate antigens 

of Globo-H, STn, Tn, Lewis
y
 and TF in a linear backbone (Figure 5) [47–50]. In addition, a vaccine 

containing alternate Gb3 carbohydrate and an MUC5Ac T-helper cell epitope was designed to improve 

the immune response and specificity [51]. 

Figure 5. The structure of a linear multivalent vaccine. 

 

Besides the linear backbone, cyclopeptide is also a useful template of multivalent vaccines, which 

can be formed by increasing the tendency of cyclization by proline [52] or the alternate sequence of  

L- and D-amino acid residues [53]. Danishyfsky and co-workers constructed a multivalent 

carbohydrate antigen on the cyclopeptide template and fixed the orientation of carbohydrate antigens 

by olefin metathesis (Figure 6) [54]. Dumy and co-workers designed a four-component vaccine 

consisting of multivalent carbohydrates on cyclopeptide, a T-helper cell epitope, a cytotoxic T-cell 

epitope and the TLR2 agonist [55]. This vaccine simultaneously elicited a humoral and cellular 

immune response, resulting in the suppression of the growth of MO5 xenograft tumor. 
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Figure 6. Multivalent template of a cyclopeptide. 

 

Polylysine is also a template of multivalent structures. The number of amino group in the template 

could be doubled when adding another lysine to the template [56]. Li and co-workers designed four-valent 

vaccines by conjugating MUC1 peptide to a polylysine template with the reaction of azide-alkyne 

cycloaddition (Figure 7) [57,58].  

Spadoro and co-workers designed four-valent and eight-valent vaccines using calixarene to present 

the PDTRP motif from MUC1. The TLR2 agonist was introduced to the template by the ether group, 

and the vaccine produced antibodies against the PDTRP motif (Figure 8) [59]. 

Figure 7. Multivalent template of polylysine. 

 

Figure 8. Multivalent template of calixarene. 
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Polymers modified with functional groups also become a potential multivalent vaccine template.  

In this template, different monomers, various degrees of polymerization, block copolymerization and 

modifications can be employed to construct different vaccine structures. Kunz and co-workers synthesized 

poly(HPMA) and conjugated MUC1 glycopeptide, a T-helper cell epitope and lauric acid [60]. 

5. Antigen Modification 

Vaccines with natural antigens often elicit a weak immune response, due to their structural 

characteristics or immunological tolerance. Therefore, besides the structural design of vaccines, 

strategies of antigen modification have been developed to enhance the immune response. 

5.1. Modification in Vitro 

A designed vaccine containing unnatural antigen is a powerful method to overcome the low 

immunogenicity or immune tolerance of natural antigens, which needs cross-recognition between 

antibodies elicited by unnatural antigens and natural antigens. Ye and co-workers synthesized kinds of 

modified STn antigens and found that fluorine modification enhanced the immunogenicity of the STn 

antigen [61]. The challenge of this strategy is to keep enough specificity of immune response against 

the desired antigens when analogs are used to elicit the immune response instead. 

5.2. Modification in Vivo 

Another interesting strategy for antigen modification is to modify antigens on the surface of tumor 

cells and then elicit the immune response to kill tumor cells with modified antigens. Schultz and  

co-workers designed a bifunctional molecule containing a 2,4-dinitrophenyl group and a specific 

ligand of a prostate-specific membrane antigen. This bifunctional molecule modified the prostate 

tumor cells with the highly immunogenic 2,4-dinitrophenyl group. A 2,4-dinitrophenyl vaccine was 

used to elicit the immune response to kill modified tumor cells [62]. Guo and co-workers modified the 

natural GM3 antigen by GM3NPhAc with a substrate of ManNPhAc by glycoengineering technology 

in vivo. Additionally, GM3NPhAc vaccines were applied to target modified tumor cells in mice 

models [63]. This strategy allows researchers to modify antigens with a simpler route or simpler 

substrates, improving ―missiles‖ and ―targets‖ in the same battle. 

6. Conclusions and Perspective 

Tumor vaccine is a promising strategy against tumor, which could elicit a systemic immune 

response to recognize and kill tumor cells and provide long-term specific protection for the body. 

Specificity and efficiency are the most critical problems to be overcome. Synthetic tumor vaccines 

showed their advantages in the design and optimization of tumor vaccines, and some effective 

strategies have been developed. However, immune response is a systemic result of complex 

interactions between molecules, cells, tissues and organs. It is too hard to forecast exactly the final 

effects of a certain vaccine. However, there are some principles that have been achieved, which could 

be used as references in vaccine design. T-cell activation is a key step for humoral immune response, 

so lack of T-cell epitope in vaccines may mainly cause the production of IgM antibody according to a 
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T-cell-independent pathway [64]. T-cell response is regulated by the balance between co-stimulatory 

signals and immune check points, which apply contrary signals of stimulation and inhibition [65]. The 

differentiation of naive T-cells to different subtypes is regulated by cytokines and antigens, which 

affects the characteristics of immune response. The activation of the innate immune response could 

consequently activate the adaptive immune response, such as using TLR agonists. Tumor vaccines 

need to target different antigens or different immune-related pathways and elicit different types of 

immune responses, such as the humoral versus cellular response and activation of type 1 versus type 2 

T-helper cell. A combination of different input immune-related components to optimize the output 

immune response is an important principle in vaccine design [16].  

More than ten kinds of TLRs agonists were studied, such as imidazoquinoline, loxoribine, 

bropirimine for TLR7 and CpG DNA for TLR9. Many studies provided promising agonists for 

designing tumor vaccines [28,66]. Besides, it is worth noting that certain functional groups of agonists 

should stay free to remain their activities in the immune process [67]. Agonists of stimulatory 

receptors and antagonists of checkpoints, which have been proven to enhance the antitumor activity of 

other therapies, could be used as potential components of antitumor vaccines, such as inhibitors of PD1 

and CTLA4 [68–70]. In addition, new templates could be used as multivalent tumor vaccines, such as 

carbohydrates with several hydroxyl groups [67,71,72]. Besides the design of single vaccine molecules 

that we discussed before, the size effect is also critical in the immune response by affecting the 

processes of antigen delivery, lasting antigen release, antigen presentation by antigen-presenting cells 

(APCs) and antigen cross-presentation [73]. Several studies have proven that vaccines with a relatively 

large size can have a stronger interaction with APCs, such as antigens of whole cells, virus-like particles 

and liposome delivery [74]. In fact, nanosized particles can be formed with traditional adjuvants, such 

as Freund’s adjuvant, aluminum adjuvant and liposome. Here, we just mentioned the nano-size 

behavior of vaccine molecules, but not with an additive [75–81]. Unlike carrier proteins, a proper 

nanosized system in tumor vaccines needs to elicit almost no immune response against itself. In the 

future, more attention should be paid to develop more rational and effective strategies for vaccine 

design to improve and strengthen the immune response and to modulate the characteristics of the 

immune response. 
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