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Abstract: Pneumonia is a prevalent severe respiratory infection that affects the distal and alveoli
airways. Across the globe, it is a serious public health issue that has caused high mortality rate of
children below five years old and the aged citizens who must have had previous chronic-related
ailment. Pneumonia can be caused by a wide range of microorganisms, including virus, fungus,
bacteria, which varies greatly across the globe. The spread of the ailment has gained computer-aided
diagnosis (CAD) attention. This paper presents a multi-channel-based image processing scheme
to automatically extract features and identify pneumonia from chest X-ray images. The proposed
approach intends to address the problem of low quality and identify pneumonia in CXR images.
Three channels of CXR images, namely, the Local Binary Pattern (LBP), Contrast Enhanced Canny
Edge Detection (CECED), and Contrast Limited Adaptive Histogram Equalization (CLAHE) CXR
images are processed by deep neural networks. CXR-related features of LBP images are extracted
using shallow CNN, features of the CLAHE CXR images are extracted by pre-trained inception-V3,
whereas the features of CECED CXR images are extracted using pre-trained MobileNet-V3. The
final feature weights of the three channels are concatenated and softmax classification is utilized to
determine the final identification result. The proposed network can accurately classify pneumonia
according to the experimental result. The proposed method tested on publicly available dataset
reports accuracy of 98.3%, sensitivity of 98.9%, and specificity of 99.2%. Compared with the single
models and the state-of-the-art models, our proposed network achieves comparable performance.

Keywords: local binary pattern (LBP); contrast limited adaptive histogram equalization (CLAHE);
contrast enhanced canny edge detection (CECED); deep learning, image identification; pneumonia
disease; COVID-19

1. Introduction

Pneumonia is an infectious lung illness in humans that affects one or both lungs and is
caused by fungus, bacteria, and viruses, among other microorganisms. Pneumonia occurs
as a result of pathogen-caused inflammation [1], which causes the alveoli in the lungs to fill
up with pus or fluid, reducing oxygen (O2) and carbon-dioxide (CO2) exchange between
the lungs and blood, making it difficult for the infected person to breathe. Other causes of
pneumonia are food aspiration and chemical exposure. Furthermore, patients with cancer,
HIV/AIDS, hepatic disease, diabetes, cardiovascular diseases, chronic respiratory diseases,
and other comorbidities, are vulnerable to pneumonia [1–3]. As the result of the inability to
identify this lung illness at an early stage, children below the age of five years and aged
people are readily transmitted with this illness.

There are several methods to diagnose pneumonia, which include blood test, pulse
oximetry, bronchoscopy, sputum test, pleural fluid culture, chest X-ray, magnetic resonance
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imaging, and CT scans. The blood tests are carried out to confirm an illness and to attempt
to figure out the organism caused by it. However, this method is not always feasible to
make an accurate identification. Pulse oximetry test determines how much oxygen is in
the blood. Pneumonia may make it difficult for the lungs to get enough oxygen into the
circulatory system. Another method of pneumonia diagnose is the sputum test which
demands for a patient’s deep cough, then the sample of fluid from the lungs (sputum)
is obtained and tested to assist determine the source of the illness. A culture method
called pleural fluid culture requires a collection of a fluid sample from the pleural region
by inserting a needle between the patient’s ribs and testing it to help diagnose the kind
of infection. Chest X-ray is used to diagnose pneumonia and evaluate the degree and
location of the illness. However, it cannot tell which bacterium caused the pneumonia.
Finally, for a clearer view of the lungs, CT scans are highly recommended by the medical
practitioners. For older citizens above 65 age of years with serious symptoms and health
condition they are advised to undergo imaging examination such as CT scans [4,5]. In most
cases, the causing organism determines how pneumonia is treated. Anti-fungal treatments
are used to treat fungus pneumonia whereas antiviral medications are used to treat viral
pneumonia including influenza, SARS, and MERS, and antibiotics are used to treat bacterial
pneumonia [6]. Despite the presence of pneumonia, the diagnosis is always dependent
on the doctor’s knowledge and experience. Howbeit, as the number of infected patients’
increases, it becomes a difficult task for radiologists to access the screening process within a
constrained time; therefore, there is a need for an AI diagnostic system for the classification
of pneumonia.

Deep learning (DL) algorithms have ascertained greater performance in the classifica-
tion and detection of pneumonia-related ailment and provided high accuracy rate when
compared to other methods. Emphatically, DL can identify hidden features of images
which could never be detected by medical professionals. With regards to DL, the con-
volutional neural network (CNN) is the most often utilized DL technique in the medical
system due to its capacity in feature extraction and training in differentiating between
multiple classes. Transfer learning (TL) technique has made it simpler to retrain deep neural
networks fast and accurately on different datasets [7–9]. With the introduction of wavelet in
CNN, Happy et al. [10] proposed a CNN model integrated with wavelet multi-resolution
analysis to effectively classify COVID-19 pneumonia from radiographs. Interestingly,
Happy et al. [11] presented a case study to evaluate the capability of multi-resolution
analysis in diagnosing COVID-19 pneumonia.

Several applications of computer vision are so complicated that they cannot be
achieved using only one algorithm, which has necessitated the creation of models that
combined two or more of the methods evaluated. Since models are chosen based on the
issue’s requirements and features extraction, weighted fusion technique incorporates more
than one model to address this issue. This technique was created to help single models
overcome their flaws and solidify their strengths by aggregating the features extracted from
single model in a weighted manner. This method reduces generalization error and mini-
mizes prediction variance [12]. Thus, the goal of this study is to analyze the performance of
weight fusing deep neural network models for multi-class of pneumonia. The following
are the main contributions of our paper:

• We preprocess our CXR images into three forms, namely: LBP, CLAHE, and CECED.
• Each preprocessed image features are extracted individually, that is the LBP CXR

features are extracted using the shallow CNN, the CECED CXR features are extracted
using the MobileNet-V3 and the CLAHE CXR feature images are extracted using the
Inception v3.

• The feature vectors of these preprocessed CXR images are weighted fused for a robust
prediction result.

• We evaluate the performance of each of the single models and our proposed model in
this study.
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The remaining part of this paper is broken down as follows; the related works on pneumo-
nia disease are discussed in Section 2. Section 3 explains how we came up with our proposed
framework. The experimental results and evaluation of our model are presented in Section 4.
Our discussion is presented in Section 5. Finally, Section 6 presents the conclusion.

2. Related Works

In recent years, publications of the some of the state-of-the-art models used the deep
learning (DL) approach for the automatic classification and detection of pneumonia from
X-ray images. This section reviews and examines the most up-to-date approaches for
detecting and classifying pneumonia with DL.

Various investigations and research studies based on artificial intelligence and deep
learning have been conducted in the area of disease diagnosis using medical imagery such
as chest X-rays (CXR), ultrasound scans, computed tomography (CT) scans, MRI scans,
and so on. Deep learning is perhaps the most widely used and reliable medical imaging
approach available. It is a quick and accurate way for diagnosing variety of ailments.
There are models that have been explicitly trained to classify different categories of specific
ailment based on the disease type. These models have proven to achieve satisfactory results
in the medical science utilizing image analysis for the detection of cardiac abnormalities,
tumors, cancer, and a variety of different applications.

Deep learning has been used to distinguish between scan images of COVID-19-infected
and non-infected patients as proposed by Shah et al. [13] using a self-developed framework
called CTnet-10, hence, achieving an accuracy of 82.1%. However, to further enhance the
accuracy, different pretrained models were introduced to the CT scan dataset and VGG-19
attain a better performance of 94.5%.

Deep neural network has the ability to improve the output of instruments utilized in
pharmaceutical processes for analytical technology. Maruthamuthu et al. [14] developed
a technique for identifying the contamination of micro-organisms using DL strategies
based on Raman spectroscopy. The categorization of numerous sample consisting of micro-
organisms and bacteria mixed with Chinese Hamster Ovary cells achieved an accuracy of
95% to 100% using a convolutional neural network (CNN).

Looking at a situation of very large margin of unlabeled dataset, Maruthamuthu et al. [15],
demonstrate the superiority of a data-driven strategy over data analytics and machine
learning technique. The data analytics strategy, however, has the potential to improve the
development of efficient proteins and affinity ligands, affecting the downstream refinement
and processing of mAb products, according to the authors. The authors propose a deep
neural network approach, which is also called a black box for the construction of soft
sensors, which uses accumulated past data from process operation that is not present in a
mechanistic orphenomenological approach. The data are incorporated to get apolynomial
expression to generate product as a function of the inputs such as cell mass, substrate
concentration, and initial product (streptokinase). Given enough dataset collected from
various sources under different condition, the accurate data fit with automated error
correction generated factor is utilized to compute the major outputs such as the number of
workable cells and extent of product as a result of the marginal calibrated input parameters
such as inoculum and substrate. Even though the molecular relationship of these variables
to cell metabolism is uncertain, yet the deep learning model accounts for the impacts of
other conditions such as excitation, individual critical media properties, mixing rate, and
variations in metabolic concentrations.
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An application of the Inception-v3 model is used by Kermany et al. [16] to classify
different types of pneumonia infections in pediatric patients. This method extracts features
and utilizes the area under curve (AUC) as a metric to categorize bacterial and viral
pneumonia. Santosh et al. [17] suggested a method for detecting pulmonary problems
by comparing the symmetrical shape of the CXR lung region. Roux et al. [18] sought to
determine the prevalence, intensity, and adverse outcomes for pneumonia in infants during
their first year of life in a South African cohort study. They set up pneumonia monitoring
systems and recorded outpatient pneumonia and pneumonia that required hospitalization.
In addition, combined Poisson regression was used to calculate pneumonia incidence
rate ratios.

Table 1 gives a summary of the related works with the following observations:

Table 1. Summary of the Related Works.

Authors Year Mode of
Imaging DL Techniques Classification

Task Evaluation Results

Cicero et al. [19] 2017 X-ray
Image

GoogLeNet is utilized to
classify two classes - normal
and abnormal images

Binary class

For normal class:
SEN = 91%,
SPE = 91%, and
AUC = 96.4%
For abnormal class:
SEN (within 74% to 91%),
SPE (within 75% to 91%), and
AUC (within 85% to 96.2%)

Guendel et al. [20] 2018 X-ray
Image

Used location-aware dense
networks technique to iden-
tify anomalies in chest X-rays

Multiple class

PLCO dataset,
mean AUC = 87.4%,
Chest X-ray 14 dataset,
mean AUC = 84.1%

Rajaraman et al. [21] 2018 X-ray
Image

A modified VGG16 is em-
ployed for the identification
and detection of viral and
bacterial pneumonia

Binary class ACC (within 91.8% to
96.2%)

Correa et al. [22] 2018 Ultrasound
Image

Detection of pneumonia us-
ing 3 layers feed-forward
neural network

Binary class
SEN = 90.9%
SPE = 100%

Ke et al. [23] 2019 X-ray
Image

Detection of lung diseases us-
ing an approach called neu-
roheuristic

Multiple class
Sensitivity = 84.22%,
Accuracy = 79.06%,
Specificity = 66.7%

Saraiva et al. [24] 2019 X-ray
Image

A CNN model was ap-
plied on a dataset of 5863
images and cross-validation
was used for the validation
of the model

Binary class Accuracy = 95.30%

Sirazitdinov et al. [25] 2019 X-ray
Image

An emsemble of RetinaNet
and Mask RCNN was ap-
plied

Binary class
Precision = 75.0%,
Recall = 79%,
F1-score = 77.0%

Liang and Zheng [26] 2020 X-ray
Image

A modified 49 convolutional
and 2 fully connected layer of
a CNN model was used for
the classification of children’s
lung regions

Binary class F1-score = 92.7%
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Table 1. Cont.

Authors Year Mode of
Imaging DL Techniques Classification

Task Evaluation Results

Apostolopoulos et al. [27] 2020 X-ray
Image

Different fine-tuning ap-
proaches were evaluated for
the automatic detection of
pneumonia

Binary class

VGG19 has the highest value of:
Sensitivity = 92.85%,
Specificity = 98.75%,
Accuracy = 98.75%

Xu et al. [28] 2020 X-ray
Image

Multiple CNN models were
compared in order to catego-
rize the classes of CT scans

Multiple class Accuracy = 86.7%

Habib et al. [29] 2020 X-ray
Image

Detection of pneumonia us-
ing an ensemble of VGG-19
and CheXNet for the extrac-
tion of features and random
forest as the classifier

Binary class Accuracy = 98.93%

Chouhan et al. [30] 2020 X-ray
Image

A transfer learning technique
is applied for the detection of
pneumonia

Binary class
Accuracy = 96.4%
Sensitivity 99.0%

El Asnaoui et al. [31] 2020 X-ray
Image

A fine-tuned of eight differ-
ent models for the detection
and classification of pneumo-
nia

Binary class
Highest accuracy
is the fine-tubed
ResNet50 (>96%)

El Asnaoui et al. [32] 2020 X-ray
Image

A comparative findings of
seven DL models for the
classification and detection
of pneumonia (including
COVID-19)

Multiple class
Accuracy Evaluations:
InceptionResNet-V2 = 92.18%,
DenseNet201 = 88.09%

• Several DL techniques are thoroughly implemented for the classification task.
• More so, researchers in [27,28,31,32] use more than five DL techniques to evaluate

the performance.
• The popular medical mode of imaging for the classification and detection of pneumonia-

related ailment is the chest X-ray.
• The publishers focus on either binary classification or multi-classification, although

just a few considered the multi-classification task.
• Some evaluation metrics such as accuracy, sensitivity, and specificity were utilized

to evaluate the efficacy of DL models approaches whereas precision, recall, and/or
F1-score metrics were used in [25,26] to evaluate the model performance.

However, there was no account where low quality was considered as a challenge for
better classification performance of pneumonia. Therefore, we put this into consideration
by preprocessing our images into LBP, CECED, and CLAHE for multi-channel weighted
fusion technique using neural network for the identification of pneumonia. Additionally,
we carried out a study to compare the performance of each single model and the weighted
fusion model.

3. Materials and Methods

The methodology employed in this study is detailed in this section. Data collection,
image preprocessing, and the transfer learning networks for feature extraction and clas-
sification are the three phases of the proposed method. The procedure of the proposed
method in this paper is presented in the subsequent subsections.
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3.1. Datasets

This study utilized the pneumonia dataset from two public domain. The first dataset
contains 3029 scans of bacterial pneumonia, 8851 scans of healthy patients and 2983 scans
of viral pneumonia gotten from the Kaggle database of RSNA [33]. The second dataset
is taken from the author in [34] which consist of 3616 CXR images of patients diagnosed
with COVID-19. In all, we only considered 1000 CXR images each for the four classes
(COVID-19, virus, bacteria, and normal), as explicitly illustrated in Table 2.

Table 2. Description of the Dataset.

Dataset Pneumonia Category Value Selected Amount Used

Kaggle database of RSNA [33] Bacterial 3029 1000
Viral 2983 1000
Normal 8851 1000

Rahman et al. [34] COVID-19 3616 1000

3.2. Data Preprocessing

It is well known that data quality can be affected by factors such as noise, resolution
and artifacts, hence, using such data directly in an algorithm may result to inaccurate
outcomes. Data preprocessing phase could help in eliminating or reducing the noise and
increase the data quality, thereby improving model performance. In this study, we have use
the Local Binary Pattern (LBP), Contrast-Enhanced Canny Edge Detection (CECED), and
Contrast Limited Adaptive Histogram Equalization (CLAHE) for our data preprocessing.

3.2.1. Local Binary Pattern (LBP) Images

A descriptor called LBP is often used to collect textural information about a specific
object. Coding LBP pixel is determined by comparing its value to that of neighboring
pixels [13]. At the left portion of Figure 1 depicts all the values of the pixel in a local region,
whereas the right part depicts the binary pixel of the LBP coding while concentrating on the
center pixel. The pixel value of LBP can be computed after it has been efficiently encoded
using LBP coding. Equation (1) gives the mathematical expression of LBP.

Figure 1. LBP coding and calculation illustration.

LBP =
N

∑
n=1

S(gn − gc) ∗ 2n (1)

where S(gn − gc) denotes the indicator function for the threshold binary value obtained
from the subtraction of the neighbor pixel value from center pixel value. N is the total
number of pixel value surrounding the center pixel value for the 3 × 3 window size since
LBP considers 9 pixels at a time. gc represents the center pixel value and gn denotes the
neighbor pixels values. After the thresholding, the pixel’s value greater or equal to zero
would be “1” and the pixel’s value less than zero would be “0”. Figure 1 illustrates the
calculation of the pneumonia LBP CXR image and Figure 2 presents the preprocessing
of LBP.
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3.2.2. CLAHE Images

CLAHE was used in this study to improve the image’s contrast and features by making
abnormalities more noticeable. Among the histogram equalization family, Contrast Limited
Adaptive Histogram Equalization (CLAHE) is more natural in appearance and useful in
the reduction of noise amplification, and we have investigated CLAHE and applied it to
our dataset, as shown in Figure 3. A full explanation of the CLAHE approach is given
below to demonstrate its effectiveness:

Figure 2. LBP pre-processing.

• The generation of the image transformation using the bin value of the histogram is the
first stage of the CLAHE technique.

• Following that, using clip boundary, the contrast is confined to a binary count from 0
to 1. Before the image segment is processed, the clip boundary is added to the image.

• To prevent mapping background areas to gray scale, a specific bin value from the
histogram region is used to create the entire image region. Clip boundary is used with
the help of histogram clip to obtain better mapping.

• Finally, the finished CLAHE image is created by computing the image’s regions, then
extracting, mapping, and interpolating all of the image pixels to get the most out of
the image.

Figure 3. CLAHE Pre-processing.

3.2.3. CECED Images

As shown in Figure 4, edges are made up of crucial and relevant particular information
and features. By employing an edge detector on an image, the amount of data that has to be
processed can be reduced, and the information that is deemed less significant can be filtered.
The CEED-Canny strategy combines the local morphological contrast enhancement and
the Canny edge detection technology used in [24]. The steps are as follows:

• Collection of the original pixel’s value, as well as the local minimum and maximum;
• The image’s morphological contrast is increased;
• To reduce noise, Gaussian smoothing is applied;
• The intensity gradient of the image is determined;
• A non-maximum suppression method is utilized;
• The hysteresis thresholding technique is adopted.
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Figure 4. CECED Pre-processing.

3.3. Feature Extraction

This article uses three CNN architectures: a shallow CNN, pretrained MobileNet-V3,
and Inception-V3 as feature extractors with their layers trained and/or frozen. To prevent
the model from overfitting, dropout, and regularizer are applied.

3.3.1. Features Extraction from LBP Images

For an automatic extraction of pneumonia-related features from LBP CXR images,
we develop a shallow CNN model. Shallow CNN model simply means a lightweight
convolutional neural network constructed from scratch to process LBP CXR images. In
our study, we constructed a three-layer convolutional neural network which we called
shallow CNN, as illustrated in Figure 5. It has an input layer, three convolution (“C”)
and subsequent sub-sampling (“S”) layers, and a feature vector (“fv”) layer, as shown in
Figure 5. The first convolution layer (“C1”) employs 32 filters and 7 × 7 convolution kernel
that focus on the detailed information of possible indicators of pneumonia. This layer is
followed by a sub-sampling layer (“S1”), which reduces the image to half its original size
using optional max-pooling (with kernel size 2 × 2).

To map the previous layer, a new convolution layer (“C2”) conducts 64 convolutions
with 3 × 3 kernel, followed by another sub-sampling layer (“S2”) with 2 × 2 kernel. Lastly,
128 convolution layer (“C3”) with 3 × 3 kernel is applied and followed by a max-pooling
(with kernel size 2× 2). Finally, we arrived at a feature vector of 512-neuron after the output
is passed to the fully connected layer (“fv”). Adding “ReLU” activation after sub-sampling
layers “S1” and “S2” guarantees the capacity to handle nonlinear data. Over-fitting can be
avoided by utilizing the “dropout” operation [31] between the “S” layers (“S1” and “S2”)
and the “fv” layer (parameter was set to 0.5).

Figure 5. Shallow CNN structure applied for the feature extraction of LBP CXR images.

3.3.2. Features Extraction from CECED CXR Images

We utilized the MobileNet-V3 network in this extraction phase because of its efficient
performance in image classification and fast convergence. Table 3 depicts the parameters
of the network. The model has an input size of 224 × 224 input image. It uses depth-wise
separable convolutions, which applies two 1D convolutions with two kernels, rather than a
single 2D convolution. This allows for a smaller and more efficient model with less memory
and training parameters. The model is divided into two blocks: the residual block with a
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stride of 1 and the shrinking block with a stride of 2. Each block is made up of three layers:
a 1 × 1 convolution with ReLU6, a depth-wise convolution, and another 1 × 1 convolution
with different non-linearity. A few changes were made to our network to simplify it by
replacing the dense layer with a dimension of 1 × 512, as shown in Figure 6.

Figure 6. Framework of the pretrained MobileNet-V3 utilized for the features extraction of CECED
CXR images.

3.3.3. Features Extraction from CLAHE CXR Images

The high performance of Inception-V3 [25] is due to a variety of network connection
approaches, including batch normalization, using MLP convolutional layers to replace
linear convolutional layers, and factorizing convolutions with larger kernel sizes. These
methods significantly reduce the number of network parameters as well as the compu-
tational cost of the network, allowing it to be built considerably deeper and with more
nonlinear expressive capacity than typical CNN models.

The Inception-V3 model proposed in this paper was previously trained over the huge
dataset ImageNet, and then the knowledge gained from transfer learning was transferred
to CXR dataset to perform pneumonia identification. All layers before the fully connected
(FC) and softmax layers were frozen. The softmax layer is eliminated and a new dense
layer is trained for extracting the deep-level features of the CXR images by continuously
modifying the network’s parameters, resulting in a feature vector size of 1 × 512 as seen in
Figure 7. Similar to the authors in [25], average pooling of 8 × 8 is employed instead of the
traditional fully connected layer to flatten the feature vector as seen in Figure 7.
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Figure 7. Framework of the pretrained Inception-V3 utilized for the features extraction of CLAHE
CXR images.

Table 3. Parameter for the modified MobileNet-V3. bneck represents bottleneck convolution, SE
depicts whether there is a Squeeze-and-Excite in that block, NL represents the type of non-linearity
utilized, HS represents h-swish, RE denotes ReLU and S represents stride.

Input Operator Expansion
Size Output SE NL Stride

224 × 224 × 3 Conv2d, 3 × 3 - 16 No HS 2
112 × 112 × 16 bneck, 3 × 3 16 16 Yes RE 2
56 × 56 × 16 bneck, 3 × 3 72 24 No RE 2
28 × 28 × 24 bneck, 3 × 3 86 24 No RE 1
28 × 28 × 24 bneck, 5 × 5 96 40 Yes HS 2
14 × 14 × 40 bneck, 5 × 5 240 40 Yes HS 1
14 × 14 × 40 bneck, 5 × 5 240 40 Yes HS 1
14 × 14 × 40 bneck, 5 × 5 120 48 Yes HS 1
14 × 14 × 48 bneck, 5 × 5 144 48 Yes HS 1
7 × 7 × 96 bneck, 5 × 5 288 96 Yes HS 2
7 × 7 × 96 bneck, 5 × 5 576 96 Yes HS 1
7 × 7 × 96 bneck, 5 × 5 576 96 Yes HS 1
7 × 7 × 256 Conv2d, 1 × 1 - 256 Yes HS 1
1 × 1 × 256 Avg pool, 7 × 7 - - No - 1
1 × 1 × 512 Conv2d, 1 × 1 - 512 No HS 1
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3.4. Weighted Fusion of the Different Output Channels

According to the proposed model shown in Figure 8, shallow CNN is used to extract
the feature vector (fv1) from the LBP CXR images, the CLAHE CXR images’ feature vector
(fv2) is retrieved using a pretrained Inception-V3 approach and the pretrained MobileNet-
V3 is utilized to extract feature vector (fv3) from CECED CXR images. After flattening,
each feature vector is connected to two dense layers. The first dense layers for fv1, fv2, and
fv3 are fc1_1, fc2_1, and fc3_1, respectively, while the second dense layers are fc1_2, fc2_2,
and fc3_2, respectively, as shown in Figure 8. Using fc1_2 and fc2_2 and fc3_2, the network
captures the distances between various lung properties and reveals them. Furthermore,
fc1_2, fc2_2, and fc3_2 are fused in a weighted way into f1 to generate a fused vector.
Softmax is used to classify pneumonia CXR images based on the fused feature vector. As a
cost function, the categorical cross entropy is utilized, given in Equation (2)

Lloss = −
n

∑
k=1

tk log pk (2)

where n represents the number of class labels, pk is the instances for the k-th classes and tk
is the corresponding label The chance of event k occurring is tk meaning that the total sum
of tk is 1, which implies that only one event is possible. The negative sign minimizes the
loss when the distributions come closer to one other.

Figure 8. Our proposed multi-channel scheme for pneumonia identification.

In the last layer of our proposed weighted model with categorical cross entropy loss
function, the softmax function is utilized as a classifier to emphasize the highest values and
suppress those that are far below the maximum value as well as normalizing the outputs to
the total sum of 1, as illustrated in Equation (3)

pk =
etk

∑n
j=1 et

j
(3)

where etk is the exponential term of the input vector, n is the number of class label, pk is
the output vector of the softmax and ∑n

j=1 etj is the normalization term which divides the
exponential term to produce a real value greater than 0.

4. Results

This section gives thorough explanations of (1) the experimental setup and configu-
ration (2) the performance metrics utilized for the evaluation of the proposed framework;
(3) the performance of individual networks, (4) the performance of weighted fusion tech-
nique, and (5) comparisons with other research models.
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4.1. Experimental Setup and Configuration

Our proposed model is evaluated using the Keras framework with Python program-
ming language using NVIDIA GTX 1080 GPU. A data split ratio of 80% to 20% for training
and testing, respectively. All the data are resized for each single model. For the shal-
low CNN, our LBP input dataset are resized to 112 × 112, whereas for the pretrained
MobileNet-V3 network, the CECED CXR input dataset are resized to 224 × 224 and lastly
for the pre-trained inception-V3 network, the CLAHE CXR input dataset are resized as
299 × 299. Using Adam optimization, we utilized batch size of 32, learning rate of 0.0001,
L2-regularizer, weight decay, dropout to reduce over-fitting in the model and epoch size
of 40. We trained separately each of the the single model (shallow CNN, pre-trained
MobileNet-V3 and pre-trained Inception-V3) and the concatenation of these single models
using the fusion technique with the same dataset. More so, the output classes of 1000 in
ImageNet were replaced with 4 classes in the final dense layer, representing viral, bacteria,
normal, and COVID-19.

4.2. Performance Metrics

In evaluating the performance of the single and concatenated models, this paper used
the evaluation metrics of accuracy, sensitivity, specificity, precision, and F1-score. The
numerical expression for each metric is presented in Equations (4)–(8).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

Precision =
TP

TP + FP
(7)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(8)

TP, FP, FN, and TN represent true positive, false positive, false negative, and true
negative, respectively.

4.3. Evaluation of the Single Model

We begin by presenting the accuracy, loss, ROC-AUC, and precision–recall curves
produced by the various deep learning frameworks used in this article (Inception-V3,
MobileNet-V3, and Shallow CNN). Then, using the metrics established in Equations (4)–(8),
we evaluated the results of all designs to find the best method for classifying CXR images
as bacteria, COVID-19, normal, and viral pneumonia as shown in Table 4. The ROC-AUC,
precision–recall, accuracy, and loss curves, as well as the several models utilized in this
study and their interpretation, are shown in the next section.

4.3.1. Shallow CNN

It is worth noting that the shallow CNN achieved considerable performance. The
results from Table 4 show that the shallow CNN obtained 90.9% accuracy, 92.3% sensitivity,
and 93.1% specificity. In comparison to Inception-V3 and MobileNet-V3, shallow CNN
achieved the least score across all the evaluation metrics. Furthermore, the shallow CNN
obtained 91.2% precision and 92.7% F1-score.
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Table 4. Comparison of our proposed model with single channels and dual channels.

Model
ACC
(%)

SEN
(%)

SPE
(%)

PRE
(%)

F1-s
(%)

Time
(min)

LBP-Channel Shallow CNN (LCSC) 90.9 92.3 93.1 91.2 92.7 3.2
CECED-Channel MobileNet-V3 (CCM) 93.7 95.4 95.7 94.3 95.5 18.6
CLAHE-Channel Inception-V3 (CCI) 95.6 94.9 96.2 95.8 95.3 21.8
LBP-Channel Shallow CNN + CECED-channel MobileNet-V3 (LCSC +
CCM)

92.2 93.7 94.5 92.7 94.3 23.4

LBP-Channel Shallow CNN + CLAHE-channel Inception-V3 (LCSC +
CCI)

94.4 95.5 96.8 95.1 96.6 22.7

CLAHE-Channel inception-V3 + CECED-channel MobileNet-V3 (CCI +
CCM)

97.5 97.3 98.3 97.8 98.1 26.8

LBP-Channel Shallow CNN + CLAHE-channel Inception-V3 + CECED-
channel MobileNet-V3 (LCSC + CCI + CCM)

98.3 98.9 99.2 98.8 99.0 30.3

4.3.2. Pretrained MobileNet-V3

Considering the evaluation performance metrics for the single model of MobileNet-V3,
this model obtained accuracy of 93.7%, sensitivity of 95.4%, specificity of 95.7%, precision
of 94.3%, and F1-score of 95.5%. These results further show that the CECED preprocessing
technique using the MobileNet-V3 performs better than the LBP shallow CNN technique.

4.3.3. Pretrained Inception-V3

From the experimental results presented in Table 4, Inception-V3 shows satisfactory
performance achieving accuracy of 95.6%, 94.9% sensitivity, and 96.2% specificity, precision
of 95.8%, and F1-score of 95.3%. Compared to shallow CNN, this inception-V3 seems
to perform slightly higher than shallow CNN across all the evaluation metrics, however,
Inception-v3 achieves better performance on few evaluation metrics such as accuracy,
specificity, and precision over the MobileNet-V3.

4.4. Evaluation of the Weighted Fusion

On the pneumonia dataset, we executed various weighted fusion approaches to see
the better performance for the identification of pneumonia. Our first investigation is
the weighted fusion of LBP-channel shallow CNN and CECED-channel of MobileNet-V3
(LCSC + CCM). Secondly, we checkmate the fusion of the LBP-channel of shallow CNN
and the CLAHE-channel of Inception-V3 (LCSC + CCI). The next analysis is the fusion
of CECED-channel of MobileNet-V3, and CLAHE-channel of Inception-V3 (CCM + CCI))
and the last weighted-manner approach is the fusion of LBP-channel of shallow CNN,
CLAHE-channel of Inception-V3 and CECED-channel of MobileNet-V3 (LCSC + CCI +
CCM) for pneumonia identification. The proposed framework of the weighted fusion,
as shown in Figure 8, clearly shows that the complimentary fusion of LBP, CLAHE, and
CECED image features is capable of managing low-quality images in pneumonia diagnosis,
attaining improved recognition accuracy on the CXR dataset. Figure 9 shows classification
performance of all the weighted fusion channels including the single channels across all the
evaluation metrics. It is obvious that our proposed model outweighs the other weighted
fusion channels, as well as the single channels by a considerable margin.Although the
computational time is slightly longer than the other weighted channels and the single
models, yet it achieves the best classification performance, as depicted in Table 4.
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Figure 9. Performance of the proposed multi-channel in comparison with the single channels and
dual channels across the different evaluation metrics.

4.5. Result of the Proposed Model

Figure 10 presents the test accuracy curves for the proposed three-channel weighted
fusion including the single- and dual-channel models. For the first 10 epochs, the accuracy
rapidly increases to about 90% for the proposed model and then maintained gradual
progression. Figure 11 depicts the loss curves which show the gradual loss reduction of
the different models. Figure 12 presents the ROC-AUC curves for the single- and dual-
channels, as well as the proposed weighted fusion deep learning schemes. The LCSC
represents the LBP-based channel of shallow CNN for the identification of pneumonia
with 92.1% AUC. The LCSC+CCM represents the weighted fusion of LBP-based channel
of shallow CNN and the CECED-based channel of MobileNet-V3 with 93.8%. The CCM
represents the CECED-based channel of MobileNet-V3 with 95.0% AUC. The LCSC+CCI
represents the weighted fusion of LBP-based channel of shallow CNN and the CLAHE-
based channel of Inception-V3 with 94.5% AUC. The CCI represents the CLAHE-based
channel of Inception-V3 with 97.2% AUC. The CCI+CCM represents the weighted fusion
of CLAHE-based channel of Inception-V3 and the CECED-based channel of MobileNet-V3
with 98.3%. The LCSC+CCI+CCM represents the weighted fusion of LBP-based channel of
shallow CNN, the CLAHE-based channel of Inception-V3, and the CECED-based channel
of MobileNet-V3 with 99.0% AUC.

The proposed multi-channel weighted fusion model (LCSC + CCI + CCM) outperforms
the single-based and dual-based channels on the pneumonia dataset, obtaining 99.0% AUC.
The AUC of CECED-based channel of MobileNet-V3 is clearly higher than that of CLAHE-
based channel of Inception-V3 and Shallow CNN of LBP-based channel, implying that
CECED CXR images contribute more to pneumonia identification than CLAHE and LBP
CXR images. The proposed weighted fusion model was further analyzed in terms of
precision–recall curve, as shown in Figure 13. As the curve approaches the upper right hand
corner of the graph, it is obvious that the proposed multi-channel weighted fusion model
outweighs the other schemes, indicating that the model has high precision and high recall.
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Figure 10. Accuracy curves for the proposed multi-channel in comparison with the single-channels
and dual-channels.

Figure 11. Loss curves for the proposed multi-channel in comparison with the single-channels and
dual-channels.
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Figure 12. ROC curves for the proposed multi-channel in comparison with the single-channels and
dual-channels.

Figure 13. Precision–recall curves for the proposed multi-channel in comparison with the single-
channels and dual-channels.

5. Discussion

In comparison to the single-based and dual-based channels, the proposed model’s
performance in diagnosing pneumonia in CXR images from dataset obtained from various
sources and combined has been demonstrated, and the identification result is given in
Table 4. The proposed model can effectively differentiate distinct pneumonia from healthy
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CXR images, as evidenced by the above mentioned results. It is worth noting that the
weighted fusion of LBP, CLAHE, and CECED CXR images result in a greater generalization
ability for our proposed model.

We use the following terms to describe the channels as Shallow CNN for channel that
employs LBP CXR images, inception-V3 for channel that uses CLAHE CXR images, and
MobileNet-V3 for a channel that utilizes CECED CXR images. Table 4 shows the results of
the identification for the different types of pneumonia. On all metrics, our proposed model
surpasses the single-based and dual-based channels, with 98.3% accuracy, 98.9% sensitivity,
and 99.2% specificity, 98.8% precision and 99% f1-score.

We conducted a comparison between our proposed strategy and some recently pub-
lished pneumonia classification methods. According to Table 5, the proposed model
obtained the maximum accuracy and sensitivity score of 98.3% and 98.9%, respectively,
while Correa et al. [22] achieve the highest specificity score of 100% although their ac-
curacy value was not reported. In terms of accuracy, the proposed model achieves the
highest score of 98.3%, demonstrating its superiority in the identification of pneumonia.
The complementing integration of several channels of CXR images gives our proposed
technique a competitive advantage. It is worth noting that different deep learning models
will perform differently depending on different circumstances. More so, we selected few
recent state-of-the-art models and conducted a fair comparison using the same dataset
as depicted in Table 6. Figure 14 presents the performance evaluation of the selected few
state-of-the-art models across different matrices using the same dataset while Figure 15
depicts the accuracy performance of the selected few state-of-the-art models using the
same dataset. We conducted an ablation study utilizing several transfer learning models
pretrained on the ImageNet dataset in order to find the best performing pretrained model
for our proposed weighted deep learning fusion architecture.

Figure 14. Performance evaluation for some selected state of the art models using the same dataset.
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Figure 15. Accuracy performance for some selected state of the art models using the same dataset.

The results of the experiments employing the proposed scheme with several pretrained
frameworks utilizing the same pneumonia dataset are presented in Table 7. According to
the results of the experiments, Shallow CNN outperforms MobileNet-V3 and Inception-V3
in extracting features from LBP CXR images, reaching 90.9% accuracy, 92.3% sensitivity,
and 93.1% specificity. In comparison to Shallow CNN, the MobileNet-V3 network per-
forms better in extracting features from CECED CXR images sachieving 93.7% accuracy,
95.4% sensitivity, and 95.7% specificity. When compared to Shallow CNN and MobileNet-
V3, Inception-V3 performs significantly better in extracting features from CLAHE CXR
images, reaching reaching 95.6% accuracy, 94.9% sensitivity, and 96.2% specificity. It is
essential to use the ROC curve to estimate overall accuracy and the precision–recall curve
to measure the mean average precision of the proposed model when identifying sensi-
tive conditions like pneumonia. The ROC curves for single- and dual-based channels, as
well as the proposed model on the pneumonia dataset, are shown in Figure 12. Similarly,
Figure 13 shows the precision–recall curve for single- and dual-based channels, as well as
the proposed model.

Furthermore, many of the CXR images were blurry and lacking in details, which
may have hampered the proposed model’s ability to extract and train relevant features.
Interestingly, the benefits of utilizing LBP, CLAHE, and CECED preprocessing approaches
to improve the low quality of CXR images, identify high representation details of the
CXR images with visible trainable features. The proposed multi-channel weighted fusion
performed admirably in identifying various kinds of pneumonia.

In terms of ROC and precision–recall curves, the proposed multi-channel weighted
fusion model appears to outperform the other single and dual-based channels, particularly
when dealing with low-quality CXR images. Our proposed model’s curve is closest to
the upper left corner of the graph and has the largest area under curve, indicating that it
has higher sensitivity and specificity according to the ROC graph in Figure 12. Similarly,
our proposed model’s curve is closest to the graph’s upper right corner with the largest
area, meaning that it has higher precision and sensitivity in Figure 13. More importantly,
as explained above, the stated result in terms of Receiver Operating Characteristic (ROC)
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and precision–recall can aid expert radiologist in striking a balance between accuracy
and precision.

Table 5. Result comparison of our proposed model with state-of-the-art methods for pneumonia
classification.

Authors ACC (%) SEN (%) SPE (%)

Cicero et al. [19] 91.0 91.0 91.0
Correa et al. [22] - 90.9 100.0
Apostolopoulos et al. [27] 98.0 92.9 98.8
Xu et al. [28] 86.7 86.9 -
Habib et al. [29] 98.93 - -
Chouchan et al. [30] 96.4 99.6 -
Yamaç et al. [35] 86.5 79.2 90.7
Wang et al. [36] 93.3 90.7 95.5
Li et al. [37] 96.9 97.8 94.9
J.K. K. Singh and A. Singh [38] 95.8 96.1 95.7
Yang et al. [39] 88.4 64.7 92.9
Wang et al. [40] 94.5 94.7 97.3
Alsharif et al. [41] 99.7 99.7 99.8
Alqudah et al. [42] 93.9 93.2 96.6
Alquran et al. [43] 93.1 92.9 96.4
Masad et al. [44] 98.9 98.3 99.2
Our Model 98.3 98.9 99.2

Table 6. Comparison table for the selected state of the art models using the same dataset.

Model ACC (%) SEN (%) SPE (%)

Xu et al. [28] 91.2 91.8 93.1
Wang et al. [36] 94.0 92.9 94.2
Li et al. [37] 96.1 94.4 95.5
Yang et al. [39] 93.5 92.4 94.7
Wang et al. [40] 95.8 95.4 96.4
Our Model 98.3 98.9 99.2

Table 7. Results obtained on our dataset using different pretrained models on our proposed model.

Model
LBP-Based Channel CECED-Based Channel CLAHE-Based Channel

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)

AlexNet 89.2 91.4 92.6 89.3 87.5 90.2 92.5 94.3 93.7
VGG-16 88.9 90.7 91.4 90.9 90.1 91.8 91.4 92.8 91.9
ResNet-152 84.6 86.2 87.9 91.4 92.3 93.1 87.8 88.1 87.6
MobileNet-V3 87.7 89.4 90.5 93.7 95.4 95.7 90.4 91.6 90.8
DenseNet-121 85.3 87.1 88.7 92.8 92.8 93.3 88.4 89.2 88.7
Inception-V3 86.3 88.6 89.4 93.1 91.5 93.7 95.6 94.9 96.2
Shallow CNN 90.9 92.3 93.1 87.2 86.1 88.4 85.9 86.2 85.7

Nevertheless, other methods have shown better performance for example, Pneumoni-
aNet model [41]. PneumoniaNet model proposed by Alsharif et al. [41] uses CXR images
to distinguish normal radiographic images from those with features consistent with viral
or bacterial pneumonia in the pediatric group aged one–five years with a 99.72% accuracy,
99.74% sensitivity, 99.85% specificity, 99.7% precision, and 98.12% AUC. It achieved satisfac-
tory performance because it combines the extracted feature of three subsequent convolution
layers separated by ReLU and the batch normalization layer, whereas the general feature
extraction uses only one convolution and batch normalization layer, hence permitting the
CNN model to utilize the overall and marginal difference in CXR images.
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The authors of PneumoniaNet seeks to optimize the information flow and gradient
within the network, hence making the optimization of deep learning network tractable. This
model improves the feature propagation, encourages feature re-useability and reduction in
parameters. The distinguishing of this model and ResNet50 is that the latter learns from
the reference input layers by using the output of the existing layer as the subsequent input
layer as compared to the former, whereas comparing with VGG model, the PneumoniaNet
model uses a deeper structure of small receptive subsequent 3 × 3 filters.

However, the authors did not consider the low quality of CXR images which is a
major concern in real-life application. It is well known that data quality can be affected
by factors such as noise, resolution, and artifacts, hence, using such data directly in an
algorithm may affect model adaptability in medical application. A data preprocessing
phase could help in eliminating or reducing the noise and increase the data quality, thereby
improving model performance. The novelty of our methodology takes full advantage of
the complementing integration of feature maps from multi-channels of data preprocessing
technique in a weighted fusion manner, thereby enhancing the overall performance of
our model.

5.1. Ablation Study
5.1.1. Hyperparameter Tuning

We conducted another ablation study to examine if hyperparameter tuning may im-
prove the performance of our proposed multi-channel model. The results of different
optimizers at different learning rates and dropouts are shown in Tables 8–10. Our pro-
posed multi-channel weighted fusion model obtains the best performance utilizing Adam
optimizer with a learning rate of 0.0001 and dropout of 0.50, attaining 98.3% accuracy,
according to Table 8. It is worth mentioning that the Adam optimizer is substantially more
robust than the other optimizers (RMSProp and SGD) due to its computational efficiency.

Table 8. Performance evaluation of our proposed model based on different hyperparameter tuning
on our dataset with Adam optimizer.

Hyperparameters

(LCSC
+
Adam)

(CCI +
Adam)

(CCM +
Adam)

(LCSC + CCI
+ Adam)

(LCSC + CCM
+ Adam)

(CCI + CCM +
Adam)

(LCSC + CCI +
CCM + Adam)

Accuracy
(%)

Accuracy
(%)

Accuracy
(%)

Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

LR (0.1) + Dropout (0.25) 87.5 81.6 89.6 87.3 85.6 90.2 88.1
LR (0.1) + Dropout (0.50) 86.9 87.3 90.7 89.6 87.4 89.5 87.6
LR (0.1) + Dropout (0.75) 83.6 82.6 87.9 89.9 89.3 91.7 89.2
LR (0.01) + Dropout (0.25) 81.4 85.1 91.1 90.4 91.7 90.4 87.1
LR (0.01) + Dropout (0.50) 89.8 84.9 86.3 91.1 90.8 85.5 88.4
LR (0.01) + Dropout (0.75) 84.7 90.7 92.8 85.7 89.2 87.8 89.7
LR (0.001) + Dropout (0.25) 82.2 95.6 88.2 84.6 92.1 92.1 91.5
LR (0.001) + Dropout (0.50) 80.7 91.3 93.4 86.5 89.7 94.7 92.6
LR (0.001) + Dropout (0.75) 88.3 92.7 93.7 91.4 90.8 89.6 93.8
LR (0.0001) + Dropout (0.25) 85.9 83.4 85.6 87.9 92.4 96.3 97.4
LR (0.0001) + Dropout (0.50) 90.9 80.6 87.1 94.4 92.2 97.5 98.3
LR (0.0001) + Dropout (0.75) 79.5 86.2 88.9 89.8 93.3 95.7 95.9
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Table 9. Performance evaluation of our proposed model based on different hyperparameter tuning
on our dataset with RMSProp optimizer.

Hyperparameters

(LCSC
+ RM-
SProp)

(CCI
+ RM-
SProp)

(CCM
+ RM-
SProp)

(LCSC + CCI
+ RMSProp)

(LCSC +
CCM + RM-
SProp)

(CCI + CCM +
RMSProp)

(LCSC + CCI
+ CCM + RM-
SProp)

Accuracy
(%)

Accuracy
(%)

Accuracy
(%)

Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

LR (0.1) + Dropout (0.25) 88.5 89.1 88.9 87.6 90.7 89.7 90.1
LR (0.1) + Dropout (0.50) 89.7 87.4 89.5 87.2 89.5 90.3 91.3
LR (0.1) + Dropout (0.75) 86.3 90.7 88.1 89.3 89.6 91.6 89.8
LR (0.01) + Dropout (0.25) 87.7 88.2 89.6 88.4 88.4 92.5 91.6
LR (0.01) + Dropout (0.50) 81.4 91.5 91.2 90.6 90.9 90.9 93.4
LR (0.01) + Dropout (0.75) 81.1 89.8 90.4 89.7 91.6 92.1 92.8
LR (0.001) + Dropout (0.25) 83.8 92.3 92.2 88.9 90.1 91.4 94.4
LR (0.001) + Dropout (0.50) 86.5 89.6 94.3 87.3 93.7 93.7 96.5
LR (0.001) + Dropout (0.75) 84.2 90.9 93.5 90.4 92.4 95.3 95.9
LR (0.0001) + Dropout (0.25) 85.9 91.1 94.7 91.8 93.6 94.5 97.4
LR (0.0001) + Dropout (0.50) 88.6 89.5 93.9 90.6 92.9 93.9 96.2
LR (0.0001) + Dropout (0.75) 85.3 88.9 94.6 89.7 91.5 92.6 95.5

Table 10. Performance evaluation of our proposed model based on different hyperparameter tuning
on our dataset with SGD optimizer.

Hyperparameters

(LCSC +
SGD)

(CCI +
SGD)

(CCM +
SGD)

(LCSC
+ CCI +
SGD)

(LCSC +
CCM + SGD)

(CCI + CCM +
SGD)

(LCSC + CCI +
CCM + SGD)

Accuracy
(%)

Accuracy
(%)

Accuracy
(%)

Accuracy
(%)

Accuracy (%) Accuracy (%) Accuracy (%)

LR (0.1) + Dropout (0.25) 87.2 88.8 87.7 86.1 87.1 90.8 89.7
LR (0.1) + Dropout (0.50) 85.5 89.3 88.1 88.5 89.6 89.1 90.5
LR (0.1) + Dropout (0.75) 87.9 97.5 89.5 87.9 88.2 90.9 91.6
LR (0.01) + Dropout (0.25) 89.1 90.9 91.9 89.7 89.7 91.7 89.1
LR (0.01) + Dropout (0.50) 82.3 92.3 90.3 91.5 91.4 92.3 91.3
LR (0.01) + Dropout (0.75) 83.6 88.7 89.5 90.3 90.1 90.8 93.5
LR (0.001) + Dropout (0.25) 84.9 91.9 91.7 89.1 91.2 92.5 92.7
LR (0.001) + Dropout (0.50) 85.7 90.4 92.4 90.5 92.5 91.6 95.9
LR (0.001) + Dropout (0.75) 83.5 91.6 94.1 91.9 93.8 94.9 94.4
LR (0.0001) + Dropout (0.25) 86.3 89.3 93.3 89.7 92.9 95.3 96.2
LR (0.0001) + Dropout (0.50) 87.1 90.8 94.6 91.5 93.6 92.5 95.6
LR (0.0001) + Dropout (0.75) 88.8 89.2 93.0 90.3 92.3 93.7 96.8

5.1.2. Raw X-ray Image Feature

Further experiment is conducted to examine and validate the contribution of LBP,
CECED and CLAHE features to model performance over raw X-ray image feature. Figure 16
shows the accuracy results using the raw chest X-ray images while Figure 17 depicts the
performance evaluation of the models across different matrices using the raw chest X-ray
images. Table 11 shows the performance of the various pre-trained models and shallow
CNN using the preprocessed images including the raw X-ray image. To further validate
the contribution of LBP, CECED, and CLAHE image features to the overall performance
the proposed ensemble model, we conducted another experiment with the same selected
pretrained models using the raw chest X-ray images, as depicted in Table 12. From all indi-
cation, the ensemble of LBP, CECED, and CLAHE yielded much better results compared to
the ensemble of the raw chest X-ray image.
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Table 11. Performance evaluation of the proposed model on the single and ensemble models using
raw CXR image.

Model ACC (%) SEN (%) SPE (%) PRE (%) F1 (%)

Raw image Shallow CNN (RISC) 82.1 83.6 80.8 82.9 83.3
Raw image MobileNet-V3 (RIM) 88.0 89.2 90.5 89.7 89.0
Raw image Inception-V3 (RII) 93.34 91.5 92.7 93.0 91.9
Raw image Shallow CNN + Raw image Inception-V3 (RISC + RII) 91.7 89.4 91.0 90.1 91.5
Raw image Shallow CNN + Raw image MobileNet-V3 (RISC + RIM) 85.8 86.1 87.3 89.6 88.9
Raw image Inception-V3 + Raw image MobileNet-V3 (RII + RIM) 95.2 94.6 96.1 94.2 95.7
Raw image Shallow CNN + Raw image Inception-V3 + Raw image
MobileNet-V3 (RISC + RII + RIM)

96.9 96.0 95.4 96.5 95.0

Table 12. Performance results obtained using the raw chest X-ray images on different pretrained
models on our proposed model.

Model
Raw Image

ACC (%) SEN (%) SPE (%)

AlexNet 90.9 89.1 91.0
VGG-16 89.6 90.3 89.2
ResNet-152 90.2 88.5 89.0
MobileNet-V3 88.0 89.2 90.5
DenseNet-121 87.7 89.1 88.3
Inception-V3 93.3 91.5 92.7
Shallow CNN 82.1 83.6 80.8

Figure 16. Accuracy results using the raw chest X-ray images.
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Figure 17. Performance evaluations using the raw chest X-ray images.

6. Conclusions

In this study, we proposed pneumonia identification method based on weighted
fusion capable of processing LBP, CLAHE, and CECED CXR images simultaneously. We
mentioned that the three channels are fused to complementary capture meaningful details
from CXR images and achieved higher identification accuracy. The strategy of weighted
fusion is utilized to take complete advantage of the visual features that have been captured
from the different channels. The proposed weighted fusion model handles the problem of
low-quality CXR images by fusing the weighted features generated from LBP, CLAHE, and
CECED preprocessing stages. The shallow CNN, MobileNet-V3, and Inception-V3 models
are employed to extract both healthy and non-healthy (COVID-19, virus, and bacteria
pneumonia) features from LBP, CLAHE, and CECED CXR images.

Furthermore, these features are merged by utilizing the weighted fusion strategy in
order to take advantage of the complementary lungs information. Softmax was introduced
as the classifier to obtain the fused features. By fusing channels of complementary attributes
in a weighted manner, our proposed model outweighs several state-of-the-art methods. The
evaluation results show that the proposed model achieves better performance with accuracy
of 98.3%, sensitivity of 98.9%, specificity of 99.2% , precision of 98.8% and f1-score of 99.0%
than just using the single- and dual-channels. From the comparative results of the other
established methods, it is confirmed that the proposed weighted fusion model achieved
state-of-the-art identification accuracy, which makes it robust and efficient identification
solution for pneumonia based on low quality CXR images. These results could effectively
assist the expert radiologist to diagnose what type of pneumonia disease is present in a
patient’s lungs while saving screening time.
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