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Abstract: To realize efficient operation of a silo, level management of internal storage is crucial. In
this study, to address the existing measurement limitations, a silo hotspot detector, which is typically
utilized for internal silo temperature monitoring, was employed. The internal temperature data
measured using the hotspot detectors were used to train an artificial neural network (ANN) algorithm
to predict the level of the internal storage of the silo. The prediction accuracy was evaluated by
comparing the predicted data with ground truth data. We combined the ANN model with the
genetic algorithm (GA) to improve the prediction accuracy and establish efficient sensor installation
positions and number to proceed with optimization. Simulation results demonstrated that the best
predictive performance (up to 97% accuracy) was achieved when the ANN structure was 9-19-19-1.
Furthermore, the numbers of efficient sensors and sensors positions determined using the proposed
ANN-GA technique were reduced from seven to five or four, thereby ensuring economic feasibility.

Keywords: artificial neural network; silo hotspot detector; material level; genetic algorithm; optimization

1. Introduction

Coal and biomass are important sources of energy in the modern society. Industries
that generally utilize these resources synthesize, collect, and store them in large quantities
for utilization as per the requirement. Therefore, safe storage is a crucial aspect. Silos
are employed in several industries as the most preferred structure for storing resources
because of their storage capacity and multiple control functions. Therefore, determining
the level of resources in the silo is critical for resource management and silo operations.
Several tools and methods have been used for this purpose. The most commonly used
methods include the plumb-bob method, weight and cable method, ultrasonic techniques,
guided wave radar (GWR), laser meters, load cells, and thru-air radar (TAR) [1–3]. Each
technique has its own advantages and disadvantages. Ultrasonic and laser techniques
are highly effective for measuring the material level inside a silo. However, they are not
practical owing to the presence of dust inside the silo [2,4]. The application of a load cell
to measure the amount of material inside a silo is another widely used simple method,
but this method cannot be applied to large silos. However, GWR and TAR techniques
can address this disadvantage. Although GWR systems are generally more precise, they
require an induction cell capable of transmitting and receiving electromagnetic (EM) energy
while performing measurements at a single level point [2,5]. TAR requires an antenna for
transmission and reception of the EM waves. Furthermore, the beam width used in this
technique is limited. The number of antennas to be installed and the required measurement
points increases with the increase in silo diameter. Consequently, a more economical and
practical method is required to measure the material level inside a silo.
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In this study, we employed a silo hotspot detector to overcome these limitations. This
hotspot detector is developed to detect the possibility of fire, such as natural ignition of
the silo’s internal storage. It is installed inside the silo and detects the possibility of fire
by directly measuring the internal and external temperatures of the storage in real time.
After checking the temperature measurement results of the detector, it can be seen that
the temperatures inside and outside the material are different. This can be used to infer
the internal material level of the silo based on the temperature results of the detector.
In some cases, the error value is small compared to the actual value; however, it is also
confirmed that significant errors occur. Therefore, it is difficult to estimate accurate level
values simply by dividing the boundaries; because of this, other methods are needed to
mitigate this problem.

Machine learning (ML) techniques, which are applied in various ways in various fields,
can be used to solve the aforementioned problems. ML techniques analyze the existing
data to predict other relevant data and future results [6]. The most commonly used ML
techniques include the k-nearest neighbor (KNN) algorithm [7], support vector machine
(SVM) [8], and artificial neural networks (ANNs) [8]. ANNs are generally preferred
owing to their simplified mathematical definitions and short training times. A back-
propagation neural network (BPNN), which is a specific type of ANN, is a multi-layer
feed-forward neural network (MFNN) trained using a back-propagation (BP) algorithm.
The BP algorithm is a local search algorithm that iteratively updates the weight and bias of
neural networks to minimize errors with real data and ANN prediction results. BPNN has
been utilized by many researchers because of its ability to map relationships between two
data in complex, nonlinear relationships.

Furthermore, genetic algorithms (GAs) are optimization methods that use selection,
crossover, and mutation operators to search the response space more efficiently without
multi-pointing and initial conjecture in each iteration. Chandwani et al. [9] studied the
effectiveness of combining ANNs and GAs for slump modeling of ready-mixed concrete
based on cement, fly ash, sand, coarse aggregate, mixing, and water-binder ratios. Gao
et al. [10] developed a fault-finding system for lithium-ion batteries using GA optimization
to predict the optimal operating parameters. Cui et al. [11] utilized a GA to optimize
the indoor Wi-Fi positioning. Zhang et al. [12] conducted a GA-ANN-based short-term
wind speed prediction study for wind generator installation. Li et al. [13] optimized the
internal combustion engine strategy through the ANN model, and an ANN-GA model was
introduced to improve accuracy and stability. In addition, there are a variety of studies that
combine neural networks (NNs) and GAs to solve the problem [14–16]. As such, research
using ANNs and GAs is still actively applied to the present in various engineering domains.
Nevertheless, methodologies using ANNs and GA to measure the internal material level
of silos have not been studied so far.

To overcome the limitations of existing silo material-level measurement techniques,
this study proposes a novel method for measuring material level by applying data obtained
through a silo hotspot detector, which monitors silo internal temperature, to ANN. In
addition, we propose a method to combine GA and ANN to obtain the optimal number
of sensors and installation position to improve accuracy and secure economic feasibility
in real-world applications. The remainder of this paper is organized as follows: Section 2
introduces the silo hotspot detector and the experimental process. Section 3 discusses
the applied ML algorithm, the application method, and the analysis process. Section 4
discusses the GA, the algorithm applied for optimization, and describes the optimization
process. The results and discussion are presented in Sections 5 and 6, respectively. The
final section concludes the study and discusses the scope of future research.

2. Dataset Deployment
2.1. Experimental Data Collection

As mentioned above, the data required for this study were obtained from the ex-
periments. The silo hotspot detector used in this study is shown in Figure 1, and its
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specifications are listed in Table 1. To obtain the temperature data measured during the silo
operation, the detector was installed, as shown in Figure 2. The specifications of the target
silo and positions of the detector and sensors are shown in Figure 2. The temperature was
measured at seven positions by installing the temperature sensors, as shown in Figure 2.
The silo internal material level, which is another data required for this study, was measured
using the well-known plumb-bob method. The machines and measurement methods used
in the plumb-bob method are shown in Figure 3. It is a device that can send a rope-type
machine with ironing tips down from the top of the silo to measure the distance lowered
when it touches the surface of the material and estimates the level of the current silo
material. The specifications for the level-measuring devices are shown in Table 2.

Figure 1. Silo hotspot detector (unit: mm).

Table 1. Specifications of the silo hotspot detector.

Parameters Basic Values

Mounting type Hanging down
Tensile load (kN) 126

Operating temperature (◦C) 0–150
Temperature sensor K-type, 1.6 Φ, ungrounded

Unit material Stainless steel
Unit weight (kg/m) 3

Length (mm) 16,000
Diameter (mm) ≤35

Table 2. Specifications of the material level measuring tool.

Parameters Basic Values

Measurement principle Electromechanical lot-sensor
Version Rope version

Process temperature (◦C) −40–80
Accuracy 1.5% of max. range

Min. immersion length (mm) 245
Min. immersion length (m) 1265
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Figure 2. Installation of the silo hotspot detector and position of the temperature sensors.

Figure 3. Material-level measuring device and method.

2.2. Experimental Result

Some experimental results, which were obtained from the prediction of the level of
materials inside the silo, were extracted and analyzed. Figure 4 shows the experimental
results for 10 cases. The temperature data measured through the hotspot detector and
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the section with a large temperature difference in each case were assumed to be at the
material level. Table 3 shows a comparison between the assumed material-level values
and the measured values. This indicates that some level values can be estimated; however,
there are instances where large differences between the assumed and measured values can
be seen. Therefore, it can be confirmed that other methods are needed to obtain reliable
material-level values.

Figure 4. Experimental temperature results and assumed material-level values.

Table 3. The difference between the assumed level value and the measured value.

Case No. 1 2 3 4 5 6 7 8 9 10

Assumed value (m) 15.765 15.765 11.265 11.265 14.265 14.265 15.765 15.765 11.265 11.265
Measured value (m) 16.278 16.44 15.94 16.083 12.248 12.381 14.062 14.2 15.382 15.552
Difference value (m) 0.513 0.675 4.675 4.818 2.017 1.884 1.703 1.565 4.117 4.287

2.3. Feature Extraction

First, from the acquired data, the features used for learning were screened for efficient
learning and for improving the accuracy of the ML algorithm; these features included the
following three data types:

1. Temperature data from the sensors (F1): The data recorded by the seven temperature
sensors installed on the silo hotspot detector, which could be located above or below
the material level, were included in one dataset for each level and represented the
principal data in this study.

2. Atmospheric temperature (F2): This refers to the ambient air temperature around the
silo, which acts as a reference for determining the air temperature inside the silo.

3. Number of sensors below the material level (F3): The seven temperature sensors in
the silo hotspot detector could be located above or below the material level. Therefore,
it is important to account for the number of internal sensors for each set of acquired
data in the dataset. The number of internal sensors at different material levels is
shown in Table 4.

Table 4. Numbers of internal sensors at different material levels.

Level
(m)

Number of Buried
Sensors (ea)

Level
(m)

Number of Buried
Sensors (ea)

0–7.515 0 12.015–13.515 4
7.515–9.015 1 13.515–15.015 5

9.015–10.515 2 15.015–16.515 6
10.515–12.015 3 16.515–23.515 7
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2.4. Dataset Implementation

To ensure efficient training and accuracy prediction by the ANN model, the datasets
were constrained within the range of the training data. The extreme (maximum and
minimum) values of the training dataset were set such that they included the values in
all the datasets used [9]. The training and test datasets comprising the temperature and
silo-level values are listed in Table 5. A total of 3080 datasets were utilized as training data
and test data.

Table 5. Range of temperature and silo level values.

Data Type
Training Data Test Data

Min. Max. Min. Max.

Input

No. 1 (◦C) 25 41.5 25.3 39.6
No. 2 (◦C) 22.9 41.8 24.7 39.8
No. 3 (◦C) 22.5 42.1 24.2 40.4
No. 4 (◦C) 29.5 42.4 31.9 40.2
No. 5 (◦C) 29.5 42.7 33 40.6
No. 6 (◦C) 29.3 45 31 41
No. 7 (◦C) 29 44.5 31.5 43.6

Atmospheric temperature (◦C) 16.5 28.1 16.5 20.1
Number of buried sensors (ea) 2 7 3 7

Output Material level (m) 9.83 19.89 11.11 19.76

3. Methodology

In this study, the neural network toolbox included in the commercial software MAT-
LAB R2020a was used to perform the analysis.

3.1. Artificial Neural Network (ANN)

ANN is an information-processing paradigm that processes complex systems by
mimicking the learning processes of the human brain. Although the input data and output
data relationships are difficult to define, application of ANN allows adequate correlation
between two, e.g., complex nonlinear relationships. The accuracy of the prediction results
obtained using ANNs is considerably influenced by the ANN architecture, which includes
the number of layers in the network, number of neurons in each layer, type of transmission,
and training functions in each layer [17] and different architectures that need to be applied
for each problem. The architecture applicable to this study is discussed in Section 3.2.

In this study, we applied the MFNN, a type of MLP [18–23], which has proven to be
well-suited to several applications. This neural network comprises three layers: an input
layer, a hidden layer, and an output layer, as shown in Figure 5.

The first step for applying ANN to the problem to be solved is constructing a training
dataset for the problem. The training data are propagated from the input layer to the
output layer through the hidden layer, where the output value is generated after adjusting
the weights and biases of each layer. The error between the predicted output and actual
value is calculated and propagated in the reverse direction. The algorithm re-adjusts the
weights and biases according to the calculated error. After this process is repeated, the final
prediction results are determined when the target error value is reached.

For the efficient learning of ANNs, appropriate values for the learning rate and
momentum parameter were selected, as shown in Table 6. The learning rate is a common
parameter in numerous learning algorithms, affecting the rate at which ANNs obtain
solutions. In the ANN, the learning rate was similar to the step-size parameter of the
gradient descent algorithm. If the step size is too large, the system will go back and forth
for the true solution, or it will be complete. If the step size is too small, the system will
require a significant amount of time to converge to the final solution. The momentum
parameter prevents the system from focusing on the local minimum or saddle point. The
high momentum parameters increase the convergence rate of the system but can overshoot
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the minimum value; this can destabilize the system. In contrast, low momentum parameters
are unavoidable local minima and slow down the training speed of the system [24]. The
combination of these parameters assists BP algorithms to overcome the local minima effect.
The weight change is determined by learning rate and the momentum parameter, such as
Equations (1) and (2).

∆wn = α∆wn−1 − η
∂e
∂w

(1)

where

e =
1
N

N

∑
i=1

(Ti − Ki)
2 (2)

Figure 5. MFNN structure.

Table 6. ANN model parameters.

Parameters Basic Values

Number of input neurons 9
Number of hidden layers 1 or 2

Number of hidden neurons 5, 9, 18, or 19
Number of output neurons 1
Number of training dataset 3080

Number of test dataset 3080
Training algorithm Scaled conjugate gradient
Transfer function Logsig (hidden), purelin (output)

Learning rate 0.01
Momentum 0.9

Here, w represents the weight between two neurons; ∆w and ∆wn−1 represent the
changes in weights at n and n− 1 iterations, respectively, α is the kinetic factor, η is the
learning rate, e is the computational error, Ti is the actual output, and Ki is the predic-
tion output.
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3.2. Setup of ANN Architecture and Parameters
3.2.1. Number of Hidden Layers

Many researchers have reported that an ANN with a three-layer structure comprising
one hidden layer functions appropriately [18,21,23,25–28]. However, other researchers
have suggested using two hidden layers to analyze the nonlinear relationship between
the data [29]; moreover, in some studies, two hidden layers were reported as optimal
structures for problem solving. [19,20,30,31]. Optimization rules or concrete methods for
determining the number of hidden layers are yet to be established. Consequently, in this
study, we compared the network features with one and two hidden layers using trial and
error methods and determined the optimal number of hidden layers.

3.2.2. Number of Neurons in the Layers

The number of neurons in the input and output layers is typically determined at the
beginning of the study, as it determines the actual number of data used and the number
predicted. Because no optimization rule is available to determine the required number
of neurons in the hidden layer, we used the values proposed by Zhang et al. [32] for this
purpose, that is, n/2, n, 2n, and 2n + 1, where n represents the number of input variables.
We selected the optimal number of neurons by comparing the results for each case. Because
the number of neurons in the input layer was nine, the ANN structures in this study were
9-5-1, 9-9-1, 9-18-1, 9-19-1, 9-5-5-1, 9-9-9-1, 9-18-18-1, and 9-19-19-1.

3.2.3. Transfer and Training Function

In an ANN, the transfer function determines the strength of the output value after
converting the weighted sum of the input data to the output neuron. A standard criteria for
determining the transfer function has not yet been established; hence, the function should
be adapted to the problem that is being solved [33]. Therefore, in this study, the following
commonly used transfer functions were adopted: the tangent transfer function (tansig)
for hidden layers and the linear transfer function (purelin) for the output layers [34]. The
training function employed a scaled conjugate gradient (SCG) algorithm.

A systematic update of the weight and deflection values was performed using the
SCG developed by Møller [35]. This algorithm combines a model-trust region approach
with a conjugate gradient approach; the latter uses a step-size scaling mechanism to avoid
time-consuming line searches per learning iteration. Moreover, the SCG algorithm does
not consider user-dependent parameters with important values [35]. The overall flow
diagram of the ANN models applied in this study is shown in Figure 6; the parameters of
the architecture are listed in Table 6.
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Figure 6. Flowchart of ANN training process.

3.3. Evaluation of the Trained Model Performance

Two statistical parameters were adopted to evaluate the performance of the trained
ANN model. These included the mean absolute error (MAE), mean squared error (MSE),
and coefficient of correlation (R). The performance metrics are calculated as follows:

MAE =
1
N

N

∑
i=1
|Ti − Ki| (3)

MSE =
1
N

N

∑
i=1

(Ti − Ki)
2 (4)

R =

 ∑N
i=1
((

Ti − T
)(

Ki − K
))√

∑N
i=1
(
Ti − T

)2
∑N

i=1
(
Ki − K

)2

 (5)

where N is the total number of dataset, T is the target observed value, K is the ANN
predicted output value, T is the average of the observed value, and K is the average of
the ANN predicted value. MAE represents the mean value converted from the difference
between the observed and the predicted value to the absolute value. MSE represents
the square root of the mean error between the observed and predicted values. A low
MAE and MSE indicates better predictive performance. The association strength between
observations and predictions was quantified using Pearson’s correlation coefficient (R).
However, R depends on the linear relationship between the real and predicted values,
resulting in biased results if the relationship between the two values contains outliers.
Therefore, the closer the R value is to 1, the more accurate the predicted results from
the ANN model. Combining the three aforementioned performance metrics can provide
unbiased estimates of the predictive capabilities of neural network models.

4. Optimization

In this study, the silo internal material level was predicted using temperature data
and ANN; additionally, optimization tasks were performed to improve the prediction
accuracy, minimize the number of temperature measurement points, and optimize positions.
The subsequent sections describe the algorithms and methods applied to the performed
optimization tasks.
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4.1. Genetic Algorithm (GA)

GA is an optimization algorithm that mimics the principles of natural evolution of
living things and is widely applied and utilized in various domains, including engineer-
ing [36]. Figure 7 illustrates the concept of GA. The algorithm leverages the selection,
crossing, and mutation operators shown in the biological evolution process to produce
better results in the next generation compared to the present generation. The selection
operator evaluates the fit of the existing response elements and selects the best one among
them. The crossover operator combines the two selected responses from the parent to create
a new, unique response. Finally, the mutation operator changes the elements of a given
response, creating a wider variety of responses. Responses that evaluate the suitability
of new responses created by crossover and mutation operators and exhibit a high fit are
passed on to the next generation. This process is repeated until an optimal fitness score is
obtained for a problem.

Figure 7. Illustration of the genetic algorithm concept, using an example iteration for a population of
four individuals, each comprising seven genes.

This allows GA to navigate solutions by mutual cooperation between multiple objects,
making it easier to find better solutions compared to exploration of simple parallel solutions.
Moreover, unlike other algorithms that require differential values of the evaluation function,
GA only requires that the current adaptation is discernible. Therefore, the algorithm is
simple and can be applied even when the evaluation function is discontinuous. For this
reason, this study performed optimization tasks using GA.

4.2. Optimizing Position and Number of Temperature Measurement Points

In this study, the objective of optimizing the silo internal material-level prediction
process was to improve the accuracy of the material-level prediction while determining the
optimal position and number of temperature measurement points. To this end, we used
the ANN-GA hybrid approach. The steps involved in the ANN-GA approach are depicted
in Figure 8. The parameters used are listed in Table 7.
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Figure 8. Flowchart of the ANN-GA.

Table 7. Parameters applied to ANN-GA model.

Parameters Basic Values

Number of input neurons ts (= 3–6)
Number of hidden layers 2

Number of hidden neurons Ts
Number of output neurons 1

Gen 150
Npop 10 × ts

Steps involved in the ANN-GA process:

1. Selection of the number of temperature measurement positions (ts) and configuring
the ANN architecture. Establishing training algorithms and termination conditions;
optimizing network training

2. Selection of parameters, that is, the population size (Npop) and the maximum number
of generations (Gen), for the optimization process.

3. Determining the output value of each response using trained ANNs; determining the
suitability of the output value using the objective function.

4. Evaluation of conformity values using selection, crossover, and mutation.
5. Generation of a new response from the previous step; evaluation of the conformity

value of the new response. Determining the ranking of all responses based on the tar-
get function value with the most appropriate Npop value forming the next generation.

6. Repetition of steps 3–5 until one of the following termination conditions is satisfied:

• The maximum number of generations is exceeded.
• The fitness function reaches the target value or a specific deviation from the

target value.
• There is no improvement in the fitness value during the specified generation.

5. Results and Discussion
5.1. ANN Model Sensitivity Based on Input Value Combination

Prior to the silo material level prediction over ANN, we confirmed the sensitivity
of the ANN model when multiple combinations of data features compiled in Section 2.3
were applied as input data. The total data combinations are F1 (Case 1), F1 + F2 (Case 2),
F1 + F3 (Case 3), and F1 + F2 + F3 (Case 4). The results for each case are shown in Table 8.
Sensitivity analysis confirms that Case 4 performs best. Therefore, in this analysis, the
combination of input data is applied as shown in Case 4.
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Table 8. Model sensitivity according to input data combination.

Case No.
Feature

Combination

Performance

MAE MSE R

1 F1 0.4634 0.1156 0.96843
2 F1 + F2 0.4266 0.0861 0.9789
3 F1 + F3 0.2602 0.0531 0.98738
4 F1 + F2 + F3 0.2528 0.0371 0.99107

5.2. Training Results

The training results are summarized in Figure 9 and Table 9. For one hidden layer, the
MSE value was minimum at 0.0786, and the R value was maximum at 0.9912 in Case 4. For
two hidden layers, the MAE value was minimum at 0.2377, the MSE value was minimum
at 0.0315, and the R value was maximum at 0.99612 in Case 8. As shown in Figure 9, the
ANN architecture had an identical impact on the MAE, MSE, and R values. The prediction
accuracy was higher when the number of hidden layers was two than in one, and the
prediction accuracy increased as the number of neurons increased.

Figure 9. ANN training results.

Table 9. Training and Test results.

Case
Number of Hidden

Layers Structure

Performance

Training Test

MAE MSE R MAE MSE R

1

1

9-5-1 0.2768 0.164 0.98055 0.2859 0.2258 0.9758
2 9-9-1 0.2786 0.1179 0.98669 0.2878 0.2545 0.96896
3 9-18-1 0.2587 0.0942 0.9893 0.2805 0.2771 0.96589
4 9-19-1 0.2646 0.0786 0.9912 0.2709 0.1808 0.97421

5

2

9-5-5-1 0.2528 0.1037 0.98875 0.2934 0.2088 0.97274
6 9-9-9-1 0.2501 0.0794 0.99082 0.2735 0.1545 0.98406
7 9-18-18-1 0.2434 0.0615 0.99277 0.2652 0.2463 0.97135
8 9-19-19-1 0.2377 0.0315 0.99612 0.2391 0.188 0.9807

In general, the accuracy of ANN training results vary with the number of hidden
layers and neurons [17]. This effect was identified in the present study. It was confirmed
that the more suitable the structure was for the problem it sought to solve, the more accurate
the ANN training result was.
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5.3. Test Results

Tests were performed on eight ANN models utilizing data not used for training. Each
structure consists of a different number of hidden layers and neurons. The analysis of test
results allowed us to determine whether overfitting may occur during the training process.
This is an important aspect when applying the developed ANN model to real-world sites.

The test results are shown in Figure 10 and Table 9. For one hidden layer, the minimum
value of MAE and MSE was 0.2709 and 0.1808 in Case 4, and the maximum value of R
was 0.9758 in Case 1. For two hidden layers, the MAE value was minimum (0.2391) in
Case 8, the MSE value was minimum (0.1545), and the R value was maximum (0.98406) in
Case 6. The test results differed from those of the training results. The MAE and MSE value
was higher than the training result, and the R value was lower. This indicates that the test
results were less accurate than the training results. However, despite these differences, the
test results showed high accuracy and confirmed that no overfitting occurred during the
training process.

Figure 10. ANN test results.

To verify the accuracy of the test results more directly, the actual and predictive
results were compared, and the differences were identified. Considering the training and
test results for various ANN architectures, we compared the test results for the selected
structure (Case 8: 9-19-19-1) with the actual results, as shown in Figure 11. The comparison
results confirm the following results.

Figure 11. Level values and difference between measured and predicted values (Case 8: 9-19-19-1).
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• The ANN predicted changes in the level of materials inside the silo owing to material
discharge and charging.

• An inspection of the results confirmed that the temperature data could be used to
predict the level of material inside the silo.

5.4. Optimization Results

As noted in Section 4.2, the variable in the optimization process indicates the position
of the internal silo temperature measurement point. Optimization was performed to obtain
the optimal measurement position for cases with three, four, five, and six optimization
points. Based on the target function (MSE), we evaluated 10 ts populations per generation.
As an end condition, we set the optimization process to terminate when the fitness value
did not change upon repeating more than 150 generations. Furthermore, ANN training was
conducted using the optimized position, and the material level was predicted. Figure 12
shows the optimization endpoints for each variable.

Figure 12. Best fitness and generation values based on the number of optimization points.

Figure 13 shows the plot of the optimized position based on the number of tem-
perature measurement points inside the silo. Table 10 shows the ANN training results
when the sensors were placed at optimized positions based on the number of internal
silo temperature-measurement points. Optimization shows that although the number
of temperature-measurement points decreased by approximately 50%, the difference in
MAE and MSE values were not significantly different. For four, five, and six measurement
points, the MAE and MSE value decreased and the R value increased. This implies a higher
prediction accuracy when setting the temperature measurement points at the optimal
positions. The number of measurement points was optimized for cases with three, four,
five, and six points, and the MSE values for these cases were 0.0415, 0.0234, 0.0189, and
0.0078, respectively. The MSE values tended to decrease when the number of measurement
points increased; however, the values in each case were close to 0. Consequently, even if
the number of measurement points was reduced to three, the prediction accuracy of ANNs
can be expected to be very high if the measured temperature at the optimized position was
used as the input value.

Table 10 shows the ANN test results when the sensors were optimally positioned.
Figure 14 shows the comparison of the internal silo material levels obtained through
experiments with the levels predicted by the ANN at the optimized position, showing
the error between the two results. Figure 15 shows the comparison of the level-value
errors predicted from the optimization positions via boxplot. As shown in Figure 15, the
prediction error for 4, 5, and 6 points was approximately 50% lower than the prediction
error for 3 points. As with the training results, the MAE and MSE values decreased by
approximately 50%, and the R values increased. This confirms that if the number of
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measurement points was four, five, and six, the accuracy of the prediction results obtained
based on the optimized input values was high.

Figure 13. Measurement position according to the number of optimized temperature measurement
points (unit: mm): (a) 3, (b) 4, (c) 5, and (d) 6 points.
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Table 10. ANN training and test result at optimized temperature-measurement position.

Number of Measurement
Points

Structure

Performance

Training Test

MAE MSE R MAE MSE R

3 5-11-11-1 0.3384 0.0415 0.98939 0.408 0.2016 0.97290
4 6-13-13-1 0.1772 0.0234 0.99463 0.2152 0.1087 0.97399
5 7-15-15-1 0.1707 0.0189 0.99561 0.1878 0.1071 0.97771
6 8-17-17-1 0.141 0.0078 0.99795 0.1541 0.0919 0.98393

Figure 14. Cont.
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Figure 14. Comparison of predicted and measured material levels and error at optimization position. Results of (a) 3, (b) 4,
(c) 5, and (d) 6 points.

Figure 15. Comparison of error at optimization position.

6. Conclusions

Herein, we propose the use of an ANN to predict the level (output) of a material inside
a silo based on the temperature (input) within the silo. The test data were experimentally
obtained. The proposed method could accurately predict the material level of large-
capacity silos, which was relatively difficult to measure in practice. A method to optimize
the number and positions of temperature-measurement points required to predict material-
level values was also proposed. The global search function of the GA was used to optimize
the number and positions of the temperature measurement points because the accuracy of
the ANN’s material-level prediction varied depending on the number and position of the
temperature measurement points. The results indicated the following:

• The accuracy of the material levels predicted using temperature data was suffi-
ciently high.

• The proposed method enables simultaneous, real-time monitoring of temperature and
material levels using a temperature detector, thereby ensuring efficient silo management.

• The method can accurately predict the material levels inside a silo by optimizing
the number and position of the temperature-measurement points. Even when the
number of temperature measurement sensors was reduced from seven to three, the
material level could be predicted accurately provided that the sensors were installed
at optimized positions.

• When there are more than four measurement points, the error is 1.2–1.3%. This
represents a 50% decrease from the error when the number of measurement points
is three. Therefore, considering the economic feasibility and temperature detection
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performance, which is the existing function of the detector, it is considered optimal if
the number of measurement points is four or five.

• The prediction error of the proposed method was approximately 50% less than that of
the existing methods.

• The proposed method is expected to increase the efficiency of the silo operation, make
it more economical, and improve the silo safety management in practical applications.

The limitation of this study is that we did not consider surface features when predicting
the internal silo material-level values. Depending on the surface shape, the predicted level
values and ground truth values may be larger than the conventional errors. While some
data have shown information about such surface features, data on real surface features
have been insufficient to perform ANNs. Therefore, we would like to obtain sufficient
surface-shape data for future studies and check the material-level forecast considering this.
In addition, the data used in this study were obtained for the colder months of October–
December; hence, it is necessary to obtain and compare the data in the summer, which
provides the opposite environment.

Moreover, we intend to check the predictability of factors affecting silo safety manage-
ment (such as pressure acting on silo walls and the detector) based on temperature data
obtained using a silo hotspot detector.
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