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Abstract

In humans, several respiratory viruses can have neurologic implications affecting both central and periph-
eral nervous system. Neurologic manifestations can be linked to viral neurotropism and/or indirect effects
of the infection due to endothelitis with vascular damage and ischemia, hypercoagulation state with throm-
bosis and hemorrhages, systemic inflammatory response, autoimmune reactions, and other damages.
Among these respiratory viruses, recent and huge attention has been given to the coronaviruses, especially
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic started in 2020. Besides the
common respiratory symptoms and the lung tropism of SARS-CoV-2 (COVID-19), neurologic manifes-
tations are not rare and often present in the severe forms of the infection. The most common acute and
subacute symptoms and signs include headache, fatigue, myalgia, anosmia, ageusia, sleep disturbances,
whereas clinical syndromes include mainly encephalopathy, ischemic stroke, seizures, and autoimmune
peripheral neuropathies. Although the pathogenetic mechanisms of COVID-19 in the various acute neu-
rologic manifestations are partially understood, little is known about long-term consequences of the infec-
tion. These consequences concern both the so-called long-COVID (characterized by the persistence of
neurological manifestations after the resolution of the acute viral phase), and the onset of new neurological
symptoms that may be linked to the previous infection.

INTRODUCTION

Acute respiratory viral illnesses are among the leading
causes of human diseases worldwide. More than 200
antigenically distinct viruses from 10 genera are known
to cause viral respiratory illness (Mackie, 2003). Most of
these viral infections cause acute respiratory disease of
the upper respiratory tract, while lower respiratory
tract infections are less frequent. The conditions caused
by respiratory viruses are named according to the
syndrome, including “common cold,” pharyngitis,

laryngotracheobronchitis, tracheitis, bronchiolitis, bron-
chitis, and pneumonia (Charlton et al., 2018). Although
respiratory viral infection occurs most commonly in
children, healthy adults, older, and immunocompro-
mised people can be affected well. The primary function
of the respiratory tract is to conduct air deep into the
lungs where vital gas exchanges occur. A variety of
airborne pathogens constantly challenge this function,
most of them respiratory viruses. The impact of viral
respiratory infections depends on the host’s ability to
develop a protective immune response that clears the
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virus (Flerlage et al., 2021). If the immune system fails to
provide the necessary response within an appropriate
timeframe or a hyperactive response is mounted, the
airway structures cannot maintain their function and
eventually causes respiratory dysfunction (Dakhama
et al., 2005). In addition, viruses can cause damage to
the peripheral and central nervous system (PNS and
CNS, respectively), which can lead to neurogenic respi-
ratory dysfunction (Pizzi, 2021). More recently, this
topic was brought to the fore with the severe acute respi-
ratory syndrome coronavirus-2 (SARS-CoV-2) outbreak
(Tan et al., 2021). This chapter provides insights into the
pulmonary and neurologic basis of respiratory dysfunc-
tion related to infections with coronaviruses and other
respiratory viruses. Furthermore, the pathophysiological
mechanisms and clinical manifestations of neurological
involvement of human coronaviruses are discussed.

RESPIRATORY VIRUSES AND OTHER
VIRUSES CAUSING RESPIRATORY

DYSFUNCTION

The incidence of viral respiratory disease has increased
over time (Global Burden ofDisease StudyC, 2015). This
increase reflects both improved diagnostic techniques and
the growing population of immunocompromised individ-
uals. Both DNA and RNAviruses can cause viral respira-
tory disease.Viral respiratory disease can vary from amild
and self-limited illness to a life-threatening infection
(Fragkou et al., 2021). Poor prognosis depends on the
organism’s virulence, and the age, comorbidities, and
immune status of the host (Han et al., 2020). Viruses that
can cause respiratory disease (so-called “Respiratory

viruses”) are listed in Table 17.1. The four most frequent
etiologies of viral pneumonia in children and immuno-
competent adults are influenza virus, Respiratory syncy-
tial virus (RSV), adenovirus, and Parainfluenza virus
(PIV). Influenza virus types A and B are responsible for
more than half of all community-acquired viral pneumo-
nia cases, particularly during influenza outbreaks (Davis
et al., 2014). Moreover, enteroviruses account for occa-
sional respiratory illnesses during the summer months
(Graf et al., 2019). Interestingly, in 2020 and 2021, the
stringent public health measures imposed to control the
COVID-19 pandemic have suppressed most seasonal
respiratory viruses; the notable exception is human rhino-
virus/enterovirus (Champredon et al., 2021; Rodgers
et al., 2021).

RESPIRATORY DYSFUNCTION
BY VIRAL INFECTION

Respiratory viruses can be transmitted via respiratory
secretions over multiple routes, independently and
simultaneously. The main four ways include direct trans-
mission via physical contact, indirect transmission via
contact with contaminated surfaces or objects, direct
spread through the air from one respiratory tract to
another via large respiratory droplets, and fine respira-
tory aerosols (Leung, 2021). Once transmitted to a host,
viruses may accomplish their first rounds of replication
in the oral and nasal cavity, and the nasopharynx before
eventually spreading to the lower airways. However,
direct infection of the lower airways is possible via the
inhalation route. Respiratory viruses that enter the airway
interact primarily with epithelial cells, the leading site of

Table 17.1

Respiratory viruses

Adenoviridae (adenoviruses) Paramyxoviridae (paramyxoviruses) Retroviridae (retroviruses)
Coronaviridae (coronaviruses) PIV HIV
SARS RSV HTLV-1
MERS hMPV Herpesviridae
2019-nCoV Measles virus HSV-1, HSV-2
Bunyavtridae (arboviruses) Picornaviridae (picornaviruses) HHV-6
Hantavirus Rhinovirus HHV-7
Orthomyxoviridae (orthomyxoviruses) Enteroviruses, HHV-8
Influenza virus Enterovirus 71 VZV
Papovaviridae (polyomavirus) Coxsackievirus CMV
JCV Echovirus EBV
BK virus Reoviridae (rotavirus)

The bold text represents the difference families of viruses. Abbreviations: 2019-nCoV, 2019 novel coronavirus; CMV, Cytomegalovirus; EBV,
Epstein–Barr virus; HHV-6, herpesvirus-6; HHV-7, herpesvirus-7; HHV-8, herpesvirus-8; HIV, human immunodeficiency virus; hMPV, human

metapneumovirus; HSV-1, herpes simplex virus-1; HSV-2, herpes simplex virus-2; HTLV-1, human lymphotropic virus type 1; JCV, John

Cunningham virus; MERS, Middle East respiratory syndrome; PIV, parainfluenza virus; RSV, respiratory syncytial virus; SARS, severe acute

respiratory syndrome; VZV, varicella-zoster virus.
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viral replication and the source of many mediators that
can initiate both physiologic airway responses and innate
and adaptive immune responses (Clementi et al., 2021;
Wang et al., 2021). Some respiratory viruses are present
in feces or infected cells from the gastrointestinal tract.
Thus, transmission via direct contact with feces or aero-
solization during toilet flushing needs to be considered
(Johnson et al., 2013). The eye may serve as another
route of viral entry for respiratory viruses, and the upper
respiratory tract could be reached via the lacrimal duct.
Respiratory failure and hypoxemia are common clinical
manifestations of respiratory infection. In such cases,
disease progression typically comprises a compensated
hypoxic phase, often with nonspecific signs and symp-
toms (Guo et al., 2021). This phase may be followed
by decompensation and rapid deterioration to severe
respiratory failure, with the need of invasive ventilation
or even extracorporeal membrane oxygenation rescue.
Therefore, the correct timing of respiratory support
therapy is critical.

Pathogenesis of virus-induced
airway dysfunction

Most respiratory viruses multiply in the epithelium of the
upper airway, and secondarily infect the lung through
airway secretions or hematogenous spread (Flerlage
et al., 2021). Severe pneumonia may result in extensive
consolidation of the lungs with varying degrees of
bleeding, with some patients developing bloody pleural
effusions and diffuse alveolar damage (Clementi et al.,
2021; Klomp et al., 2021). The mechanism of injury to
tissues depends on the virus involved. Some viruses
are mainly cytopathic, directly affecting the pneumo-
cytes or the bronchial cells (Gorski et al., 2012). With
others, overexuberant inflammation from the immune
response is the mainstay of the pathogenic process
(Valdebenito et al., 2021). Respiratory viruses damage
the respiratory tract and stimulate the host to release mul-
tiple humoral factors. The immune responses can be cat-
egorized according to the patterns of cytokine production
(Gomez-Escobar et al., 2021). Type 1 cytokines promote
cell-mediated immunity, while type 2 cytokines mediate
allergic reactions. Children infected with RSV who
develop acute bronchiolitis rather than mild upper
respiratory infection, have impaired type 1 immunity
or augmented type 2 immunity. In addition to humoral
responses, cell-mediated immunity appears necessary
for recovery from certain respiratory viral infections
(Newton et al., 2016; Connors et al., 2016). Impaired type
1 response may explain why immunocompromised
patients have more severe viral pneumonia. Viral infec-
tions can also alter bacterial colonization patterns, increase
bacterial adherence to respiratory epithelium, reduce

mucociliary clearance, and alter bacterial phagocytosis
by host cells (Meskill and O’Bryant, 2020).

Pathogenesis of nervous system dysfunction
leading to respiratory disturbances

Control of ventilation depends on a brainstem neuronal
network that orchestrates the activity of the motor neu-
rons innervating the respiratory muscles. This network
comprises the pontine respiratory group and dorsal and
ventral respiratory groups in the medulla (Smith et al.,
2013; Del Negro et al., 2018). Thus, neurologic disorders
affecting these areas, or the respiratory motor unit, may
lead to abnormal breathing (Nogues and Benarroch,
2008). In addition, the more acute the lesion, the greater
is the probability of developing respiratory failure.
Several diseases, including viral CNS infections, may
selectively or prominently affect nuclei and pathways
involved in respiratory control. These disorders are
frequently associated with impaired cardiovascular con-
trol, emphasizing the close interactions between respira-
tory, cardiovagal, and sympathetic vasomotor control
networks.

VIRUSES AS CAUSE OF CENTRAL NEUROGENIC

RESPIRATORY DYSFUNCTION

Lesions affecting the pontine respiratory group, the
nucleus of the tractus solitarius (NTS), the ventral
respiratory group (VRG), or the central chemoreceptors
may cause central alveolar hypoventilation (congenital
central hypoventilation syndrome [CCHS]), abnormal
respiratory rhythm, or both (Demartini et al., 2020).
Impairment of the automatic control of ventilation causes
central alveolar hypoventilation syndrome, which
includes repetitive morning headaches, nocturnal sleep
disruption, or daytime tiredness and sleepiness (Boing
and Randerath, 2015). In addition, cyanosis, irregular
breathing patterns during sleep or wakefulness, or
absence of dyspnea during exercise may occur. Lesions
involving the dorsolateral region of the pons may lead to
apneustic breathing, and paroxysmal hyperventilation
may arise after an acute lesion in the upper brainstem.
Cases of viral causes of central hypoventilation
syndrome in the literature are scarce. A case of acquired
central hypoventilation was reported postmortem in an
8-year-old boy (Giangaspero et al., 1988). The neuro-
pathological examination revealed viral encephalitic
lesions in the hypothalamus and the brainstem. Another
case of a 28-year-old woman with central hypoventila-
tion who had undergone immunosuppression due to dou-
ble intestinal-kidney transplantation has been reported
(Larrosa-Barrero et al., 2018). She developed progres-
sivemultifocal leukoencephalopathy (PML). The lesions
were located in the left margin and the posterior part of
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the brainstem, the posterior part of the mesencephalon,
and the three bilateral cerebellar peduncles. The medulla
damage was considered irreversible, so long-term non-
invasive ventilation (NIV) was prescribed. A case of
Ondine’s curse in a 17-month-old boy with detection
of both Hemophilus influenzae and HSV-1, and enceph-
alitic lesions in the medulla, cerebellum, and upper cer-
vical cord was also published (Tirupathi et al., 2008). At
4.5 years of age, the child remained quadriplegic, and she
required nocturnal and intermittent diurnal ventilatory
support via a tracheostomy for persisting central hypo-
ventilation syndrome. Death in poliomyelitis is usually
the result of bulbar involvement with respiratory and
cardiovascular impairment. Bulbar poliomyelitis occurs
in 10%–15% of cases with paralysis. Bulbar polio can
involve any of the cranial nerves and the medullary
reticular formation. The latter can result in respiratory
dysfunction, including ataxic breathing and cardiovascu-
lar symptoms (hypotension, hypertension, and cardiac
arrhythmias) (Romero and Modlin, 2015). Also, the
prevalence of sleep apnea syndrome, nocturnal alveolar
hypoventilation, and restless legs syndrome in the after-
math of polio is higher than in the general population
(Leotard et al., 2020).

Viruses are an important cause of infectious and para-
infectious myelitis (Isada and Miller, 2020). Although
some viruses are highly cytolytic and directly damage
the CNS (e.g., poliovirus), virus-specific and autoimmune
host cellular immune responses presumably contribute to
spinal cord damage and neurologic dysfunction in acute
viral myelitis associated with less virulent or noncytolytic
viruses (Lerner et al., 2021). Postinfectious CNS syn-
dromes are an essential consideration following a viral
infection, and the virus cannot be detected in CSF during
acute myelitis (Schulte et al., 2021). The most important
risk factors for respiratory complications associated with
spinal cord injuries are lesions above C5 and American
Spinal Injury Association (ASIA) Grade A impairment
scale score (Roberts et al., 2017). A patient with a near-
complete lesion above C5 will typically have impaired
diaphragm function and is likely to require a period of
endotracheal intubation and mechanical ventilation
(Hassid et al., 2008).

The infection may preferentially involve spinal cord
gray matter, white matter, or both in viral myelitis. The
area of spinal cord involvement generally extends to at
least several vertebral segments (Nardone et al., 2017;
Feige et al., 2020). Myelitis with bilateral corticospinal
tract involvement at high cervical levels may lead to
“autonomous breathing,”with loss of ability to initiate vol-
untary respiratory movements (Nogues and Benarroch,
2008). Lesions at the ventrolateral region of the cervical
spinal cord may lead to loss of automatic breathing. Acute
lesions involving the dorsolateral medulla may also result

in involuntary breathing loss, usually associated with
impaired swallowing and cough reflex and thus an
increased risk of aspiration pneumonia. Medullary lesions
can also cause “ratchet breathing,” which is characterized
by irregular and jerky inspiratory breaths with short apneic
pauses during mid-inspiration (Nogues and Benarroch,
2008). The clinical presentation of acute viral myelitis
can be divided into a poliomyelitis-like gray matter syn-
drome and a partial or complete white matter syndrome.
However, the lattermay also involve graymatter structures
(Murphy et al., 2021). Nonspecific upper respiratory
symptoms with fever may usher in or antedate acute mye-
litis. In poliomyelitis, a prodromal illness consisting of
headache, fever, or mental status changes may occur
(Romero and Modlin, 2015). Within days, a pure motor
deficit consisting of flaccid weakness of one or more limbs
without sensory abnormalities or urinary bladder dys-
function develops. Preferential involvement of anterior
horn cells in gray matter suggests poliovirus infection.
Polio-like disease is also seen with coxsackieviruses
A and B, enteroviruses-70 and -71, West Nile virus
(WNV), Japanese encephalitis virus, and tick-borne
encephalitis virus (Ide et al., 2021). In contrast, individ-
uals presenting with prominent sensory disturbances,
urinary retention, and weakness with either hypo- or
hyper-reflexia have myelitis due to involvement of
the white matter. This involvement usually affects only
part of the transverse expansion of the spinal cord and
manifests as asymmetric motor and sensory symptoms.
When both halves of the spinal cord are affected, the
entity is termed acute transverse myelitis and patients
have bilateral weakness and sensory loss. Viruses caus-
ing myelitis are listed in Table 17.2.

VIRUSES AS CAUSE OF PERIPHERAL NERVOUS SYSTEM

DYSFUNCTION AND RESPIRATORY MUSCLE UNIT

DISORDERS

Respiratory failurebecauseof respiratorymuscleweakness
is often a prominent manifestation of different disorders
affecting the motor unit (Nogues and Benarroch, 2008).
Inspiratory muscle weakness ultimately results in alveolar
hypoventilationand impairedCO2exchange.However, the
initial effect is loss of ability to increase ventilation efforts
in response to increased demands (fever, infection). As
muscle weakness progresses and ventilatory needs remain
excessive, inspiratorymuscles suffer fatigue. Tachypnea is
theusual response tounmetventilatorydemands, but it also
enhances the work of breathing. Inspiratory muscle weak-
ness predisposes to atelectasis by reducing vital capacity,
tidal volume, and the volume of sighs.

Guillain–Barr�e syndrome (GBS) is an immune-
mediated polyradiculoneuropathy (Wakerley and Yuki,
2013). In most patients, the acute onset of neurologic
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symptoms is preceded by an infective illness, followed
by progressive limb weakness, which can last up to
4 weeks before reaching plateau. Molecular mimicry is
the presumed immunopathogenesis and Campylobacter
jejunii, Cytomegalovirus (CMV), Zika virus, and
SARS-CoV-2 are the most common pathogens involved
(Shahrizaila et al., 2021). Other respiratory viruses impli-
cated in the pathogenesis of GBS are influenza virus
A and B virus, and Epstein–Barr virus (EBV) (Sellner
and Steiner, 2014). GBS and its variants commonly
disrupt respiratory muscle innervation, making intuba-
tion and mechanical ventilation necessary in 25%–50%
of patients, for a mean duration of 18–29days (Shang
et al., 2020). Absolute criteria for intubation in GBS
include impaired consciousness, respiratory or cardiac
arrest, shock, arrhythmias, blood-gas alterations, and
bulbar dysfunction with confirmed aspiration. Predictors
of the need for ventilatory support in GBS include cranial
nerve involvement and a history of infection in the 8 days
before the onset of symptoms. Paraclinical prognostic
factors are reduced action potential amplitude in phrenic
nerve stimulation and diaphragm examination, and high
cerebrospinal fluid protein levels (Ning et al., 2020;Wen
et al., 2021). In addition, life-threatening complications
due to dysautonomia are seen in more than one-third
of the patients (Chakraborty et al., 2020). These include
blood pressure shifts, bradycardia, profound hypoten-
sion with sedatives, and hyperkalemia.

PATHOPHYSIOLOGIC MECHANISMS OF
NEUROLOGIC INVOLVEMENT IN

HUMAN CORONAVIRUS INFECTION

There are currently seven types of known human corona-
viruses: HCoV-229E, HCoV-OC43, HCoV-NL63,
HCoV-HKU1, SARS-CoV-1, Middle East Respiratory
Syndrome-related Coronavirus (MERS), and SARS-
CoV-2 (Algahtani et al., 2016; Cevik et al., 2020).
Although human coronaviruses are typically associated

with a prevalent involvement of the respiratory tract,
three coronaviruses have been clearly shown to infect
also neurons (i.e., HCoV-229E, HCoV-OC43, and
SARS-CoV-1). To date, MERS, SARS-CoV-1, and
SARS-CoV-2 have been associated with neurologic dis-
eases (Zubair et al., 2020). Virus may enter the brain and
spinal cord usually through either retrograde neuronal
dissemination or hematogenous spread (Algahtani
et al., 2016). The hematogenous spread occurs through
viremia (the presence and multiplication of a given virus
in the blood stream). On the other hand, retrograde viral
infection occurs when a given virus infects neuronal
tissue in the periphery with subsequent contamination
to the central nervous system (CNS) using transport
mechanisms within the neurons to gain access to the
affected vulnerable areas (Algahtani et al., 2016). In
the following section, the neuro-invasiveness and patho-
physiologic mechanisms of neurologic involvement of
SARS-CoV-1, MERS, HCoV-OC43, HCoV-229E, and
SARS-CoV-2 will be discussed.

SARS-CoV-1

SARS-CoV-1 led to a clinical illness that is similar to
many acute respiratory infections, although a large pro-
portion of patients presented with a rapid deterioration
with respiratory distress within the second week of ill-
ness (Vijayanand et al., 2004). Although the lung is
the major target of infection, SARS-CoV-1 can also be
neuroinvasive, primarily infecting the olfactory bulb
and subsequently spreading from neuron to neuron to
connected areas of the brain (Netland et al., 2008;
Desforges et al., 2014, 2019). In animal models, infected
mice likely died from dysfunction and/or death of
infected neurons, especially those located in the cardio-
respiratory centers of the medulla (Netland et al., 2008;
Desforges et al., 2014, 2019). SARS-CoV-1 infiltrates
the intracellular space of the host cell after binding the
angiotensin converting enzyme 2 (ACE2) receptors

Table 17.2

Viruses causing myelitis

HERPESVIRUSES FLAVIVIRUSES PARAMYXOVIRUS
HSV-1 and -2 Dengue virus Measles virus
VZV Japanese encephalitis virus Mumps virus
CMV Tick-borne encephalitis virus PICORNAVIRUSES
HHV-6 and -7 ORTHOMYXOVIRUSES Coxackieviruses A and B
EBV Influenza A virus Echoviruses

Enterovirus-70 and -71
Polioviruses

Respiratory viruses are marked in bold.

Abbreviations: CMV, Cytomegalovirus; EBV, Epstein-Barr virus; HSV-1, herpes simplex virus-1; HSV-2,

herpes simplex virus-2; VZV, Varicella-zoster virus.
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which represent the main target of the virus (Desforges
et al., 2014, 2019). Transgenic mice that express the
ACE2 in airway and other epithelia developed a rapidly
lethal infection after intranasal inoculation with a human
strain of the virus (McCray Jr et al., 2007). After involve-
ment of the airway epithelia and the alveolar spaces, the
virus spread to the brain leading to upregulation of pro-
inflammatory cytokines and chemokines in both the lung
and the brain McCray Jr et al., 2007). In animal models,
SARS-CoV can invade the CNS even after an intraperi-
toneal infection, with subsequent neuronal loss and
appearance of neurological symptoms (Tseng et al.,
2007; Desforges et al., 2014).

In the early 2000s, postmortem studies performed dur-
ing the SARS-CoV-1 pandemic detected the virus in the
brains of infected patients (Xu et al., 2005; Gu et al.,
2005). Using electronic microscopy, SARS-CoV-1 frag-
ments nesting reverse transcription–polymerase chain
reaction (PCR) were found in brain tissue specimens from
a comatose patient with a severe form of SARS-CoV-1
infection with diffuse brain edema and multiple high-
density lesions at CT scan (Xu et al., 2005). In the same
case, pathologic examination of brain tissue revealed
necrosis of neurons and gliocyte hyperplasia, whereas
immunostaining demonstrated the expression of
interferon-g-induced monokines in gliocytes with the
infiltration of CD68+ monocytes/macrophages and
CD3+ T lymphocytes (Xu et al., 2005). In another study
reporting on brain autopsies from eight patients who died
from SARS-CoV-1 infection, specimens of SARS-CoV-1
genome sequences were detected by electronic micros-
copy and real-time RT-PCR (Gu et al., 2005). The virus
was found in the cytoplasm of hypothalamic and cortical
neurons together with edema and scattered red degenera-
tion of the neurons (Gu et al., 2005). In two other cases,
edema was found around the small veins in the brain, with
infiltration of the vascular walls by monocytes and lym-
phocytes (Ding et al., 2004). Taken together, these anato-
mopathological findings confirm that SARS-CoV-1 can
infect the CNS leading to immunopathologic damage,
through the attraction of immune effector cells to the site
of virus infection (Xu et al., 2005).

MERS-CoV

Since the reported first case of MERS-CoV infection in
Saudi Arabia in 2012, 2578 laboratory-confirmed cases
have been reported globally to date, including 888 asso-
ciated deaths, with a case-fatality ratio (CFR) of 34.4%
(Kim et al., 2017; WHO, 2021). MERS-CoV infection
typically causes severe lower respiratory tract infection,
and it is occasionally associated with gastrointestinal
symptoms and renal failure (Desforges et al., 2019).
MERS-CoV most probably originated from bats before

infecting an intermediary reservoir (the dromedary)
(Omrani et al., 2015). Although possible, human-to-
human MERS-CoV transmission appears difficult, as it
requires extended close contact with an infected individ-
ual (Desforges et al., 2019). Unlike SARS-CoV-1 and
SARS-CoV-2, which penetrate the host cell through
the ACE-2 receptors, the main target of MERS-CoV
is the dipeptidyl peptidase-4 (DPP4, also known as
CD26), expressed on the cell surface and involved in glu-
cose metabolism (Raj et al., 2013; Arabi et al., 2015;
Al-Hameed, 2017). DPP4 is widely expressed in many
tissues and organs including lungs, kidneys, placenta,
liver, skeletal muscles, heart, brain (both neurons and
astrocytes), endothelium, T lymphocytes, and pancreas
(Abbott et al., 1994). The presence of DPP4 receptors
in the brain may explain the susceptibility of neurons
to infection (Arabi et al., 2015).

Animal studies have shown that both SARS-CoVand
MERS-CoV can directly cause neuronal death in the
medulla respiratory center by an upregulation of IL-1,
IL-6 and TNF alpha cytokines response, possibly
through either an inflammatory response or autophagy
(McCray Jr et al., 2007; Netland et al., 2008;
Montalvan et al., 2020). In vitro studies, evaluating the
human tissue tropism of MERS-CoV in different cell
lines, have confirmed that the virus can infect human
neurons (Chan et al., 2013; Kim et al., 2017). However,
although murine models develop CNS infection follow-
ing intranasal inoculation with MERS-CoV, this virus
has never been detected in human CNS (Chan et al.,
2013; Li et al., 2016; Kim et al., 2017). Indeed, CNS
involvement in MERS-CoV infection may be mostly
due to an auto-immune reaction through autoreactive
T-cells which recognize viral andmyelin antigens as sim-
ilar molecules, rather than to viral infection itself (Chan
et al., 2013; Joob and Wiwanitkit, 2015; Al-Hameed,
2017; Kim et al., 2017; Verstrepen et al., 2020).

HCoV-OC43 and HCoV-229E

In immunocompetent individuals, HCoV-229E and
HCov-OC43 usually cause upper respiratory tract infec-
tions, such as rhinitis, laryngitis/pharyngitis, or otitis
(Desforges et al., 2019). However, several in vitro and
animal data have confirmed that HCoV-OC43 and
HCoV-229E are naturally neuroinvasive (Desforges
et al., 2014). HCoV-OC43 and HCoV-229E have been
also isolated from the brains of people suffering from
multiple sclerosis (MS) together with the detection of
intrathecal synthesis of antibodies to HCV-OC43 and
HCV-229E (Arbour et al., 2000; Jha et al., 2021). Indeed,
HCoV-OC43 and HCoV-229E are able to infect human
neurons and glial cells in cell cultures (Arabi et al.,
2015;Arbour et al., 2000). In particular, oligodendrocytes,
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astrocytes, microglia, and neurons are susceptible to acute
infection with HCoV-OC43, and all support persistent
infection except microglia (Arbour et al., 1999; Hulswit
et al., 2019; Zubair et al., 2020). This was confirmed by
the detection of HCoV-OC43 after more than 1 year post-
inoculation in a murine model of coronavirus encephalitis
(Jacomy and Talbot, 2003). In murine models, HCoV-
OC43 can invade the CNS intranasally through a trans-
synaptic spread with a subsequent direct virus-mediated
neuronal damage (Jacomy and Talbot, 2003; Dub�e
et al., 2018; Jha et al., 2021). After brain invasion,
HCoV-OC43 could disseminate from the olfactory bulb
to other regions of the brain, including the cortex and
the hippocampus, the brainstem and spinal cord
(Desforges et al., 2013; Desforges et al., 2014). The
CNS damage causes a range of neurologic disorders in
mice, including encephalitis and transient flaccid paralysis
(Jacomy and Talbot, 2003; Dub�e et al., 2018). During the
infection, it has been assumed that the typical responses to
control viral infections, such as inflammatory and cyto-
lytic strategies, are not used by the immune system in
the brain since they can have potentially devastating con-
sequences (Jha et al., 2021). This may lead to a type of
immune response in the CNS that favor viral latency as
well as reactivation in favorable situations (Miller et al.,
2016; Jha et al., 2021). This differs from SARS-CoV-1
in which it is assumed that the immune-mediated injury
is mainly responsible of neuronal damage.

SARS-CoV-2

The spectrum of invasiveness of SARS-CoV-2 is rela-
tively well known today (Datta et al., 2020). Although
the main target of SARS-CoV-2 is the epithelium of
the respiratory tract (with prevalent respiratory symp-
toms), the virus can infect multiple organs, including
the brain.

SARS-CoV-2 relies on its obligate receptor, the
ACE2, to enter the host cells (Jackson et al., 2022).
The glycoprotein viral spike (S) mediates the attachment
and the fusion of the virus to the host cell membrane. The
S protein consists of two subunits: the S1 subunit which
binds ACE2 and the S2 subunit which anchors the
S protein to the membrane and mediates the membrane
fusion (Jackson et al., 2022). The entry of the virus
into the host cell is further mediated by the trans-
membrane serine protease 2 (TMPRSS2) that cleaves
the S protein allowing the entry into the host cell
(Hoffmann et al., 2020; Tiwari et al., 2021). The
ACE2 receptor has further potential functions during
SARS-CoV-2 infection, includingmediation of intracellu-
lar inflammation through the activation of tumor necrosis
factor-a (TNF-a), and induction of shedding of the ACE2
receptor (Haga et al., 2008; Williams et al., 2021a, b).

SARS-CoV-2 primarily targets the respiratory epithe-
lium which is very rich in ACE2 receptors (Cevik
et al., 2020). However, ACE2 receptors are present not
only in the lung alveolar epithelial and small intestine
epithelial cells but also in various human organs (oral
and nasal mucosa, nasopharynx, stomach, skin, lymph
nodes, thymus, bone marrow, spleen, liver, kidney, and
brain) (Cevik et al., 2020; Zubair et al., 2020; Reza-
Zaldívar et al., 2021; Chen et al., 2021). In these organs,
ACE2 receptors are highly localized in the arterial and
venous endothelial cells and arterial smooth muscle
(Hamming et al., 2004). The possible entry routes for
SARS-CoV-2 into central nervous system and potential
intracellular consequences are showed in Fig. 17.1.

MECHANISMS OF NEURONAL DAMAGE

In the CNS, ACE2 receptors have been found in neurons,
microglia, astrocytes, and oligodendrocytes and are
expressed in multiple regions of the human and mouse
brain, including the motor cortex, posterior cingulate
cortex, ventricles, choroid plexus, striatum, paraventri-
cular nuclei of the thalamus, substantia nigra, olfactory
bulb, middle temporal gyrus, ventrolateral medulla,
nucleus of tractus solitarius, and dorsal motor nucleus
of the vagal nerve (Zubair et al., 2020; Reza-Zaldívar
et al., 2021; Chen et al., 2021). Furthermore, ACE2
protein has been also observed in human brain vessels
(Hamming et al., 2004), particularly in pericytes and
smooth muscle cells in the vascular wall whereas they
have not been found but in the endothelium lining cere-
bral vessels (Iadecola et al., 2020). Studies with human
brain organoids, a stem cell-derived reductionist experi-
mental system, have highlighted the neurotropic effects
of SARS-CoV-2 in vitro (Ramani et al., 2021). One of
these studies has showed clear evidence of infection in
brain organoids with accompanying metabolic changes
in infected and neighboring neurons, together with the
demonstration of SARS-CoV-2 neuroinvasion in vivo
in mice that overexpressed human ACE2 (Song et al.,
2021). The susceptibility to infection could also be influ-
enced by the anatomic and function location of different
types of neurons as demonstrated in brain cells derived
from human pluripotent stem cells, in which dopaminer-
gic neurons, but not cortical neurons or microglia, were
particularly susceptible to SARS-CoV-2 infection
(Iadecola et al., 2020; Yang et al., 2020). This could be
at least partly related to the presence of ACE2 receptors
in the substantia nigra, as well as its coexpression with
dopamine decarboxylase, an enzyme converting L-dopa
to dopamine (Bouali-Benazzouz and Benazzouz, 2021).
On the contrary, one study found that cerebral organoids,
neural progenitor cells, neurons, and astrocytes express
low levels of ACE2 and TMPRSS2 and correspondingly
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are not highly permissive to SARS-CoV-2 infection, even
though the infected neuronal cells activate the 20, 50-
oligoadenylate synthetase 2, an antiviral interferon-
stimulated gene, the complement system and apoptotic
genes (Tiwari et al., 2021). Postmortem studies have
shown the presence of SARS-CoV-2 in cortical neurons,
thus providing evidence for the neuroinvasive capacity
of SARS-CoV-2 (Song et al., 2021). Indeed, a recent sys-
tematic review reported the frequency of neuropathologic
findings in COVID-19 patients: microgliosis (52.5%),
astrogliosis (45.6%), inflammatory infiltrates (44.0%),
hypoxic–ischemic lesions (40.8%), edema (25.3%), and
hemorrhagic lesions (20.5%), while SARS-CoV-2 RNA
and proteins were identified in brain specimens of
41.9% and 28.3% of subjects, respectively (Cosentino
et al., 2021). The detection rate of SARS-CoV-2 RNA
and proteins in brain specimens did not differ between

patients with and those without neurologic symptoms
(Cosentino et al., 2021). Cerebrospinal fluid (CSF) studies
have not clarified the role of the direct neuroinvasion in
SARS-CoV-2 infection. Indeed, the detection of SARS-
CoV-2 in CSFwith PCR or with evaluation for intrathecal
antibody synthesis appears to be rare, and it has only been
found in a very small percentage of patients (Lersy et al.,
2021; Lewis et al., 2021a). All these heterogeneous results
highlight the need to further investigate the neuroinvasive-
ness of SARS-CoV-2.

The ability of coronavirus to induce a robust inflam-
matory response even within the CNS has been con-
firmed through both in vitro cell cultures and in vivo
mouse models (Bohmwald et al., 2018). Indeed, corona-
virus neurovirulence correlates with the ability of the
virus to induce pro-inflammatory cytokines (IL-12
p40, TNFa, IL-6, IL-15, and IL-1b) signaling from

Fig. 17.1. Possible entry routes for SARS-CoV-2 into central nervous system and potential intracellular consequences. There is

evidence for SARS-CoV-2 invasion of vasculature in the brain, but little evidence for SARS-CoV-2 in brain parenchyma at this

time: this issue will become clearer with results from ongoing autopsy studies. Whether or not the virus is present in neurons or

astrocytes, there may be multiple consequences for brain cells, in part through intracellular responses to inflammation that could

lead to protein misfolding, a feature of neurodegenerative disorders. Reprinted, with permission, from Sulzer D, Antonini A, Leta

V et al. (2020). COVID-19 and possible links with Parkinson’s disease and parkinsonism: from bench to bedside. NPJ Parkinsons

Dis 6: 18.
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astrocytes and microglia in a mouse model (Bohmwald
et al., 2018; Bodro et al., 2020). Furthermore, primary
glial cell cultures exposed to coronavirus secrete several
pro-inflammatory cytokines such as IL-6, IL-12, IL-15,
and TNFa (Bohmwald et al., 2018; Bodro et al.,
2020). Recent CSF studies have also confirmed the
intrathecal inflammatory response related to COVID-
19 infection with increased inflammatory CSF markers
(elevated albumin quotient, CSF-specific IgG oligoclo-
nal band, mirror pattern) (Lersy et al., 2021). People with
COVID-19 and related inflammatory neurologic dis-
eases presented with increased levels of IL-2, IL-4,
IL-6, IL-10, IL-12, CXCL8, and CXCL10 in the CSF
while encephalopathic individuals showed high serum
levels of IL-6, CXCL8, and active TGF-b1 (Espíndola
et al., 2021). Elevated plasma and CSF levels of cyto-
kines, glial fibrillary acidic protein and neurofilament
light chain in people with COVID-19 may be related
to the pro-inflammatory systemic and brain response that
involves microglial activation with subsequent neuronal
damage (Kanberg et al., 2020; Pilotto et al., 2020a; Ed�en
et al., 2021; Solomon, 2021). Moreover, even in the
absence of SARS-CoV-2 brain invasion, viral proteins
shed in the circulation and molecular complexes from
damaged cells, such as the nuclear protein high mobility
group box 1, could enter the brain through a compromised
blood–brain barrier (BBB) inducing an innate immune
response in pericytes, brain-resident macrophages, and
microglia, impairing brain function and increasing cyto-
kine production (Dantzer, 2018; Iadecola et al., 2020).
Further potential pathogenic mechanisms of neuronal
damage include coagulopathies with associated cerebral
ischemic injury (see the following section) and systemic
hypoxia secondary to lung disease that can result in
anoxic/hypoxic brain injury (Balcom et al., 2021; Pizzi,
2021). Overall, the virus can infect the brain through at
least five ways, alone or in concert: hematic propagation
(with blood–brain barrier rupture), neuronal direct
infection (through the olfactory epithelium and nerve),
transneural retrograde propagation (vesicular transport,
passive diffusion), serotoninergic pathways (from the
serotoninergic dorsal raphe nucleus), and lymphatic ves-
sels (lymphocytes and infected leukocytes) (Sinha et al.,
2021). However, the trans-synaptic and hematic viral
entries to the brain seem to be more commonly accepted.

TRANS-SYNAPTIC ROUTE

Coronaviruses can spread within the PNS and CNS
thanks to endocytosis or exocytosis mediated trans-
synaptic transfer and can move along microtubules back
to neuronal cell bodies using the fast axonal vesicular
transport (Dub�e et al., 2018; Zubair et al., 2020). There
is evidence from animal models supporting a retrograde

transfer of SARS-CoV-2 from the olfactory epithelium or
through the cribriform bone to the brain in 7 days
(Wu et al., 2020, Baig et al., 2020). Moreover, anosmia
and ageusia are commonly symptoms in COVID-19
patients (Moro et al., 2020), probably due to the direct
viral infection of the olfactory system and gustatory
receptors. Consequently, concerns were raised that olfac-
tory infection with SARS-CoV-2 might lead to CNS
involvement in infected subjects (Solomon, 2021). The
olfactory neuroepithelium consists of a limited number
of cell types arranged in a roughly laminar pattern, with
sustentacular cells in the most apical location, followed
by bipolar sensory olfactory receptor neurons and then
the basal cells (Hu et al., 2020). The apical dendrites
of olfactory neurons end in the olfactory epithelium at
the roof of the nasal-pharyngeal cavity, while the unmy-
elinated axons leave the neuroepithelium and penetrate
the cribriform plate into the olfactory bulb which has
connections to many higher brain regions including piri-
form cortex, amygdala, olfactory tubercle, entorhinal
cortex, orbitofrontal cortex, hypothalamus, thalamus,
and hippocampus (Mori et al., 2005; Hu et al., 2020;
Meunier et al., 2021). The cells of the olfactory epithe-
lium highly express ACE-2 receptors and TMPRSS2,
which are essential for viral binding and replication
(Brann et al., 2020; Reza-Zaldívar et al., 2021). How-
ever, studies using single-cell sequencing in mouse
models have detected ACE2 and TMPRSS2 in the nasal
mucosa at the RNA and protein levels in epithelial cells
(sustentacular cells) and not olfactory neurons (Brann
et al., 2020; Butowt and Bilinska, 2020; Pizzi, 2021;
Solomon, 2021). However, a subsequent postmortem
study has showed, through immunohistochemistry for
neuronal markers TuJ1, NF-200 and OMP on olfactory
mucosa samples, that SARS-CoV-2 is present in olfac-
tory neurons. These findings support the hypothesis that
SARS-CoV-2 is able to use the olfactorymucosa as a port
of entry into the brain (Lemprière, 2021; Meinhardt
et al., 2021).

Furthermore, recent studies have pointed out the
essential role of neuropilins in cell infectivity promoting
SARS-CoV-2 entry and infection, particularly if coex-
pressed with ACE-2 and TMPRSS2 (Reza-Zaldívar
et al., 2021). Neuropilins are highly expressed in the
respiratory and olfactory epithelium (Reza-Zaldívar
et al., 2021). This indirect evidence (i.e., the expression
of ACE2, TMPRSS2 and neuropilins in the nasal mucosa
and the frequent presence of hyposmia and hypogeusia as
early symptoms in people with COVID-19 infection)
supports the possible neuroinvasion of the virus into
the CNS via olfactory neurons (Brann et al., 2020;
Pizzi, 2021; Solomon, 2021).

The SARS-CoV-2 CNS invasion through the olfac-
tory route it is also supported by isolated case reports
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about the presence of transient cortical FLAIR hyperin-
tensity on magnetic resonance imaging (MRI) in the
gyrus rectus, the anterior cingulate gyrus, polar part of
the first frontal gyrus, piriform cortex, amygdala, and
anterior hippocampus in COVID-19 positive individuals
with smell disorders (Eliezer et al., 2020; Politi et al.,
2020; Casez et al., 2021). In addition to the transcribial
route and the olfactory nerve, the virus may use other
peripheral nerves such as the vagus nerve, which reaches
the brainstem through gut afferents (Reza-Zaldívar et al.,
2021). This hypothesis is supported from the strong pres-
ence of ACE-2 receptors in intestinal epithelial cells and
the detection of SARS-CoV-2 in feces of people with
COVID-19 (Chen et al., 2020). Moreover, previous
reports of anterograde and retrograde viral transmission
from duodenal cells to brainstem neurons (such as influ-
enza virus and hemagglutinating encephalomyelitis virus)
is consistent with the hypothesis of neuro-invasion
through retrograde neuronal transport of SARS-CoV-2
infection from the enterocyte to the enteric nervous
system and through the vagal nerve up to the CNS
(Keyhanian et al., 2020; Reza-Zaldívar et al., 2021).
The possible role of the vagal nerve is particularly relevant
considering that evidence of brainstem involvement in
severe COVID-19 has been provided by both neurophys-
iologic, clinic and histopathologic data, especially at the
medullary level (Manganelli et al., 2020; Keyhanian
et al., 2020; Bocci et al., 2021). Indeed, viral antigenswere
detected in respiratory brainstem centers including the sol-
itary tract nucleus and the nucleus ambiguous, leading to
the hypothesis that the brainstem involvement likely con-
tributes to respiratory failure in people with COVID-19
(Keyhanian et al., 2020; Manganelli et al., 2020; Bocci
et al., 2021). Finally, the trigeminal nerve, which usually
supplies nociceptive cells in nasal cavity aswell as sensory
fibers in conjunctiva,might be a further potential source of
CNS involvement (Keyhanian et al., 2020).

HEMATOGENOUS ROUTE

The so-called “hematogenous route” refers to the pres-
ence of a given virus in the blood where it can either
infects endothelial cells of the BBB or infect leukocytes
that will become a viral reservoir for dissemination
toward the CNS (Desforges et al., 2014). The BBB
includes multiple components which control its perme-
ability: astrocytes, pericytes, extracellular matrix, and
specialized brain microvascular endothelial cells that
are joined through tight junctions (TJs) (Bohmwald
et al., 2018). Endothelial cells of the brain capillaries
express ACE2-receptors and thus they are potential
cell-hosts for SARS-CoV-2 (Hamming et al., 2004).
A recent in vitro study supports that SARS-CoV-2 can
cross the BBB through a transcellular pathway

accompanied by basement membrane disruption without
obvious alteration of TJs (Zhang et al., 2021). Further-
more, the presence of the virus in neural and capillary
endothelial cells was detected at postmortem examina-
tion from a frontal lobe tissue specimen of an individual
with COVID-19 (Paniz-Mondolfi et al., 2020). The
direct viral endothelial infection could lead to subsequent
endothelial injury in the peripheral vasculature causing
endothelitis and potential endothelial ACE2 downregu-
lation (Najjar et al., 2020). Furthermore, SARS-CoV-2
also infects choroid plexus epithelial cells in human brain
organoids highlighting that the blood–cerebrospinal
fluid barrier might be an entry point for the virus into
the CNS (Pellegrini et al., 2020; Zhang et al., 2021).
SARS-CoV-2 can also pass through the BBB by infect-
ing leukocytes, the so called “Trojan horse mechanism”
well described for HIV, in which infected immune cells
pass from the blood through the BBB to infect the CNS
(Zubair et al., 2020). Infected peripheral lymphocytes
and macrophages could also facilitate viral penetration
across BBB, meninges, and choroid plexus (Reza-
Zaldívar et al., 2021). SARS-CoV-1 and 229E-CoV have
been shown to infect leucocytes (i.e., lymphocytes, gran-
ulocytes, and monocytes) which all express ACE2
receptors (Zubair et al., 2020; Reza-Zaldívar et al.,
2021). Infiltrating protective immune cells, and migrating
from the bloodstream into the CNS parenchyma through
disrupted BBB could be favored by the disruption of the
BBB mediated by systemic inflammatory response to
SARS-CoV-2 infection (Wu et al., 2020; Baig et al.,
2020) that can lead to the development of the so-called
“cytokines storm.” Cytokines storm is a hyperinflamma-
tory, pathologic state that results from a sudden increase
in specific circulating pro-inflammatory cytokines levels,
which leads to overwhelming systemic inflammation,
exacerbating viral pathogenesis and causing sepsis, Acute
Respiratory Distress Syndrome (ARDS), and multiorgan
failure (Mahmudpour et al., 2020; Thepmankorn et al.,
2021). The most commonly detected cytokines in the
plasma of people with COVID-19 are pro-inflammatory
cytokines such as IL1b, IL6, IL12, CXCL10, IL2, IFNg,
and monocyte chemoattractant protein (Williams et al.,
2021a, b). Even if this Trojan horse mechanism involving
the extravasation of infected leukocytes intomeninges and
the cerebrospinal fluid is plausible, compelling evidence
for immune cell infection by SARS-CoV-2 is still unclear
(Reza-Zaldívar et al., 2021).

NEUROLOGIC MANIFESTATIONS OF
HUMAN CORONAVIRUS INFECTION

SARS-CoV-1

During the SARS-CoV-1 pandemic of 2002–2003, neu-
rologic complications were reported in a subset of
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patients (Zubair et al., 2020) including peripheral nervous
diseases, rhabdomyolysis, neuromuscular disorders, sei-
zures, and large artery ischemic stroke (Hu et al., 2020).
SARS-CoV-1 RNA has been found in the CSF of people
who experienced generalized tonic–clonic seizures or sta-
tus epilepticus, highlighting its epileptogenicity properties
(Hung et al., 2003; Verstrepen et al., 2020). Ischemic
stroke in SARS-CoV-1 infection has been reported in
few cases, always in association with large vessel occlu-
sion (Karimi et al., 2020). Neuromuscular disorders in
SARS-CoV-1 infection were predominantly reported as
late-onset sequelae, including critical-illness polyneuro-
pathy and myopathy (Tsai et al., 2004). Muscle weakness
and elevated serumcreatine kinase levels occurred inmore
than 30%of patientswhile postmortemhistological exam-
inations revealed the presence of myopathy, either result-
ing from critical illness myopathy or from the immune
response against the virus (Verstrepen et al., 2020). Last,
three cases of GBS axonal-variant after SARS-CoV-1
infection have been reported (Zubair et al., 2020).

MERS-CoV

Neurologic manifestations in MERS-CoV infection
appeared concomitantly with respiratory symptoms or
2–3 weeks later (Arabi et al., 2015; Kim et al., 2017).
In the main study which investigated clinical outcome
of MERS-CoV infection in 70 patients, neurologic man-
ifestations were frequently reported (Saad et al., 2014).
In particular, myalgia was reported in 20% of patients,
headache in 13%, confusion in 25%, and seizures in
the 8% of patients (Saad et al., 2014). Other studies
reported specific neurologic syndromes associated with
MERS-CoV infection including Bickerstaff’s encephali-
tis, GBS, spontaneous intracranial hemorrhage (Al-
Hameed, 2017; Kim et al., 2017) or complex syndromes
characterized by altered level of consciousness ranging
from confusion to coma, ataxia, and focal motor deficit
with widespread, bilateral hyperintense lesions on
T2-weighted imaging at brain MRI study (Arabi et al.,
2015).

SARS-CoV-2

SARS-CoV-2 infection has been associated with several
neurologic symptoms and manifestations due to both
CNS and PNS involvement, ranging from nonspecific
symptoms (headache, myalgia, dizziness, fatigue) to
cerebrovascular disease, encephalitis, movement disor-
ders, myelitis, cranial and peripheral neuropathies
(Moro et al., 2020; Romoli et al., 2020). Based on sys-
tematic reviews and individual patient data meta-
analysis, 7.8% (95% CI 1.6–31.2) of hospitalized people
with COVID-19 had neurological disease (Singh
et al., 2021).

The most prevalent neurological symptoms in
COVID-19 were anosmia (43.1% (35.2%–51.3%)),
weakness (40.0% (27.9%–53.5%)), fatigue (37.8%
(31.6%–44.4%)), dysgeusia (37.2% (29.8%–45.3%)),
and myalgia (25.1% (19.8%–31.3%)) (Rogers et al.,
2021). Several reports and reviews of neurologic
manifestations of SARS-CoV-2 have been published
so far, but they often suffer from poor comparability of
data, different case definitions (on clinical, neuropatho-
logic and neuroradiologic ground) and sometimes
incomplete diagnostic pathway (see the qualification of
cryptogenic stroke in one of the first reviews) (Fraiman
et al., 2020). Some authors have used a symptom-based
approach or a mixed approach whereas others have
focused on neuroradiologic or (less often) neuropatho-
logic details. The case definition is not uniform across
the studies and the severity of infection is differently
stated. These limitations make the epidemiology and
the impact of neurologic manifestations of SARS-CoV-
2 very challenging to ascertain. The definition
provided by the WHO for confirmed, probable and sus-
pected COVID-19 cases (WHO, 2020a) has not been
uniformly applied to neurologic manifestations such as
SARS-CoV-2 associatedmeningitis, encephalitis, myeli-
tis, acute disseminated encephalomyelitis (ADEM),
GBS, and stroke (Ellul et al., 2020). Using standardized
definitions would increase the comparability of data
across countries and help to reliably distinguish a non-
specific and specific association between infection and
neurological manifestations. For some manifestations,
uniform formal definitions and diagnostic criteria do not
exist, i.e., for “encephalopathy” (Slooter et al., 2020). In
particular, the proposed definitions of SARS-CoV-2 men-
ingitis, encephalitis, myelitis, or CNS vasculitis (Ellul
et al., 2020) require the SARS-CoV-2 detection in CSF
or brain tissue or the evidence of SARS-CoV-2-specific
intrathecal antibody, and no other explanatory pathogen
or cause found.

In a recent systematic review, the main neurologic
manifestations were considered and rated (Leven and
B€osel, 2021). Miscellaneous disorders (including
anosmia and hyposmia) accounted for 1676/4075 cases,
followed by metabolic/toxic CNS dysfunction with
1106/4075 cases, and cerebrovascular disease with
451/4075 cases (Leven and B€osel, 2021). As discussed
above, the occurrence of neurologic manifestations is
not surprising given the involvement of the central
and peripheral nervous system through vascular effects
(endothelial dysfunction, thrombotic microangiopathy),
para-infectious autoimmune effects (cytokines storm),
and postinfectious autoimmune effects (cellular immunity
and autoantibodies).

Neurologic manifestations in people with COVID-19
carry a higher disease severity and a worse prognosis,
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prolonging hospital staying. Encephalopathy and stroke
had the strongest association with a more severe disease
(Liotta et al., 2020). Pre-existing morbidity partially
accounts for the outcome. Indeed, identified risk factors
for poor outcome include preexisting neurological disor-
ders, age, male sex, white race, hypertension, diabetes,
intubation, and higher sequential organ failure assessment
scores (Liotta et al., 2020; Chou et al., 2021; Frontera
et al., 2021). Additional elements that affect the diagnoses
and management of neurologic complications are the
effects of the pandemic on the organization of care and
the severity of systemic SARS-CoV-2 infection. With
regard to the latter, the neurologic manifestations, in par-
ticular the cerebrovascular ones, worsen the outcome of
the infection whereas the infection severity negatively
affects the evolution of the neurologic disease.

The principal acute and subacute neurologicalmanifes-
tations of COVID-19 infection are reported in Table 17.3,
and discussed in details in the following section.

Acute and subacute manifestations

ENCEPHALITIS AND ENCEPHALOPATHIES

COVID-19 has been associated with an increased prev-
alence of acute encephalopathy both as main feature at
presentation and together with respiratory failure and
systemic involvement in people admitted in intensive
care unit (ICU) (Koralnik and Tyler, 2020). COVID-19
encephalopathy is defined by a rapidly developing (less
than 4 weeks) pathologic process in the brain leading to
delirium, decreased level of consciousness or coma
(Koralnik and Tyler, 2020). People with encephalopathy
may additionally have seizures, headache, or extrapyra-
midal signs. According to the general updated definition
of encephalopathy (Slooter et al., 2020), including delir-
ium, the clinical and neuroimaging spectrum is heteroge-
neous (Kremer et al., 2020) but its pathology remains
incompletely understood. The occurrence of this compli-
cation even outside the pandemic has been associated
with increased hospital length of stay and higher mortal-
ity (Ely et al., 2004). There are few case series including a
very small sample of people with severe COVID-19
encephalopathy and a clinical response to steroid treat-
ment, suggesting inflammatory mechanisms (Pugin
et al., 2020; Uginet et al., 2021). In 31 individuals with
a neurologic diagnosis of COVID-19 encephalopathy
(22 in the intermediate care units, 6 in the standard care
unit, and 3 in the ICU), the severity of the pneumonia was
not associated with severity of the COVID-19 encepha-
lopathy (Uginet et al., 2021). The clinical presentation
was characterized by greater incidence of headache
and corticospinal tract signs at neurologic examination
in severe vs. mild encephalopathy. The presence of head-
ache, even in the prodromal phase, was a strong predictor

of developing a severe COVID-19 encephalopathy
(OR¼12.0; 95% CI (1.2–117.4); P¼0.033). In three
elderly patients, hypersomnolence and generalized
myoclonus, aggravated by auditory and tactile stimuli
and with exaggerated startle response, electroencepha-
lography (EEG) andMRI did not reveal any abnormality
(Rábano-Suárez et al., 2020). The main EEG feature was
activity slowing in 73.9%, as reported in critically ill peo-
ple with COVID-19 (Vespignani et al., 2020). As previ-
ously reported, in these cases there was not a significant
increase in cell count on CSF examination but an
increase in CSF/serum quotient of albumin (Uginet
et al., 2021), and brain MRI abnormalities with promi-
nent features of intracranial vessels gadolinium enhance-
ment (85.0% of patients) (Keller et al., 2020), mainly on
vertebral arteries without sign of stenosis or downstream
ischemia, and cerebral microbleeds (44% of patients)
with a prevalentmixed distribution. Therewere no differ-
ences in term of brainMRI abnormalities between severe
and mild COVID-19 encephalopathies. However, other
reports of neuroimaging abnormalities in COVID-19
associated encephalopathy described cortical or subcorti-
cal white matter T2/FLAIR signal hyperintensity as com-
mon feature, although in many patients, neuroimaging
abnormalities may not be present (Jain et al., 2020;
Mahammedi et al., 2020; Radmanesh et al., 2020a, b;
Abenza Abildúa et al., 2021). Periventricular white matter
T2/FLAIR hyperintensity and microbleeds on brain MRI
are often attributed to microangiopathy; however, criti-
cally ill patients often have severe coagulopathy and
severe microangiopathy with several microbleeds (Maas,
2020; Radmanesh et al., 2020b).

A peculiar form of acute encephalopathy with distinc-
tive neuroimaging findings has been reported in people
with COVID-19 as acute necrotizing encephalopathy
(Elkady and Rabinstein, 2020). This is a rapidly evolving
brain disorder with symmetric, multiple neuroimaging
lesions in the thalamus, basal ganglia, deep cerebral
white matter, and brain stem. The clinic manifestations
are seizures, focal neurologic deficit, and coma.

In the published series, the prevalence of COVID-19
encephalopathy is underestimated due to the lack of sys-
tematic screening by a neurologist and to the difficult
identification of this condition in patients severely
affected and admitted in ICU.Moreover, several patients,
in particular during the first wave of the pandemic, did
not undergo EEG, neuroimaging or CSF examination.
Therefore, both ends of the severity line, i.e., patients
with very severe involvement and patients with milder
or prodromal signa, may not have been identified.
Another clear limitation is included in the broad defini-
tion of encephalopathy, which is, in fact, a common
manifestation of multiple organ dysfunction (acute respi-
ratory insufficiency and renal, hepatic, or cardiac failure)
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Table 17.3

Acute and subacute clinic manifestations of COVID-19 infection

Acute and subacute
manifestations Prevalence Clinical clues Instrumental findings

Possible pathophysiologic
mechanisms Treatment

Encephalitis and
encephalopathies

Largely underestimated; the
prevalence of delirium was
55% in a large cohort of
COVID-19 patients admitted
in ICU (Koralnik and Tyler,
2020).

COVID-related encephalitis is
anecdotally reported.

Headache, delirium, decreased
level of consciousness,
seizures, extrapyramidal
signs (Koralnik and Tyler,
2020).

Cortical or subcortical white
matter T2/FLAIR signal
hyperintensity,
periventricular white matter
T2/FLAIR hyperintensity and
microbleeds on MRI.

Necrotizing encephalopathy
with symmetric, multiple
neuroimaging lesions in the
thalamus, basal ganglion,
deep cerebral white matter,
and brain stem (Elkady and
Rabinstein, 2020).

Inflammatory process of the
vessel wall (endothelial
hypothesis) (Keller et al.,
2020)

Hypoxemia without dyspnea
Immunomediated or

autoimmune process.

Management of the underlying
disease, steroid treatment,
symptomatic treatment for
delirium.

Stroke and other cerebrovascular
diseases

Ischemic stroke: 0.9%–2.71% of
hospital admissions for
COVID-19 in clinical series
(Logroscino and Beghi,
2021).

The incidence of intracranial
hemorrhage has ranged from
0.2% to 0.9%.

CVT incidence in a large cohort
of hospitalized patients was
0.08% (Baldini et al., 2021).

Posterior reversible
encephalopathy (PRES) was
anecdotally reported.

Large vessel occlusion in young
patients without significant
vascular risk factors;
relatively more prevalent
ischemic vs. hemorrhagic
stroke (this last one affected
by antithrombotic medication
for COVID-related
coagulopathy).

High D-dimer levels. Prognosis
often related to the severity of
infection.

Cerebrovascular complications
may be underreported, in
particular in the first wave of
the pandemic.

Large vessel occlusion with
intra-arterial multiple
thrombi; simultaneous
ischemic lesions in several
vascular territories; multiple
scattered cortico-subcortical
ischemic and
microhemorrhagic lesions on
MRI.

Coagulopathy; endothelitis with
postinfective small vessel
vasculitis; hypercoagulability
and pro-inflammatory state
associated with infection
cardioembolism.

No specific treatment.
Cerebrovascular disease
should be treated as usual in
the standard of care, mainly
for time dependent treatment.

Headache Prevalence between 10% and
20% (Islam et al., 2020;
Rogers et al., 2021).

25% of patients complained a
migraine-like headache,
whereas the most common
presentation is a
predominantly frontal,
tension-type-like headache
(Caronna and Pozo-Rosich,
2021; García-Azorín et al.,
2021).

N/A Different mechanisms involved
both unspecific (fever,
hypoxia) and specific (direct
viral invasion, systemic
factors like cytokine storm,
COVID-19-related
rhinosinusitis) (Caronna and
Pozo-Rosich, 2021; García-
Azorín et al., 2021).

Up to now, no specific treatment
exists for COVID-19 related
headache. (Caronna and
Pozo-Rosich, 2021).

Continued
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Continued

Acute and subacute
manifestations Prevalence Clinical clues Instrumental findings

Possible pathophysiologic
mechanisms Treatment

Olfactory dysfunction Prevalence between 41% and
52% of COVID-19 patients
(Agyeman, et al., 2020; Tong
et al., 2020).

OD is common and may
represent one of the earliest
symptoms of the infection
(Tong et al., 2020). OD is
more frequent in mild
COVID-19 forms compared
to moderate-to-critical forms
(Lechien et al., 2021).

MRI studies: transient edema of
the olfactory clefts (Eliezer
et al., 2020); transient cortical
FLAIR hyperintensity in
gyrus rectus and olfactory
bulbs (Politi et al., 2020).

FDG-PET scan: reduced
metabolic activity in the
orbitofrontal cortex
(Galougahi et al., 2020).

Linked to inflammatory
responses involving support
cells of the olfactory
epithelium with subsequent
damage to sustentacular cells
and olfactory neurons
(Saussez et al., 2021).

OD usually disappeared in 95%
of patients at 6 months
(Lechien et al., 2021).
Uncertain evidence for
systemic steroids and nasal
irrigation (intranasal steroid/
mucolytic/decongestant)
(Vaira et al., 2021).

Seizures Retrospective cohort studies
report a seizures prevalence
between 0.06% and 1.5% of
hospitalized patients (Rogers
et al., 2021; Oliveira et al.,
2021).

Many cases with new-onset
focal seizures, serial seizures,
and status epilepticus have
been reported in the literature
(Asadi-Pooya et al., 2021).

Electroencephalography
findings: abnormal
background activity and
generalized slowing.
Epileptiform abnormalities in
the form of focal intermittent
epileptiform discharges,
lateralized periodic
discharges and generalized
periodic discharges (Kubota
et al., 2021; Hwang et al.,
2021).

Multifactorial, depending on
patients’ characteristics,
severity of the infection, drug
interactions, specific
neurological involvement
with brain damage and direct
viral neuroinvasion (Emami
et al., 2020; Asadi-Pooya
et al., 2021; Pizzi, 2021).

Up to now, no specific treatment
reported for COVID-19-
related seizures.

Myelitis Twenty cases reported in the
literature (Schulte et al., 2021;
Artemiadis et al., 2021).

In the majority of cases classical
triad of weakness of the lower
extremities, sensory deficits
in the form of a sensory level,
and bladder or bowel
dysfunction (Schulte et al.,
2021; Artemiadis et al.,
2021). Symptoms mainly
occurred from 8 to 10 days
after symptoms of COVID-19
infection even if, in aminority
of cases, they could appear
simultaneously to respiratory
symptoms (Schulte et al.,
2021; Artemiadis et al.,
2021).

Heterogeneous MRI pattern
including central longitudinal
T2 changes without
corresponding enhancement;
T2-bright and centrally
necrotic enhancing lesions; a
more tract-specific disease
(Huang et al., 2021a, b).

Para- or postinfective
mechanisms (Schulte et al.,
2021).

Intravenous corticosteroids
followed by second line
treatment with immune
therapy (plasma exchange in
most of the cases) (Schulte
et al., 2021; Artemiadis et al.,
2021).



GBS spectrum disorders Including hospitalized and
nonhospitalized COVID-19
cases, 0.15% pooled GBS
prevalence (Palaiodimou
et al., 2021).

Most of the cases had typical
GBS clinical form
characterized by weakness
and sensory signs starting in
the legs and progressing to
arms and cranial muscles.

Some specific GBS variants
have been reported including
Miller Fisher syndrome,
facial diplegia and
polyneuritis cranialis (Maury
et al., 2021). The interval
between the onset of
symptoms of COVID-19
infection and GBS ranged
from 8 to 24 days (mean
9 days) (Palaiodimou et al.,
2021).

Most of the cases had
demyelinating
electrophysiological subtype
(De Sanctis et al., 2020).
COVID-19 is associated with
a 3-fold increase in the
likelihood of AIDP compared
to noninfected contemporary
or historical GBS controls
(Palaiodimou et al., 2021).

By direct damage of the virus
and/or by dysregulation of the
immune response (Filosto
et al., 2021). Possible
immune cross-reaction with
the N-acetyl-galactosamine
residue of GM1 (Filosto et al.,
2021).

Clinical outcomes, including
in-hospital mortality, and
treatment (either intravenous
immunoglobulin or
plasmapheresis) were
comparable between
COVID-19 GBS patients and
noninfected contemporary or
historical GBS controls
(Palaiodimou et al., 2021).

Multiple cranial neuropathies Few cases reported in the
literature (Sharifian-Dorche
et al., 2020; Gupta et al.,
2021).

Cranial nerve abnormalities
including impaired eye
movement with oculomotor,
trochlear or abducens palsy;
trigeminal neuropathy andBP
(Sharifian-Dorche et al.,
2020; Gupta et al., 2021).

Heterogeneous results from
brain-MRI studies ranging
from normal findings to
involvement of different
cranial nerves based on
clinical syndrome (Sharifian-
Dorche et al., 2020; Gupta
et al., 2021).

Unclear Steroids, antiviral drugs, eye
drops, and oral lubricants
(Sharifian-Dorche et al.,
2020; Gupta et al., 2021).

Neuromuscular junction
disorders

Few cases reported in the
literature (Restivo et al.,
2020; Andalib et al., 2021).

Onset of myasthenia gravis’
symptoms within 5–7 days
after fever onset (Restivo
et al., 2020; Andalib et al.,
2021).

Significant decrement at
repetitive stimulation of facial
and ulnar nerves (Restivo
et al., 2020).

Molecular mimicry mechanisms
(Restivo et al., 2020; Andalib
et al., 2021).

Pyridostigmine, steroids,
plasmapheresis.

Muscular involvement COVID-19 infection is
associated with myalgia or
fatigue in 11%–70% of cases,
and CK elevation in 9%–33%
(Romero-Sánchez et al.,
2020; Mahammedi et al.,
2020; Guilmot et al., 2020;
Agarwal et al., 2021; Suh
et al., 2021).

May vary from diffuse myalgia
and fatigue to myopathic
features.

Case–control autopsy series:
most individuals with severe
COVID-19 showed signs of
myositis likely related to
release of cytokines (Suh
et al., 2021; Aschman et al.,
2021). Detection of viral load
was low or negative in most
skeletal and cardiac muscles
assessed (Suh et al., 2021;
Aschman et al., 2021).

SARS-CoV-2 may lead to a
postinfectious, immune-
mediated myopathy (Suh
et al., 2021; Aschman et al.,
2021).

Up to now, no specific treatment
reported.

Abbreviations: AIDP: acute inflammatory demyelinating polyneuropathy; BP: Bell’s Palsy; CK: creatine kinase; CVT: cerebral venous thrombosis; GBS: Guillain–Barr�e syndrome; ICU: intensive care

unit; OD: olfactory dysfunction.



because the body fails tomaintain the normal functioning
of the brain (Slooter et al., 2020). The pathophysiologic
hypotheses of the published cases suggest, among other
mechanisms, the role of inflammation of the vessel wall,
maybe linked to the endothelial hypothesis (Keller et al.,
2020), as demonstrated by histopathology of people
with intracerebral hematoma and subarachnoid hemor-
rhage (Hernández-Fernández et al., 2020). However,
hypoxemia-induced encephalopathy may a valuable
alternative hypothesis, mainly in intubated and/or venti-
lated patients with ARDS. A limitation in generali-
zability of this last hypothesis is that the severity of
COVID-19 encephalopathy is not associated with the
severity of pneumonia. Some authors suggest a different
mechanism, called “happy or silent hypoxemia” (i.e., hyp-
oxemia without dyspnea), as consequence of inappropri-
ate cortical processing of interoceptive information
from the respiratory system (Allali et al., 2020; Couzin-
Frankel, 2020). The core of this hypothesis is that the pres-
ence of COVID-19 encephalopathymay interfere with the
activation of several cortical regions involved in the dys-
pnea perception, in particular the insula (Burki and Lee,
2010). The role of an immunopathogenic mechanism
related to COVID-19, as for other neurologic manifesta-
tions, is hard to support because of the absence of white
matter lesions and meningeal or parenchymal gadolinium
enhancement on brain MRI, and absence of pleocytosis
in the CSF. Moreover, the absence of direct proof of
SARS-CoV-2 in the CSF is strongly in favor of an indirect
(or inflammatory) effect of SARS-CoV-2 for explain-
ing encephalopathy. In this reasoning, the rationale of
using steroid treatment is evident, and the response to
steroid and/or immunoglobulins has been documented
(Abenza-Abildúa et al., 2020; Pugin et al., 2020; Pilotto
et al., 2020b). However, in the reported cases, themajority
of patients spontaneously recovered from encephalopathy
without steroids (Uginet et al., 2021). The unifying
hypothesis for many central neurologic manifestations
in COVID-19 remains that of SARS-CoV-2-induced
endothelitis, which has been confirmed by autopsy in
some cases (Varga et al., 2020).

Encephalitis is an acute, diffuse, inflammatory condi-
tion of the brain, clinically characterized by fever, head-
ache, seizure, focal neurological deficits, and altered
consciousness. One of the main features of the diagnosis
of an infectious encephalitis is the demonstration of the
responsible virus in CSF; but besides infections, enceph-
alitis can also have an autoimmune or paraneoplastic
etiology.

In COVID-19-associated encephalitis, CSF examina-
tion may show inflammatory changes (increased protein
and/or increased cells) and, in rare cases, the virus was
identified in CSF. In three reported cases, an indirect
enzyme-linked immunosorbent assay (ELISA) in CSF

demonstrated elevated levels of IgM for SARS-CoV-2
(Benameur et al., 2020). Isolated cases of COVID-19
encephalitis associated with positivity for onconeuronal
antibodies (antirecoverin, antititin, and anti-Yo anti-
bodies) were reported (Saenz Lafourcade et al., 2021).
However, in monocentric series, brain MR imaging
abnormalities, especially leptomeningeal enhancement,
and increased inflammatory markers in CSF are frequent
in people with neurologic manifestations related to
COVID-19, whereas SARS-CoV-2 detection in CSF
remained scanty (Lersy et al., 2021).

STROKE AND OTHER CEREBROVASCULAR DISEASES

Cerebrovascular disease related to COVID-19 includes
ischemic and hemorrhagic arterial stroke, cortical venous
sinus thrombosis (CVST), and intracranial vasculitis-
induced microvascular occlusive disorder. The most
commonly reported event has been ischemic stroke,
mainly in elderly people with severe COVID-19 illness
and vascular risk factors. However, a subcategory of
COVID-19-related ischemic stroke due to large vessel
occlusion and involvement of multiple territories has
been reported also in young people without vascular risk
factors (Cavallieri et al., 2020; Oxley et al., 2020). Few
cases of COVID-19-associated CVST have been
reported and they do not have sex or age predilection
(Fraiman et al., 2020). The most common symptom
reported is headache, but also focal neurologic deficits
are common findings. Both ischemic stroke and CVST
are likely related to the pro-coagulant state and endothe-
lial damage associated with COVID-19, and highly ele-
vated C-reactive protein (CRP) and D-dimer have been
reported (Tang et al., 2020; Fraiman et al., 2020). The
association with thrombocytopenia suggests a potential
underlying virus-associated microangiopathy (Ellul
et al., 2020). The laboratory findings of pro-coagulant
state on admission have been associated with a poor
survival in people with COVID-19 pneumonia (Tang
et al., 2020). Apart from the increased bleeding risk
related to the antithrombotic medications in individuals
with severe infection, a direct effect of the virus in cir-
cumventricular organ and endothelial cells may disrupt
cerebral autoregulation, leading to blood pressure fluctu-
ations and further increasing the risk of intracerebral
and/or subarachnoid hemorrhage. Also, cytokines storm
and sympathetic overactivity together with direct neuroin-
vasion and endothelial dysfunction may promote the for-
mation and/or the rupture of pre-existing aneurysms
(Al Saiegh et al., 2020).

The impairment of cerebral autoregulation is a potential
trigger of posterior reversible encephalopathy syndrome
(PRES), reported as COVID-19-related manifestation in
very few cases, often with pre-existing hypertension and
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diabetes (Doo et al., 2021). A clinical and neuroradiolog-
ical/neuropathological manifestation of COVID-19 is an
extensive intracranial vasculitis with diffuse microthrom-
bosis and microhemorrhages resulting in a neuroradiolog-
ical semeiology similar to critical illness. In one of the first
reported cases, SARS-CoV-2 RNA was detected in the
CSF (Saitta et al., 2020).

HEADACHE

In the setting of COVID-19 infection, headache is one of
the most frequent neurological symptoms, also reported
in the first case series from Wuhan (Mao et al., 2020).
The frequency of headache in people with COVID-19
was reported to be moderate to high from most physi-
cians (60%) who participated in the survey promoted
by the European Academy of Neurology during the first
wave of the COVID-19 outbreak in 2020 (Moro et al.,
2020). Initially, the prevalence of headache in people
with COVID-19 was estimated between 13% and 74.6%
(Gonzalez-Martinez et al., 2021), but subsequent system-
atic reviews and meta-analysis have defined this preva-
lence between 10% and 20% (Islam et al., 2020; Rogers
et al., 2021). The severity and the outcome of the infection
do not significantly influence the prevalence of headache
(Islam et al., 2020), even if it has been recently reported that
headache is associated with a more benign SARS-CoV-2
infection (Gonzalez-Martinez et al., 2021). Headache
frequency and phenotype are similar in male and female
patients, but literature data are conflicting as regards the
effect of sex on headache intensity (Al-Hashel et al.,
2021; García-Azorín et al., 2021). Around 25% of patients
experience a migraine-like headache, whereas the most
common presentation is a predominantly frontal,
tension-type headache (Caronna and Pozo-Rosich, 2021;
García-Azorín et al., 2021). Froma pathophysiologic point
of view, in the setting of COVID-19 infection, headache
may be the result of different mechanisms both unspecific
(fever, hypoxia) and specific (direct viral invasion, sys-
temic factors like cytokine storm, COVID-19-related
rhinosinusitis) (Caronna and Pozo-Rosich, 2021;
Straburzy�nski et al., 2021). Up to now, no specific treat-
ment exists for headache related to COVID-19, and drugs
can be chosen according to headache phenotype (Caronna
and Pozo-Rosich, 2021).

OLFACTORY DYSFUNCTION

Olfactory dysfunction (OD) is common in people with
COVID-19 infection (Mazzoli et al., 2020; Jalessi
et al., 2020) and may represent one of the earliest symp-
toms in the clinical course of infection (Tong et al.,
2020). According to several systematic reviews and
meta-analysis, the OD prevalence among people with
COVID-19 infection is between 41% and 52%

(Agyemanet al., 2020;Tonget al., 2020).OD ismoreprev-
alent inmildCOVID-19 forms than inmoderate-to-critical
forms, and usually disappeared in 95% of patients at
6 months (Lechien et al., 2021). OD pathogenesis in
COVID-19 seems to be linked to inflammatory responses
involving support cells of the olfactory epithelium which,
in some individuals, canpersist after the infectionwith pro-
gressive damage to the sustentacular cells and olfactory
neurons (Saussez et al., 2021). The detection of SARS-
CoV-2 in CSF studies of people with altered olfactory
and/or gustatory function is extremely rare, supporting this
hypothesis (Lewisetal., 2021b).Till now,norobust clinical
markers predictive of the long-term evolution of OD after
the infection have been found (Saussez et al., 2021).More-
over, evidence about the efficacy and harms of treatments
for persistent OD following COVID-19 infection are lack-
ing (O’Byrne et al., 2021). Recently, a Cochrane review
about the treatment ofOD inCOVID-19 infection has been
published, including only one study with a small sample
size, which assessed systemic steroids and nasal irrigation
(intranasal steroid/mucolytic/decongestant) (Vaira et al.,
2021; O’Byrne et al., 2021). The review underlined that
the evidence regarding the benefits and harms from this
intervention is very uncertain (Vaira et al., 2021).

SEIZURES

Acute symptomatic seizures have been reported in spo-
radic COVID-19 cases, usually occurring between three
and 7 days from initial symptoms onset (Pizzi, 2021;
Santos de Lima et al., 2021). Seizures rarely represent
the presenting symptoms of the infection (Fasano
et al., 2020). Retrospective cohort studies have estimated
the seizure prevalence ranging from 0.06% to 1.5% of
COVID-19 patients (Oliveira et al., 2021; Rogers
et al., 2021). The etiology of seizures is most likely mul-
tifactorial, depending on patients’ characteristics (in
particular, comorbidities such as diabetes or kidney dis-
ease), severity of the systemic infection that can lead to
multiorgan failure, metabolic issues, or severe systemic
hypoxemia with anoxic/hypoxic brain injury, drug inter-
actions, specific neurologic involvement with brain dam-
age (encephalitis or cerebrovascular events), and direct
viral neuroinvasion (Emami et al., 2020; Asadi-Pooya
et al., 2021; Pizzi, 2021). In addition, the interaction
between SARS-CoV-2 and Angiotensin II, which has
proconvulsant properties, may play a role together with
the cytokine storm (Vohora et al., 2020). Indeed, the pos-
sible downregulation of ACE2 receptors during the
infection may lead to a shift to angiotensin processing
by ACE rather than ACE2 receptors, leading to an
increased seizure susceptibility (Vohora et al., 2020).

Concerning EEG findings, cohort studies have found
that abnormal background activity and generalized
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slowing were common findings among people with
COVID-19. Epileptiform abnormalities in the form of
focal intermittent epileptiform discharges, lateralized
periodic discharges, and generalized periodic discharges
have been reported in the 20% of patients (Kubota et al.,
2021; Hwang et al., 2021).

MYELITIS

Acute myelitis is a very rare neurologic complication of
SARS-CoV-2 infection with few case descriptions
(Schulte et al., 2021). Indeed, to date, only 20 cases
of COVID-19-associated acute myelitis have been
reported in the literature (Schulte et al., 2021;
Artemiadis et al., 2021). In most cases, neurologic
symptoms consisted of the classical triad of weakness
of the lower extremities, sensory deficits in the form
of a sensory level, and bladder or bowel dysfunction
(Artemiadis et al., 2021; Schulte et al., 2021). Acute
myelitis symptoms mainly occurred from 8 to 10 days
after symptoms of COVID-19 infection even if, in a
minority of cases, they could appear simultaneously
with respiratory symptoms (Artemiadis et al., 2021;
Schulte et al., 2021).

TheMRI pattern of spinal cord involvement is hetero-
geneous and includes: central longitudinal T2 changes
without corresponding enhancement; T2-bright and cen-
trally necrotic enhancing lesions, a more tract-specific
disease, with ventral horn–predominant T2 hyperintensity
or a dorsal column–predominant T2 signal abnormality;
and a lateral and dorsal column–specific disease (Huang
et al., 2021a). In two reported cases, spinal cord MRI
was unrevealing (Schulte et al., 2021).

In three cases, acute myelitis was accompanied by
encephalopathy, while in two cases the co-occurrence
of acute myelitis with the GBS variant acute motor axo-
nal neuropathy (AMAN) was reported (Artemiadis et al.,
2021; Schulte et al., 2021). Most cases had a myelopathy
that fulfilled Longitudinally Extensive Transverse Mye-
litis (LETM) criteria (Schulte et al., 2021). CSF findings
reflected an inflammatory process in the majority of
patients, whereas CSF PCR for SARS-CoV-2 was
always negative; in two cases, specific antibodies were
found (i.e., antimyelin oligodendrocyte glycoprotein-
spectrum disorder and aquaporin-4 neuromyelitis optica)
(Huang et al., 2021a).

Most patients were treated with intravenous cortico-
steroids (e.g., methylprednisolone) and about half of
them received a second line of immune therapy (plasma
exchange inmost cases) (Artemiadis et al., 2021; Schulte
et al., 2021). Acute myelitis may occur in the setting of
COVID-19 infection with para- or postinfection mecha-
nisms. However, whether the condition and the observed

radiological characteristics are specific to SARS-CoV-2
infection need to be clarified in future studies (Schulte
et al., 2021).

NEUROMUSCULAR INVOLVEMENT

COVID-19 can affect the PNS and themuscles leading to
different neurological manifestations: GBS spectrum
disorders, multiple cranial neuropathies, nerve pain, neu-
romuscular junction disorders, myalgias, myopathy, and
myositis (Andalib et al., 2021). This peripheral involve-
ment is multifactorial and caused by a combination of
direct invasion (ACE2 receptors are expressed in muscle
tissue) and systemic immune response with cytokine
storm (McGonagle et al., 2020).

Since the beginning of the outbreak, GBS cases in peo-
ple with SARS-CoV-2 have been increasingly reported,
highlighting the possible link between these two entities.
Subsequent observational studies have reported that GBS
was found in less than 0.5% of hospitalized people with
COVID-19 (Guilmot et al., 2020; Mahammedi et al.,
2020; Romero-Sánchez et al., 2020; Agarwal et al.,
2021; Maury et al., 2021). A recent systematic review
and meta-analysis have confirmed these preliminary find-
ings reporting that among peoplewithCOVID-19, includ-
ing hospitalized and nonhospitalized cases, the pooled
GBSs prevalence was 0.15% (95% CI 0%–0.49%)
(Palaiodimou et al., 2021). However, epidemiologic data
about the incidence of GBS during the pandemic are
conflicting. Indeed, one observational multicenter study
reported an increased incidence of GBS during the
COVID-19 outbreak in northern Italy, supporting a path-
ogenic link between the SARS-CoV-2 and GBS (Filosto
et al., 2021). However, a subsequent large-scale epidemi-
ological study during the COVID-19 pandemic in the
United Kingdom did not confirm a causal link between
COVID-19 and GBS (Keddie et al., 2021). Most cases
reported in the literature had typical GBS clinical features
predominantly with a demyelinating electrophysiological
subtype (De Sanctis et al., 2020). Indeed, COVID-19 is
associated with a threefold increase in the likelihood of
acute inflammatory demyelinating neuropathy among
patients infected with SARS-CoV-2 compared to non-
infected contemporary or historical GBS controls
(Palaiodimou et al., 2021). Moreover, some specific
GBS variants have been also described in people with
COVID-19 including Miller Fisher syndrome, facial
diplegia and polyneuritis cranialis (Maury et al., 2021).
The interval between the onset of symptoms of
COVID-19 infection and GBS ranged from 8 to 24 days
(mean 9 days; median 10 days) (Palaiodimou et al., 2021).
Clinical outcomes, including in-hospital mortality, and
treatment (either intravenous immunoglobulin or plasma-
pheresis) were comparable between COVID-19 GBS
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patients and noninfected contemporary or historical GBS
controls (Palaiodimou et al., 2021).

The virus may induce nerve damage both directly
and/or by dysregulation of the immune response through
a cytokine storm (Filosto et al., 2021). As SARS-CoV-2
spike protein interacts with the N-acetyl-galactosamine
residue of GM1 for anchoring to the cell surface, an
immune cross-reaction between epitopes within the
spike-bearing gangliosides and sugar residues of surface
peripheral nerve glycolipids is also possible (Filosto
et al., 2021).

Cranial nerve abnormalities besides the spectrum of
GBS have been also reported in COVID-19 patients
including impaired eye movement with oculomotor,
trochlear, or abducens palsy and trigeminal neuropathy
(Sharifian-Dorche et al., 2020). Few cases of Bell’s palsy
(BP) in COVID-19 infection have been described
(Codeluppi et al., 2020; Gupta et al., 2021). Although
BP has been suggested to be caused by many other
viruses, evidence of BP in people with COVID-19 indi-
cates a possible association of SARS-CoV-2 virus with
BP etiopathogenesis even if the exact mechanisms by
which SARS-CoV-2 causes BP are still unclear (Gupta
et al., 2021). New-onset myasthenia gravis (MG) after
COVID-19 infection can also occur and may also be
due tomolecular mimicry mechanisms as with other neu-
rologic manifestations (Restivo et al., 2020; Andalib
et al., 2021). Muscle symptoms with elevated serum cre-
atine kinase (CK) are frequent in people with COVID-19
as first reported in the case series from Wuhan (Mao
et al., 2020). Indeed, the infection is associated with
myalgia or fatigue in 11%–70% of individuals, and
CK elevation in 9%–33% (Guilmot et al., 2020;
Mahammedi et al., 2020; Romero-Sánchez et al.,
2020; Agarwal et al., 2021; Suh et al., 2021). Recently,
two case–control autopsy series have found that most
individuals with severe COVID-19 showed signs of
myositis ranging from mild to severe, likely related to
release of cytokines (Aschman et al., 2021; Suh et al.,
2021). Detection of viral load was low or negative in
most skeletal and cardiac muscles assessed and probably
attributable to circulating viral RNA rather than genuine
infection of myocytes with no evidence of direct
SARS-CoV-2 invasion of these tissues (Aschman
et al., 2021; Suh et al., 2021). These findings suggest that
SARS-CoV-2 may lead to a postinfectious, immune-
mediated myopathy (Aschman et al., 2021; Suh et al.,
2021). Inflammation of skeletal muscles was also found
to be associated with the duration of illness and was
more pronounced than cardiac inflammation (Aschman
et al., 2021). The presence of myalgia at hospital
admission has been recently associated with both pre-
existing history of musculoskeletal pain, and mus-
culoskeletal pain as long-term post-COVID sequelae

(Fernández-de-Las-Peñas et al., 2021). Postmortem
studies have also reported the presence of myopathic
features in diaphragmatic muscle of critically ill
COVID-19 patients with distinct characteristics com-
pared with critically ill patients without COVID-19
(Shi et al., 2021). Another postmortem case series found
SARS-CoV-2 RNA in 15% of diaphragm muscle spec-
imens obtained from 26 consecutive autopsies of
critically ill COVID-19 patients (Shi et al., 2020). Dia-
phragmatic involvement may contribute to the ongoing
dyspnea and fatigue in the patients surviving COVID-
19 infection (Shi et al., 2021).

Long-term manifestations

LONG-COVID SYNDROME AND NEUROLOGIC

MANIFESTATIONS

Long-COVID or post-COVID syndrome is defined by
the National Institute for Health and Care Excellence
(NICE) as “signs and symptoms that develop during or
after an infection consistent with COVID-19 which con-
tinue for more than 12 weeks and are not explained by an
alternative diagnosis” (Ayoubkhani et al., 2021; National
Institute for Health and Care Excellence, 2021).

In a systematic review and meta-analysis of the
long-term effect of COVID-19, the five most common
symptoms reported were fatigue (58%), headache (44%),
attention disorder (27%), hair loss (25%), and dyspnea
(24%) (Lopez-Leon et al., 2021; Yan et al., 2021).

Female sex, more than five early symptoms of infec-
tion, early dyspnea, prior psychiatric disorders, and spe-
cific biomarkers (e.g., D-dimer, CRP, and lymphocyte
count) have been reported as risk factors for the develop-
ment of long-COVID syndrome (Yong, 2021). The
underlying pathogenesis of long-COVID syndrome
remains unclear, but clinical symptoms can be extensive,
affect multiple organs, and may persist for many months
after illness-onset (Lopez-Leon et al., 2021; Yan et al.,
2021). Neurologic and psychiatric symptoms may be
prominent in long-COVID and neurologists, in common
with other medical specialists, are likely to require an
understanding of relevant symptoms to develop optimal
management strategies and services (Williams et al.,
2021a, b). Indeed, recent prospective observational
cohort studies (Huang et al., 2021b; Pilotto et al.,
2021) have reported that at 6 months after acute infec-
tion, COVID-19 survivors are mainly troubled with
fatigue or muscle weakness, sleep difficulties, mem-
ory/attention disorders and anxiety or depression. More-
over, at 6-month neurological examination, 40% of
patients still exhibited neurological abnormalities, such
as hyposmia (18.0%), cognitive deficits (17.5%), pos-
tural tremor (13.8%), and subtle motor/sensory deficits
(7.6%) (Pilotto et al., 2021). Older age, premorbid
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comorbidities, and severity of COVID-19 were found to
be predictors of neurological manifestations in the long
term after the infection (Pilotto et al., 2021). The nonspe-
cific cognitive complaints identified as “brain fog” by
several people after the infection has been prominently
mentioned in the media with a great deal of resonance
(Graham et al., 2021). A recent observational cohort
study found that SARS-CoV-2 positive individuals
performed worse in attention and working memory
cognitive tasks compared to demographic-matched con-
trols, highlighting that nonhospitalized individuals with
COVID-19 experience prominent and persistent “brain
fog” and fatigue that affect their cognition and quality
of life (Graham et al., 2021). Moreover, one prospective
study that compared COVID-19 survivors with non-
COVID-19 volunteers has showed the existence of
potential brain micro-structural changes related to
SARS-CoV-2 infection whichmay be linked to cognitive
symptoms after the infection (Lu et al., 2020). Sleep dis-
turbances represent another important manifestation of
long-COVID syndrome. They have been reported in
26% of post-COVID patients at 6-month follow-up in
one large study conducted in Wuhan, China (Huang
et al., 2021b). However, detailed data on the incidence
and characteristics of sleep disorders in long-COVID
syndrome aswell as information on the optimal treatment
strategies are still needed (Bhat and Chokroverty, 2021).

The exact pathophysiology of neurologic manifesta-
tions in long-COVID syndrome is still unclear. To date,
biomarkers and imaging findings are not identified. For
severe COVID-19 courses, it is assumed that inflamma-
tion, hypoxemia, and vascular mechanisms might
contribute to the etiopathogenesis of neurological man-
ifestations of long-COVID syndrome. Finally, SARS-
CoV-2 may also trigger the production of autoantibodies
(Boesl et al., 2021).

COVID-19 and neurodegeneration

Neurodegenerative diseases, including amyloid-related
diseases (cerebral amyloid angiopathy and Alzheimer’s
disease), Parkinson disease (PD), frontotemporal demen-
tia, and other tauopathies are common diseases. Their
prevalence is rising and may double within the next
20years (Tysnes and Storstein, 2017; Collaborators,
2019). Although the main damage underlying neurode-
generative disorders is in the brain, their onset and course
is substantially affected by lifestyle, genetic predis-
position, and somatic pathologies including infections
associated with systemic inflammation (Holmes, 2013;
Lim et al., 2015; Giridharan et al., 2019; Walker
et al., 2019). Therefore, the hypothesis that COVID-19
infection can be a trigger or modifying factor of neurode-
generative diseases has been proposed (Verkhratsky

et al., 2020). Age is the major risk factor for neurodegen-
erative diseases (Hou et al., 2019) and a strong predictor
of severe clinical picture with prolonged course of
COVID-19 (Koff and Williams, 2020). Among the neu-
rologic and psychiatric complications of COVID-19,
symptoms of clinical parkinsonism were reported in
few cases, suggesting a potential direct link between
SARS-CoV-2 infection and neurodegeneration (Brundin
et al., 2020). In two cases, COVID-19 may have been
the “second hit” on a genetic risk trait (Cavallieri et al.,
2021).

In addition to the above-reportedmechanisms of brain
damage by SARS-CoV-2, the spike proteins from the
wild type (WT) and the South African B.1.351 (SA) var-
iants bind to the monoamine oxidase (MAO) enzymes
with an affinity comparable to that for ACE2 (Hok
et al., 2022). This binding of the spike protein could
change the affinities of MAOA (serotonin-preferring)
andMAOB (dopamine preferring) enzymes for their neu-
rotransmitter substrates, misbalancing their levels, and
suggesting that the interference with the brain MAO cat-
alytic activity is responsible for the increased neurode-
generative illnesses following a COVID-19 infection
(Hok et al., 2022).

In PD, another interesting molecular mechanism is
under investigation. It is related to the potential interfer-
ence of a-synuclein with pathologic processes following
viral infection. Indeed, a-synuclein plays a dual role in
neurodegeneration; this protein forms toxic oligomers
and inclusion bodies (Surgucheva et al., 2014a, b) but
it also has a protective effect against neurodegeneration
by inhibiting pro-inflammatory responses and facilitat-
ing immune reactions against infections (Surguchov,
2015; Labrie and Brundin, 2017; Lesteberg and
Beckham, 2019).

It is known that the expression of a-synuclein in neu-
rons inhibits viral RNA replication, facilitates immune
responses, and prevent neuroinvasion (Beatman et al.,
2015; Massey and Beckham, 2016; Stolzenberg et al.,
2017). A recent hypothesis proposes that a-synuclein
overexpression in people with PD might reduce the con-
sequences of coronavirus infection by inhibiting the
spread of the virus from PNS to CNS (Ait Wahmane
et al., 2020). However, in animal models, coronavirus
infection can induce cytotoxic aggregation of proteins,
including a-synuclein (Tulisiak et al., 2019; Pavel
et al., 2020). Moreover, dopaminergic neurons have ele-
vated bioenergetic demands due to highly arborized
axons and are highly vulnerable to impairment in pro-
teostasis due to the large axon size (Pavel et al., 2020).

Another piece of this complex puzzle is that
a-synuclein expression can be induced following viral
infection (Whittaker et al., 2020), so increasing the
probability of aggregation (Follmer, 2020).
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Moreover, a study profiling 65,309 single-nucleus
transcriptomes from 30 frontal cortex and choroid plexus
samples across 14 control individuals and 8 subjects with
COVID-19 without molecular traces of SARS-CoV-2 in
the brain, showed broad cellular perturbations in the bar-
rier cells of the choroid plexus, allowing peripheral
T cells to infiltrate the brain parenchyma (Yang et al.,
2021). An interesting finding is that specific microglia
and astrocyte subpopulations associated with COVID-19
were found, and these cells shared features with patholog-
ical cell states that have been previously reported in human
neurodegenerative disease (Keren-Shaul et al., 2017;
Mathys et al., 2019; Sala Frigerio et al., 2019).

Therefore, longitudinal accurate follow-up of people
who had COVID-19 seems to be necessary, especially
using registries.

CONCLUSIONS

The occurrence of various neurologic symptoms and
manifestations in people affected by coronavirus is not
rare. The involvement of both central and peripheral
nervous system can have several pathogenetic path-
ways, including direct viral lesion, endothelial dysfunc-
tion, thrombotic microangiopathy, hypoxia, systemic
inflammation, and autoimmune reaction. In SARS-
CoV-2 infection, neuroinflammatory changes of the
brain and brainstem are the most common autopsy find-
ings. Acute neurologic manifestations are more often
present in severe form of COVID-19 and are linked
to poor prognosis. Although acute and subacute neuro-
logic signs, symptoms and manifestations linked to
SARS-CoV-2 are well identified, much less is known
about their long-term effects. Moreover, nothing is
known about the possible viral impact within the life
course of people who had COVID-19. Since it is likely
that SARS-CoV-2 will continue to affect humans for the
foreseeable future, our knowledge about this virus will
grow and allow us to find answers to the open questions
that have been illustrated in this chapter.
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