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Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology,

Japan, 3 Center for Collective Dynamics of Complex Systems, State University of New York at Binghamton,

Binghamton, New York, United States of America, 4 Waseda Innovation Lab, Waseda University, Tokyo,
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Abstract

Surveillance plays a crucial role in preventing emerging infectious diseases from becoming

epidemic. In circumstances where it is possible to monitor the infection status of certain peo-

ple, transport hubs, or hospitals, early detection of the disease allows interventions to be

implemented before most of the damage can occur, or at least its impact can be mitigated.

This paper addresses the question of which nodes we should select in a network of individu-

als susceptible to some infectious disease in order to minimize the number of casualties. By

simulating disease outbreaks on a collection of empirical and synthetic networks we show

that the best strategy depends on topological characteristics of the network. For highly mod-

ular or spatially embedded networks it is better to place the sentinels on nodes distributed

across different regions. However, if the degree heterogeneity is high, then a strategy that

targets network hubs is preferred. We further consider the consequences of having an

incomplete sample of the network and demonstrate that the value of new information dimin-

ishes as more data is collected. Finally we find further marginal improvements using two

heuristics informed by known results in graph theory that exploit the fragmented structure of

sparse network data.

Author summary

In a network of individuals susceptible to some infectious disease, what are the best loca-

tions to monitor in order to detect the infection before most damage can be done? In this

paper we address this question by considering various heuristic strategies for sentinel

placement that can potentially be implemented in real-world situations without requiring

excessive amounts of computation, or even having perfect data about the structure of the

network. We find that strategies that attempt to distribute sentinels over different regions

of the network perform best in highly modular or spatially embedded networks, whereas

the strategy of targeting the most well connected individuals works best when there is a

considerable amount of contact heterogeneity between individuals. Our results may be
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used as a guideline to help decide when certain strategies should, or should not, be

implemented.

Introduction

Preventing epidemics is one of the major challenges in public health. In the effort to limit the

damage caused by infectious diseases, governments often have to resort to costly vaccination

schemes or suffer the human and economic consequences of implementing quarantine pro-

grammes. Naturally, there is much to be gained from initiatives that detect outbreaks during

their early stages as it allows public health officials to locally contain the spread and prevent it

from reaching the wider population. Such sentinel surveillance schemes may involve the detec-

tion of influenza in airports [1], receiving data from specially selected healthcare centres [2, 3],

or monitoring users of intravenously taken drugs [4]. Given that in most situations of this type

it is only possible to monitor a fraction of the population at risk, deciding exactly which indi-

viduals to target is a question that could have significant economic and public health benefits.

This question is similar to the problem of disease control through immunization. A signifi-

cant literature already exists addressing this problem through mathematical and computa-

tional modelling, with the main objective to find the herd immunity threshold; defined as the

proportion of the population one would need to immunize to ensure that local outbreaks do

not develop into epidemics [5]. Much of this work is concerned with the networks of potential

transmission pathways for the infectious diseases within a population [6, 7]. Since well con-

nected nodes in such networks are both more likely to receive the infection, and to pass it on

to others once they become infectious, it is prudent to locate these nodes and vaccinate them

[8, 9]. Various heuristic approaches to find such nodes have been shown to be cost-effective

[10, 11].

Unlike targeted vaccination, which remains a theoretical problem, sentinel surveillance is

in active use, and, while vaccination strategies on networks have been studied in some depth,

much less is known about sentinel surveillance. Moreover, recent results show the best candi-

dates for vaccination are not necessarily the same as those for sentinel placement [12]. While

methods have been developed to find the optimal placement of n sentinels on a given network

whose structure is known [13–15], fewer studies consider heuristic approaches that do not

require perfect data [16]. While incomplete or unreliable information has been investigated in

the context of influence maximization and other centrality measures [17, 18], questions still

remain about sentinel placement in the disease context.

The premise of our investigation is that a good strategy is one that selects nodes that have

many connections but are also not too close to each other. While previous work in this area

has focused on locating well connected individuals [19–21], here we ask whether a strategy

that also distributes the sentinels across different regions of the network can be better than one

that simply targets the highest degree nodes.

The first part of this paper addresses the question of how network topology affects the per-

formance of different strategies for sentinel placement. We generate networks with varying

amounts of degree heterogeneity as well as varying assortativity, in one case, and spatial struc-

ture in another. We simulate the spread of disease on these networks and introduce three sen-

tinel placement strategies that utilize different aspects of the network topology. We then

present results for a wide range parameter combinations to show that the best strategy for a

given network depends on its topology.

Efficient sentinel surveillance strategies for preventing epidemics on networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007517 November 25, 2019 2 / 19

https://doi.org/10.1371/journal.pcbi.1007517


The second part of this paper deals with the issue of incomplete data. We introduce three

sentinel placement strategies and show that, in addition to the network structure, the perfor-

mance depends also on the size of the sample. We discuss how the value of additional data

decreases as the sample size increases. We finally explore the hypothesis that a known result

from random graph theory can be used as a guide to help decide which strategy to employ.

Methods

Network topology and sentinel performance

We start from the intuitive hypothesis that nodes with the largest degree are the best candi-

dates for placing sentinels since these nodes are typically the most likely to receive and propa-

gate the disease. We will compare this idea to strategies that distribute the sentinels in such a

way that each one covers a different region of the network. We test each strategy on a range of

networks with different levels of degree heterogeneity, and different levels of either spatial or

modular structure. We start by describing how these networks were generated and then

describe the process of simulating epidemics on the networks. We then explore the conse-

quences of implementing three strategies for sentinel placement and introduce two measures

of efficacy for a sentinel placement based on the results of disease simulations.

Generating synthetic networks. Our approach to generating networks with tunable

degree heterogeneity and group assortativity (or spatial structure) is a modified version of the

configuration model [22]. In the basic model, N nodes are considered, and each node, i, is

given a degree, ki. We can think of the node i as having ki adjacent half edges (or stubs)

attached to it. Each stub is then paired with another stub to create an edge. The pairs are ran-

domly selected with the following conditions: (a) that the two stubs must belong to different

nodes (no self-loops), and (b) the stubs must belong to pair of nodes that are not already con-

nected (no multi-edges).

The goal is to create a degree distribution with a specified mean degree μ, and standard

deviation σ, which will be our measure of degree heterogeneity. To achieve this we first assign

μ stubs to every node (ki = μ for all i). We then begin a procedure of preferential rewiring: in

each iteration two nodes, i and j, are selected. The first (i) is chosen randomly from all nodes

that have degree greater than 1, and the second (j) is selected with probability proportional to

its degree. A stub is then removed from the first node (ki :! ki − 1) and attached to the second

(kj :! kj + 1). This process is repeated until the standard deviation of the node degrees is larger

than the specified value σ. The degree distributions generated through this process are com-

pared with those of real networks described in the Data section.

We consider two classes of modified configuration model. These are:

Modular: We createmmodules, each consisting of n nodes. Every stub is chosen to be either

intra-module, with probability p (the module assortativity), or inter-module, with probabil-

ity 1 − p. Intra-module stubs can only be paired with stubs belonging to nodes of the same

module, inter-module stubs can only be paired with other inter-module stubs.

Spatial: Nodes are placed on a circle evenly spaced with distance of 1 between them (around

the circumference). Two stubs can only be paired together if they are withing a distance r
(the connection radius) of each other.

Examples are shown in Fig 1(a).

Disease model. We use a Susceptible-Infected-Recovered (SIR) model of disease propaga-

tion. Initially the entire population is in the susceptible state except for one randomly selected

seed node that is in the infectious state. Nodes that are in the infectious state infect their

Efficient sentinel surveillance strategies for preventing epidemics on networks
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susceptible neighbours at a rate of β per unit of time. When this occurs the susceptible neigh-

bour will transition to the infectious state for a given infectious period duration before transi-

tioning to the recovered state. We consider two possible ways to terminate the simulation:

Single seed: The simulation ends when all individuals are in either the susceptible or recovered

state.

Multiple seed: After all individuals infected directly or indirectly from the initial seed are in

the recovered state, a new seed is randomly selected from the remaining susceptible popula-

tion and made to transition to the infectious state, thus allowing disease propagation to

continue between the remaining susceptible nodes. This process repeats until the entire

population is in the recovered state.

The multiple-seed simulation corresponds to diseases that remain hidden as they spread

through a population; without the aid of sentinel surveillance they will reoccur indefinitely.

The single-seed version, on the other hand, is more appropriate for diseases that result in the

infected individual very quickly going to hospital where the disease will be diagnosed (and

thus detected). Note that for the multiple-seed simulation it is not required that we specify the

amount of time between the end of one outbreak and the beginning of the next.

For our analysis here we use an infectious period of duration 1 (without loss of generality

since there are no units of time imposed) and transmission rate β = 0.5. For each combination

of parameter values tested, we generated 103 networks and ran 102 disease outbreaks on each

one. The results presented are the means over all 105 simulated outbreaks. Simulations were

performed using the SIR code from the Epidemics on Networks (EoN) Python library [23].

Sentinel placement strategies. We consider the following strategies for deciding the

placement of s sentinels:

Spatial: Divide the network into s spatial regions of equal size. Place a sentinel on the highest

degree node in each region.

Modular: Place a sentinel on the highest degree node in each of s different modules

Fig 1. Network generation and sentinel strategies. (a) Examples of the two types of network. In the modular network p represents the probability that

an edge will connect 2 nodes of the same colour. In the spatial network, edges can only connect nodes that are within distance r of each other e.g the

edges of i are all in the green region. (b) Examples of sentinel placement strategies. (c) Strategies for networks with limited data. Examples of sentinel

placement strategies with s = 3.

https://doi.org/10.1371/journal.pcbi.1007517.g001
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Global: Place sentinels on the s highest degree nodes.

Examples of each of these are shown in Fig 1(b). We will apply the spatial and modular strate-

gies to the spatial and modular networks, respectively, and the global strategy to both.

Measuring strategy performance. We use two complementary approaches to measuring

the performance of a sentinel placement strategy. The first measure is applied to the single-

seed disease simulations and counts the proportion of cases in an outbreak that could poten-

tially have been prevented as a consequence of being detected. Specifically, we measure the size

of the full outbreak and subtract from this the number of cases that occurred before the out-

break reached any of the sentinels. If no sentinel receives the disease then we subtract all the

cases that occurred, giving a result of zero. Formally, for a set of sentinels S, we define the cases
after detection,FA(S), for a given outbreak as

FAðSÞ ¼ Ið1Þ � Iðmin
s2S
ðinfection time of sÞÞ ð1Þ

where I(t) is the number of cases (infected or recovered) at time t. Note that this only measures

the number of cases that could potentially be prevented and we do not consider any of the diffi-

culties of actually preventing them nor do we consider the time it would take to implement

any such intervention.

The second measure is applied to the multiple-seed disease simulation outcomes and

counts the proportion of cases that occurred before the outbreak was detected, i.e. before it

reached any of the sentinels.

FBðSÞ ¼ Iðmin
s2S
ðinfection time of sÞÞ ð2Þ

We have chosen two measures to give different results that complement each other. One draw-

back of the first measure is that when outbreak goes undetected we have FA = 0. Hence, the

mean of FA over many simulations is deceptively small in sparse or fragmented networks

where outbreaks tend to be very small. On the other hand, FB takes into account the small out-

breaks, but the assumption that the disease will reappear in the population (after an unspeci-

fied amount of time) is unrealistic for diseases with considerable symptomatic burden that are

likely to reveal themselves in other ways. A range of alternative measures has been considered

in [24].

Sentinel placement with incomplete data

The objective of this section is to test the performance of sentinel placement strategies given

limited information about the network structure. We use both empirical and synthetic net-

work data to ask how well different strategies will perform when only a sample of the edges are

known.

Sampling regime. We consider two types of sampling. For a give percentage X

Edge: Select a random sample of X% of the edges from the true network and include all nodes

attached to at least one of these edges.

Node: Select an initial random sample of X% of the nodes from the true network and include

all edges and additional nodes adjacent to at least one node in the initial sample.

Edge sampling is typically used when the available information is in the form of an interaction.

For example, flights between airports, messages sent on social media and, potentially, proxim-

ity interactions recorded through mobile phones. Node sampling occurs when survey respon-

dents are asked to name the people that they have interacted with; this is more typical for the

hidden communities of, for example, drug users.

Efficient sentinel surveillance strategies for preventing epidemics on networks
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In both cases we expect that an incomplete sample network would be fragmented into a

number of disconnected components, where a component is defined as a set of nodes which

are connected through a sequence of edges. Here we introduce strategies that take advantage

of this fragmentation by exploiting the fact that different components are likely to belong to

different regions of the complete network such as modules or spatial areas.

Sentinel placement strategies. Suppose we have a sample of X% of the edges (or nodes)

of the network. We use Ci to denote the size of the ith largest component and N to be the total

number of nodes in the full network. We consider the following strategies:

Component: Choose the highest degree node in each of the s largest components. If the num-

ber of components is less than s, cycle through the components in reverse order of size,

choosing the best available node each time, until s sentinels have been selected.

Proportional: Choose the dsC1/Ne highest degree nodes from the largest component, then

dsC2/Ne from the second largest component and so on until s sentinels have been selected.

Global: Choose the s nodes with highest degree in the sample.

In all three cases we assume that all nodes in the network are known regardless of whether

they are connected to an edge or not (thus at small sample sizes the sample network will

include a large number of nodes with degree 0). Examples of these strategies are shown in

Fig 1(c).

Data. We obtained 6 freely available datasets from the Sociopatterns project. This data

was collected by providing participants with RFID technology that logged every instance in

which two participants were within a short distance of each other. The settings in which these

experiments were conducted are a conference [25], a hospital [26], a primary school [27], a

high school [28], an office workplace [29], and a collection of households in rural Kenya [30].

A precise description of each experiment can be found in these references. In each case the

data included contacts between pairs of participants and the time that the contact happened.

From these data we constructed unweighted static (time-aggregated) networks in which nodes

are participants and edges exist between any pair of participants who shared at least one

contact.

In addition, we used 3 transport networks constructed from timetable data for all of the

United Kingdom. Details of this dataset are found in [31]. From these data we use the network

of airports and domestic flight paths, the network of railway stations and lines between them,

and the London underground metro system, which we found by taking the largest connected

component of the whole UK metro network.

Furthermore, we obtained 8 networks created from surveys of individuals thought to be at

risk of becoming infected with diseases through sexual or drug-taking contact [32]. A fraction

of the participants in these studies were found through healthcare clinics while the remainder

were found by referral from other participants; a process which is known to introduce biases

in the data and is likely to give higher values of degree heterogeneity and lower levels of modu-

larity than would a random sample [33]. Consequently, the majority of the nodes are individu-

als who were referred by others but did not themselves participate in the survey. To create a

network that realistically represents the potential pathways of transmission, we removed all

nodes of degree one and took the largest connected component of the remaining network. In

one case this component consisted of only a single node and so we omitted this dataset.

In addition to the 16 empirical networks described above, we created 200 synthetic net-

works using the processes described in the section generating synthetic networks. These were

generated with a range of randomly selected topological characteristics. The first 100 networks

were generated using the modular model with the number of modules chosen uniformly at

Efficient sentinel surveillance strategies for preventing epidemics on networks
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random between 3 and 8, the module size between 10 and 30, and the assortativity parameter

between 0.4 and 1. The second 100 were generated using the spatial model with the number of

nodes drawn uniformly between 100 and 200, and the connection radii between 10 and 60. In

both the spatial and modular networks, the mean degree was chosen uniformly at random

between 4 and 9, and the standard deviation of the degree distribution between 0 and 5.

The degree distributions for a the empirical networks are shown in supplement (S1 Fig).

For comparison, the degree distributions for a sample of the synthetic networks are also

shown (S2 Fig).

Disease model. The disease simulation was performed as described earlier. To adjust for

the varying levels of connectivity across different networks we chose β = 2/μ where μ is the

mean degree of the particular network. Thus, at the beginning of the outbreak, the randomly

selected seed node is expected to infect 2 other individuals. For each network 102 outbreaks

were simulated. Distribution of outbreak sizes are shown in S3 Fig. The three strategies were

applied to 103 different random samples of each network using the edges sampling method,

and again using node sampling. To evaluate the performance of each strategy we again use the

same measures as before. The values presented for FA and FB are the mean over all 105 combi-

nations of edge sample and simulated outbreak.

Results

Network topology and sentinel performance

We performed disease simulations on modular networks with m = 5 modules and n = 40

nodes per module over a range of values of p and σ, and on spatial networks with N = 200

nodes over a range of values of r and σ. We measured the performance of the sentinel place-

ment strategies, arbitrarily choosing s = 5. Fig 2 shows the difference in the number of cases

after detection, FA, between the global strategy and the modular or spatial strategy for their

respective type of network over a range of values of degree heterogeneity, module assortativity

(in the modular network), and connection radius (in the spatial network).

Fig 2. Strategy performance. The difference in effectiveness between the degree based strategy and the strategies based on network subdivision. Blue

areas indicate that the global strategy performs better than the modular (left) or spatial (right) strategy. Red areas indicate the opposite.

https://doi.org/10.1371/journal.pcbi.1007517.g002
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For the modular networks, when the degree distribution is relatively homogeneous, σ≲ 6,

we see that the nodes selected using the global strategy are no better than when σ = 0 and the

sentinels are essentially random. This is also true for nodes selected by the modular strategy

when p = 0.5, when edges are equally likely to appear within modules as they are between mod-

ules. We see that in disassortative networks, when p< 0.5, that the global strategy performs

better than the modular strategy, whereas when p> 0.5 the opposite is the case. As we look at

networks with higher degree heterogeneity σ≳ 6 we see that the global strategy starts to beat

the modular strategy even in assortative networks (p> 0.5) until eventually, at σ� 18, the

global strategy dominates for all levels of assortativity.

A similar story can be told for the spatial networks. In networks with homogeneous degree

distributions, the spatial strategy is preferred for when the connection radius is small. We have

chosen only to plot values of r up to 102 since beyond this point edges can potentially appear

between any two nodes making the network equivalent to the original configuration model.

However, the threshold value for which the spatial strategy is no longer preferred to the global

strategy appears at around r� 50. Again, the spatial strategy becomes increasingly redundant

as we look at networks with larger degree heterogeneity.

Sentinel placement with incomplete data

The effect of sample size on strategy performance. For each network and each sampling

method we would like to know which strategy performs better. Since we are considering sam-

ples of edges (or nodes) in the network, we also want to know how the percentage, X, of edges

(or nodes) that are included in the sample effects this outcome. We start by focusing on the

edge sampling regime and explain the relationships observed in Fig 3.

When the sample size is 0, the strategies are equivalent to simply choosing random nodes.

When the number of edges is approximately the same as the number of sentinels, all three

strategies act in a way that is similar to acquaintance selection, whereby sentinel nodes are

selected by following a random edges of a randomly selected node (this method has been dem-

onstrated to be better than a purely random strategy) [34]. As the sample size increases all

three of our strategies are able to exploit the additional data to their advantage and perfor-

mance improves well above these baselines (S4 Fig).

Notably, most of the improvement results from increasing the sample size from 1% to 10%.

Beyond 10% the value of information, i.e. the performance gained with each additional edge

sampled, is significantly lower. We conclude then, that in many situations it may not be effi-

cient to gather information about the entire network—a relatively small sample may be more

cost-effective. The rest of our analysis focuses on achieving additional improvements using

strategies that exploit fragmentation.

Focusing on FB(Component) we immediately see that the performance improvement is

not monotonic. The reason is as follows: as the sample size approaches a certain value, the

small components begin to coalesce into a single large component, leaving many very small

components made up mostly of peripheral nodes that typically have very few edges. By design

the component strategy will select these peripheral nodes despite it being smarter to choose

multiple sentinels from the large component (we discuss this further in the following section).

Finally, as the large component begins to account for the entire network, FB(Component)

begins to decreases again as it starts to choose multiple sentinels from the large component.

To see how network topology influences the outcomes we computed the maximum modu-

larity, Q, of each network using the Louvain method [35] (hereafter referred to simply as mod-

ularity), and the normalized heterogeneity of the degree distribution σ2/μ where μ and σ are

the mean and standard deviation of the degree distribution respectively. These values are

Efficient sentinel surveillance strategies for preventing epidemics on networks
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shown in Table 1. We observe in Fig 3 that the networks for which the component strategy is,

at small sample sizes, better than the degree strategy, are those for which modularity is highest.

Heterogeneity, on the other hand, does not appear to influence the relative performance of the

strategies as strongly, nor do the number of nodes and the number of edges despite their

known effects on modularity.

The proportional strategy improves on the component strategy by eliminating the possibil-

ity of choosing nodes from very small, peripheral, components. Since it retains the advantages

of the component strategy at small sample sizes, we observe that it is always at least as good as

the component strategy. Thus, the proportional strategy can be considered to be the best

option in cases where modularity is relatively high. In the cases where this strategy outper-

forms the global strategy, however, there are ranges of sample sizes over which the perfor-

mance decreases; a situation we would clearly like to avoid. In the following section we

introduce a method to approximate the sample size at which this behaviour occurs.

The equivalent results for the node sampling regime are shown in Fig 4. At small sample

sizes the largest components tend to consist of the highest degree nodes that were sampled

directly and all of their neighbours (which all have a degree of 1 in the sample). Thus, in many

cases the nodes chosen by the component strategy are the same as those chosen by the global

Fig 3. Edge sampling. Strategy performance as a function of the number of edges in the sample under the edge sampling regime. Each plot corresponds

to a different empirical network. Each line represents a different strategy. Results are given as the mean percentage of the nodes in the network infected

before at least one sentinel was infected. The vertical red line corresponds to the threshold value found using the method described in the section

Connection to criticality in the configuration model.

https://doi.org/10.1371/journal.pcbi.1007517.g003
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strategy. For slightly larger sample sizes, nodes that have high degree in the sample are likely to

be linked, directly or indirectly, to other high degree nodes, leaving one component containing

many of the high degree nodes and a few smaller peripheral components containing only

small degree nodes. Consequently, node sampling is notably worse than edge sampling for the

component strategy.

There are a few cases when node sampling is applied and the performance of the global

strategy does not monotonically increase with sample size. One possible reason is as follows: at

small sample sizes, the sentinel nodes are those selected as focal nodes during the sampling

process (their degree is highest due to the sampling procedure). Hypothetically, a node could

be connected to every other node in the network and not be selected as a focal node; if the

number of focal nodes selected is smaller than the number of sentinels, then the hub will defi-

nitely be selected as a sentinel; if the number of focal nodes is higher, then it is possible that

only the focal nodes will become sentinels and the best node, i.e. the hub, is rejected and the

performance is worse than it was at a slightly smaller sample size.

We found the same conclusions can be made looking at the other performance measure

FA, however, these results are more affected by characteristics of the network data. To test the

robustness of our results we repeated the analysis using 3 and 10 sentinels (instead of 5) and

found nothing that disagreed with the results as they are presented here. The corresponding

figures for both sampling methods, performance measures, and number of sentinels, can be

found in S5–S16 Figs.

The important question to ask here is whether the component or proportional strategies

should be chosen by policy-makers. Figs 3 and 4 show in some networks at particular ranges

of sampling percentages that the global strategy is not the best choice on average. We find,

however, that the distribution of values, FA and FB, over all performed simulations have large

standard deviations. Hence, the values shown in these figures do not give a good indication of

which strategy would give a better outcome for one particular network sample; as this is all we

would expect to have in reality. The following section proposes a way to deal with this issue.

Table 1. Datasets and statistics. Degree heterogeneity is represented by the variance of the degree distribution divided

by its mean, σ2/μ, andQ is the modularity of the network.

Data Nodes Edges σ2/μ Q
Baltimore 558 729 1.03 0.92

UK rail 2490 4387 2.70 0.89

Houston 377 634 1.64 0.84

London metro 307 373 0.51 0.84

Atlanta 340 783 4.44 0.77

High school 326 2139 3.07 0.74

Bushwick 263 366 3.66 0.71

C. Springs 905 2205 6.88 0.66

Primary school 242 2645 3.09 0.63

Office 90 242 1.81 0.60

Manitoba 33 34 0.94 0.60

Flagstaff 165 504 5.12 0.49

Conference 110 478 5.92 0.34

UK air 45 123 4.62 0.32

Household 47 506 2.78 0.25

Hospital 74 609 6.95 0.18

https://doi.org/10.1371/journal.pcbi.1007517.t001

Efficient sentinel surveillance strategies for preventing epidemics on networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007517 November 25, 2019 10 / 19

https://doi.org/10.1371/journal.pcbi.1007517.t001
https://doi.org/10.1371/journal.pcbi.1007517


Connection to criticality in the configuration model. It appears that the component and

proportional strategies perform best when the number of edges is large enough to give infor-

mation about degrees of nodes, yet not so large that one component dominates the network.

Following this, we pose that a result from graph theory that links degree heterogeneity to the

percolation threshold in configuration model networks can be used to find this optimum

sample size. The particular result, first found by Molloy and Reed [22] and also found through

different methods by Newman [36], connects the degree distribution of a network to the emer-

gence of a giant component. Suppose we have a configuration model network with a large

number of nodes, and pk is the probability that a node has degree k, then the network has a

giant component (defined as one that contains a finite fraction of the nodes in an infinite net-

work) when

X

k

kðk � 2Þpk ¼ 0: ð3Þ

This formula connects to our approach to sentinel placement in the following way: for any

given sample of edges we can infer a value of pk by dividing the number of nodes that have

degree k in the sample by N, the total number of nodes. If the sample of the empirical network

shows some level of similarly to the configuration model, then it is likely that a dominant

Fig 4. Node sampling. Strategy performance as a function of the number of nodes in the sample under the node sampling regime. Each plot

corresponds to a different empirical network. Each line represents a different strategy. Results are given as the mean percentage of the nodes in the

network infected before at least one sentinel was infected.

https://doi.org/10.1371/journal.pcbi.1007517.g004
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component will form when Eq (3) is satisfied. Moreover, we postulate that the sample size for

which this is most likely to be true will also be the sample size that yields the best results for the

component-based strategies.

We therefore want to know how well the sample size that satisfies Eq (3) predicts the sample

size corresponding to the local minimum inFB, using the component strategy. For each net-

work, we first calculated the value of X that gives the first minimum in the performance of the

component strategy. We then calculated the value of X that most closely satisfies Eq (3) (based

on the mean over all 103 samples of size X).

We see in Fig 5 that the sample size calculated from Eq (3) corresponds very closely to the

sample size that minimizes the number of cases before detection for the component strategy. If

one was to use this as a guide for deciding how much data to collect, given that they are using

the component or proportional strategy, they will on average be within 2% of the optimum.

For the samples generated using the node sampling method we find that this result is not appli-

cable. The increased degree heterogeneity of the sample causes the left hand side of Eq (3) to

always be greater than 0.

Our final analysis addresses the question of whether these results relevant or useful in any

way. The previous result indicates that situations may occur for which the component strategy

would be a preferable choice to the global strategy. While the Global strategy is the best option

in the majority of circumstances, we might wish to know if circumstances also exist for which

this is not the case. Based on our findings so far, we know that these cases are most likely to

occur when the network is sufficiently fragmented (which is indicated by ∑k k(k − 2)pk� 0),

and also when modularity is high and heterogeneity is low.

To demonstrate this we take each individual sample over all sampling percentages and

removed all those for which ∑k k(k − 2)pk> 0. For those remaining sufficiently fragmented
samples we used both the global and components strategies to find the sentinels. If the sentinels

identified were exactly the same using both strategies then we omit these cases. If they are

Fig 5. Theory as a predictor of optimal sample size. (a) Upper: The grey line represents the component strategy when applied to the high school

network data as seen in Fig 3. The solid red line represents the left hand side of Eq (3) as a function of the sample size. The dashed lines indicate the

sample size for which Eq (3) is satisfied. Lower: The size of the largest connected component in the sample and the number of components. (b) Each

point represents one network. The dashed line represents where both these values are the same. The optimal value is the location of the first local

minimum as we look at increasing sample sizes. The error value presented is the mean absolute error.

https://doi.org/10.1371/journal.pcbi.1007517.g005
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different then we compute the difference in their performance. We find that all the differences

computed are significantly different to zero with extremely small p-values (Wilcoxon signed

rank test with the Pratt method for dealing with zeros [37]).

The mean for FB is shown in Fig 6 plotted against the heterogeneity and modularity of the

underlying network (computed from the full data set, not the sample). We see that there are a

considerable number of samples for which the component strategy would be preferred to the

global strategy, and these are those for which heterogeneity is low and modularity is high. The

corresponding figures for FA for different sampling methods and numbers of sentinels are

presented in S17 and S18 Figs.

Discussion

There are many obstacles in the effort to prevent future epidemics. Here we have explored just

one of these challenges: the question of how to choose susceptible individuals for frequent

monitoring in a way that is both effective and cheap. We have demonstrated through simula-

tions on a range of networks, both empirical and synthetic, that network topology plays a sig-

nificant role in determining the overall efficacy of a sentinel placement strategy. We have

asked the question of whether a strategy that distributes sentinels across different regions of a

network could outperform one that simply targets the most well connected nodes, and when

should either strategy be applied.

We have demonstrated in the section Network topology and sentinel performance, the differ-

ence that network topology makes to the optimal choice of strategy. We observed that the seg-

regation of nodes into different communities or spatial regions drives the performance of any

Fig 6. Difference in the number of cases before detection for sufficiently fragmented samples. Each marker represents

one of the networks described in the Data section. Empirical networks are represented by star shaped markers, synthetic

networks are represented by circles. The edge sampling method was used and only samples that were evaluated to be

sufficiently fragmented contribute to the results shown here (the corresponding figure for node sampling is presented in the

supplement). Red markers show where the global strategy performs better, i.e. yields a smaller number of cases, than the

component strategy.

https://doi.org/10.1371/journal.pcbi.1007517.g006
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given strategy, particularly in networks with low heterogeneity. This is most clearly the case

when the standard deviation of the degree distribution is lower than a threshold somewhere

around σ� 6. When we express this heterogeneity in same way as we have for the empirical

networks, we get σ2/μ = 7.2; a value that is larger than that found in any of the real networks.

From this we should expect that segregation, rather than heterogeneity, ought to be the

principal reason why the performance of each strategy varies from one network to another. In

fact, we do observe that modularity, here used as a measure of segregation, serves as a more

reliable guide for choosing a strategy than heterogeneity; note that there are 4 networks in Fig

3 for which the global strategy is best at all sample sizes, and these are precisely the 4 for which

modularity is lowest. Similarly, the component-based strategies perform best in those with

highest modularity. While heterogeneity may have some effect, its influence is less apparent.

Finally, we have shown that the amount of data we have could also be informative in choos-

ing the best strategy. Perhaps our most useful discovery is the result that the value of informa-

tion decreases greatly as sample size increases, meaning that a 10% sample of the network can

be almost as good as the whole thing. For networks that have a considerable amount of subdi-

vision within the population, we have shown that the component-based strategies will perform

better than the global strategy but only when the sample size is suitably small. Moreover, we

can estimate by computing the left hand side of Eq (3), when this will be the case; a positive

result suggests that the sample is larger than it needs to be to optimize the effectiveness of the

component strategy (and possibly the proportional strategy).

While component based strategies can be worthwhile, it is usually the case that the most

effective strategy is to simply target the highest degree individuals in the sample. This is more

likely to be true when the node-sampling method is used such as when data was obtained

through surveys of selected individuals (see [38] for an example). Link tracing and snowball

sampling have also been found to be an effective way to obtain network contacts when privacy

is an issue, as it would be in a community of drug users or a network of sexual relationships

[39]. For this type of sampling component strategies would not be applicable as we would only

have information from one component.

We have measured the success of each strategy by counting firstly, the number of cases that

could potentially be prevented after detection; the advantage of this measure is that it is highest

when (a) large outbreaks are detected, and (b) they are detected early; and secondly, the num-

ber of cases that occur before the disease becomes detected by a sentinel; this measure is most

relevant to diseases that do not have extreme symptoms and can go undetected in the popula-

tion for some time. Neither measure, however, takes into account the difficulties of actually

preventing these cases. The method of prevention, for example vaccination, quarantine, or dis-

semination of information to the community, will take some amount of time and is unlikely to

be 100% effective.

In some cases it may be possible to incorporate other sources of data. For example, we have

assumed that all nodes are equally likely to be patient zero in our simulations whereas in many

cases we might have a general idea about where the disease will originate from. For zoonotic

disease like influenza it would be worth examining the benefits of placing sentinels close to

farms or wildlife populations where such diseases are endemic. Questions also remain about

whether our results apply to larger networks. In conclusion, the strategies and results we have

presented here are not, in general, directly applicable real-world scenarios, but they may serve

as guidelines for building more customized approaches.

We end this paper by commenting on the wider applicability of our results, and indeed all

similar work in this area. Throughout the paper we have focused on the problem of infectious

diseases, however, almost everything that has been said could equally be applied to several

other contagion processes on networks such as computer viruses [40]. Another example is the
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spread of viral content on social media [41, 42]. Here the question is which online accounts

should be monitored to predict the online trends of the future. Lastly, these analyses could be

applied to the spread of information in criminal networks [43]. The objective here would be to

intercept the communications of individuals who are likely to be involved in the diffusion of

information about a planned drug deal or terrorist attack.
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S1 Fig. Empirical degree distributions. The degree distributions for all the empirical net-

works.
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S2 Fig. Synthetic degree distributions. The degree distributions for 16 arbitrarily selected
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S3 Fig. Outbreak size distributions. Outbreak size distributions for the single seed disease
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(PDF)

S5 Fig. CAD 3 sentinels node sampling. Cases after detection for the single seed simulation

with 3 sentinels over a range of subsamples generated by sampling nodes in the network.

Results are given as the mean percentage of the nodes in the outbreak infected after at least

one sentinel was infected.

(PDF)

S6 Fig. CAD 3 sentinels edge sampling. Cases after detection for the single seed simulation

with 3 sentinels over a range of subsamples generated by sampling edges in the network.

Results are given as the mean percentage of the nodes in the outbreak infected after at least

one sentinel was infected.

(PDF)

S7 Fig. CAD 5 sentinels node sampling. Cases after detection for the single seed simulation

with 5 sentinels over a range of subsamples generated by sampling nodes in the network.

Results are given as the mean percentage of the nodes in the outbreak infected after at least

one sentinel was infected.

(PDF)

S8 Fig. CAD 5 sentinels edge sampling. Cases after detection for the single seed simulation

with 5 sentinels over a range of subsamples generated by sampling edges in the network.

Results are given as the mean percentage of the nodes in the outbreak infected after at least

one sentinel was infected.

(PDF)

S9 Fig. CAD 10 sentinels node sampling. Cases after detection for the single seed simulation

with 10 sentinels over a range of subsamples generated by sampling nodes in the network.

Results are given as the mean percentage of the nodes in the outbreak infected after at least

one sentinel was infected.

(PDF)
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S10 Fig. CAD 10 sentinels edge sampling. Cases after detection for the single seed simulation

with 10 sentinels over a range of subsamples generated by sampling edges in the network.

Results are given as the mean percentage of the nodes in the outbreak infected after at least

one sentinel was infected.

(PDF)

S11 Fig. CBD 3 sentinels node sampling. Cases before detection for the multiple seed simula-

tion with 3 sentinels over a range of subsamples generated by sampling nodes in the network.

Results are given as the mean percentage of the nodes in the network infected before at least

one sentinel was infected.

(PDF)

S12 Fig. CBD 3 sentinels edge sampling. Cases before detection for the multiple seed simula-

tion with 3 sentinels over a range of subsamples generated by sampling edges in the network.

Results are given as the mean percentage of the nodes in the network infected before at least

one sentinel was infected.

(PDF)

S13 Fig. CBD 5 sentinels node sampling. Cases before detection for the multiple seed simula-

tion with 5 sentinels over a range of subsamples generated by sampling nodes in the network.

Results are given as the mean percentage of the nodes in the network infected before at least

one sentinel was infected.

(PDF)

S14 Fig. CBD 5 sentinels edge sampling. Cases before detection for the multiple seed simula-

tion with 5 sentinels over a range of subsamples generated by sampling edges in the network.

Results are given as the mean percentage of the nodes in the network infected before at least

one sentinel was infected.

(PDF)

S15 Fig. CBD 10 sentinels node sampling. Cases before detection for the multiple seed simu-

lation with 10 sentinels over a range of subsamples generated by sampling nodes in the net-

work. Results are given as the mean percentage of the nodes in the network infected before at

least one sentinel was infected.

(PDF)

S16 Fig. CBD 10 sentinels edge sampling. Cases before detection for the multiple seed simu-

lation with 10 sentinels over a range of subsamples generated by sampling edges in the net-

work. Results are given as the mean percentage of the nodes in the network infected before at

least one sentinel was infected.

(PDF)

S17 Fig. CAD MR method. Difference in the number of cases after detection for sufficiently

fragmented samples. Each marker represents one network. Empirical networks are repre-

sented by star shaped markers, synthetic networks are represented by circles. The edge sam-

pling method was used and only samples that were evaluated to be sufficiently fragmented

contribute to the results shown here. Red markers show where the global strategy performs

better, i.e. prevents a larger number of cases, than the component strategy.

(PDF)

S18 Fig. CBD MR method. Difference in the number of cases before detection for sufficiently

fragmented samples. Each marker represents one network. Empirical networks are repre-

sented by star shaped markers, synthetic networks are represented by circles. The edge
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contribute to the results shown here. Red markers show where the global strategy performs

worse, i.e. yields a larger number of undetected cases, than the component strategy.

(PDF)

Author Contributions

Conceptualization: Ewan Colman, Petter Holme, Hiroki Sayama, Carlos Gershenson.

Formal analysis: Ewan Colman.

Funding acquisition: Petter Holme.

Investigation: Ewan Colman, Carlos Gershenson.

Methodology: Ewan Colman, Petter Holme, Hiroki Sayama, Carlos Gershenson.

Software: Ewan Colman.

Supervision: Petter Holme, Hiroki Sayama, Carlos Gershenson.

Writing – original draft: Ewan Colman.

Writing – review & editing: Ewan Colman, Petter Holme, Hiroki Sayama, Carlos

Gershenson.

References
1. Cowling BJ, Lau LL, Wu P, Wong HW, Fang VJ, Riley S, et al. Entry screening to delay local transmis-

sion of 2009 pandemic influenza A (H1N1). BMC Infectious Diseases. 2010; 10(1):82. https://doi.org/

10.1186/1471-2334-10-82 PMID: 20353566

2. Fleming D, Zambon M, Bartelds A, De Jong J. The duration and magnitude of influenza epidemics: a

study of surveillance data from sentinel general practices in England, Wales and the Netherlands. Euro-

pean Journal of Epidemiology. 1999; 15(5):467–473. https://doi.org/10.1023/a:1007525402861 PMID:

10442473

3. Yang P, Duan W, Lv M, Shi W, Peng X, Wang X, et al. Review of an influenza surveillance system, Bei-

jing, People’s Republic of China. Emerging Infectious Diseases. 2009; 15(10):1603. https://doi.org/10.

3201/eid1510.081040 PMID: 19861053

4. Sun X, Wang N, Li D, Zheng X, Qu S, Wang L, et al. The development of HIV/AIDS surveillance in

China. AIDS. 2007; 21:S33–S38. https://doi.org/10.1097/01.aids.0000304694.54884.06 PMID:

18172389

5. Anderson RM, May RM, Anderson B. Infectious diseases of humans: dynamics and control. vol. 28.

Wiley Online Library; 1992.

6. Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic processes in complex net-

works. Rev Mod Phys. 2015; 87:925–979. https://doi.org/10.1103/RevModPhys.87.925

7. Kiss IZ, Miller JC, Simon PL, et al. Mathematics of epidemics on networks. Cham: Springer. 2017.

8. Wang Z, Bauch CT, Bhattacharyya S, d’Onofrio A, Manfredi P, Perc M, et al. Statistical physics of vacci-

nation. Physics Reports. 2016; 664:1–113.

9. Madar N, Kalisky T, Cohen R, Ben-avraham D, Havlin S. Immunization and epidemic dynamics in com-

plex networks. The European Physical Journal B. 2004; 38(2):269–276. https://doi.org/10.1140/epjb/

e2004-00119-8

10. Cohen R, Havlin S, ben Avraham D. Efficient Immunization Strategies for Computer Networks and Pop-

ulations. Phys Rev Lett. 2003; 91:247901. https://doi.org/10.1103/PhysRevLett.91.247901 PMID:

14683159

11. Holme P, Litvak N. Cost-efficient vaccination protocols for network epidemiology. PLOS Computational

Biology. 2017; 13(9):1–18. https://doi.org/10.1371/journal.pcbi.1005696

12. Holme P. Three faces of node importance in network epidemiology: Exact results for small graphs.

Phys Rev E. 2017; 96:062305. https://doi.org/10.1103/PhysRevE.96.062305 PMID: 29347435

Efficient sentinel surveillance strategies for preventing epidemics on networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007517 November 25, 2019 17 / 19

https://doi.org/10.1186/1471-2334-10-82
https://doi.org/10.1186/1471-2334-10-82
http://www.ncbi.nlm.nih.gov/pubmed/20353566
https://doi.org/10.1023/a:1007525402861
http://www.ncbi.nlm.nih.gov/pubmed/10442473
https://doi.org/10.3201/eid1510.081040
https://doi.org/10.3201/eid1510.081040
http://www.ncbi.nlm.nih.gov/pubmed/19861053
https://doi.org/10.1097/01.aids.0000304694.54884.06
http://www.ncbi.nlm.nih.gov/pubmed/18172389
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1140/epjb/e2004-00119-8
https://doi.org/10.1140/epjb/e2004-00119-8
https://doi.org/10.1103/PhysRevLett.91.247901
http://www.ncbi.nlm.nih.gov/pubmed/14683159
https://doi.org/10.1371/journal.pcbi.1005696
https://doi.org/10.1103/PhysRevE.96.062305
http://www.ncbi.nlm.nih.gov/pubmed/29347435
https://doi.org/10.1371/journal.pcbi.1007517


13. Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N. Cost-effective outbreak

detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on Knowl-

edge discovery and data mining. ACM; 2007. p. 420–429.

14. Bajardi P, Barrat A, Savini L, Colizza V. Optimizing surveillance for livestock disease spreading through

animal movements. Journal of the Royal Society Interface. 2012; 9(76):2814–2825. https://doi.org/10.

1098/rsif.2012.0289

15. Schirdewahn F, Colizza V, Lentz HH, Koher A, Belik V, Hövel P. Surveillance for outbreak detection in
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16. Smieszek T, Salathé M. A low-cost method to assess the epidemiological importance of individuals in

controlling infectious disease outbreaks. BMC medicine. 2013; 11(1):35. https://doi.org/10.1186/1741-

7015-11-35 PMID: 23402633

17. Wilder B, Yadav A, Immorlica N, Rice E, Tambe M. Uncharted but not Uninfluenced: Influence Maximi-

zation with an uncertain network. In: Proceedings of the 16th Conference on Autonomous Agents and

MultiAgent Systems. International Foundation for Autonomous Agents and Multiagent Systems; 2017.

p. 1305–1313.
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