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Abstract: COVID-19 is an endothelial disease. All the major comorbidities that increase the risk for
severe SARS-CoV-2 infection and severe COVID-19 including old age, obesity, diabetes, hypertension,
respiratory disease, compromised immune system, coronary artery disease or heart failure are
associated with dysfunctional endothelium. Genetics and environmental factors (epigenetics) are
major risk factors for endothelial dysfunction. Individuals with metabolic syndrome are at increased
risk for severe SARS-CoV-2 infection and poor COVID-19 outcomes and higher risk of mortality. Old
age is a non-modifiable risk factor. All other risk factors are modifiable. This review also identifies
dietary risk factors for endothelial dysfunction. Potential dietary preventions that address endothelial
dysfunction and its sequelae may have an important role in preventing SARS-CoV-2 infection severity
and are key factors for future research to address. This review presents some dietary bioactives
with demonstrated efficacy against dysfunctional endothelial cells. This review also covers dietary
bioactives with efficacy against SARS-CoV-2 infection. Dietary bioactive compounds that prevent
endothelial dysfunction and its sequelae, especially in the gastrointestinal tract, will result in more
effective prevention of SARS-CoV-2 variant infection severity and are key factors for future food
research to address.
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1. SARS-CoV-2 Infection, COVID-19, and Endothelial Dysfunction

COVID-19 is an endothelial disease associated with endothelial dysfunction, which
has been recognized as crucial in the pathogenesis and progression of COVID-19 [1–4].
The vascular endothelium is affected directly and indirectly by SARS-CoV-2 infection. The
endothelium is affected directly during infection through the expression and function of
its receptor angiotensin-converting enzyme 2 (ACE2) in the vasculature. The endothelium
is affected indirectly in the recruitment of inflammatory leukocytes that contribute to
tissue damage and cytokine release, both of which are drivers of acute respiratory distress
syndrome (ARDS). SARS-CoV-2-and COVID-19-associated dysfunctional endothelium
is characterized by dysregulation and disruption of endothelial homeostasis toward a
pro-inflammatory phenotype, hyperproduction of inflammatory cytokines including IL-6,
IL-8, and TNF-α and dysregulation of coagulation, vascular tone, endothelial permeability,
and vascular inflammation.

The SARS-CoV-2 virus that causes COVID-19 can infect several organs including the
lungs, brain, intestines, kidneys, heart, and blood vessels [5,6]. Histological analyses of
COVID-19-related cases have revealed endothelial injuries in the lungs, heart, and kid-
ney [7]. As a result, a dysfunctional endothelium has a negative impact on the control of
hemostasis, fibrinolysis, vasomotion, inflammation, and vascular permeability [1]. Before
and during acute COVID-19, clinical conditions including aging, physical inactivity, obesity,
diabetes, and hypertension, which are risk factors for severe SARS-CoV-2 infection, are in-
dependent risk factors for endothelial dysfunction. These clinical conditions become major
risk factors for severe SARS-CoV-2 infection and COVID-19 development and progression.
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Therefore, risk factors for endothelial dysfunction in non-COVID-19 conditions such as
obesity and diabetes become risk factors for or exacerbate COVID-19 infection severity.
This knowledge is important for a better understanding of the effects of clinical conditions
such as metabolic syndrome on endothelial homeostasis before and during SARS-CoV-2
infection and possible implications for targeted preventions.

The endothelium, a monolayer of cells constituting the inner lining of arteries, veins,
and capillaries throughout the circulatory system, weighs approximately 1800 g and repre-
sents the largest endocrine organ in the human body. Under normal homeostatic conditions,
it forms a semi-permeable barrier that prevents leaking of excessive plasma fluid and reg-
ulates selective delivery of nutrients and hormones to underlying tissues [8,9]. Once
considered a mere physical barrier between circulating blood components and underlying
tissues, the endothelium is now recognized as an important modulator of vascular function.
With the growing understanding of endothelial mediators and their role, it has become
increasingly clear that endothelial abnormalities may represent an early sign not only of
hemodynamic diseases, but also of metabolic disturbances.

The several functions of endothelium may vary, in part, depending on the vessel
structure and district location within the body. In conduit vessels such as the aorta, the
endothelial cell surface prevents adhesion of platelets and monocytes, reduces the release
of pro-inflammatory cytokines, and limits the activation of clotting. In resistance arteries,
the endothelium physiologically regulates regional blood flow and modulates systemic
blood pressure [10].

In response to both humoral and mechanical stimuli, the vascular endothelium con-
tributes to the regulation of blood flow and blood pressure by release of vasodilators such
as nitric oxide (NO), prostacyclin (PGI2) or endothelium-derived hyperpolarizing factor
(EDHF), and vasoconstrictors such as endothelin-1 (ET-1), prostaglandins (PGH2) and Ang
II [11]. Increased blood flow and shear stress produce endothelium-mediated vasodilation
through the release of NO [11]. This gaseous molecule represents the predominant vasodila-
tor released from endothelial cells, and is also involved in inhibition of platelet aggregation,
leukocyte adhesion, and vascular smooth muscle cell migration and proliferation [12].
NO is produced via the enzymatic conversion of L-arginine to citrulline by endothelial
NO synthase (eNOS), whose protein expression and activity are modulated by multiple
stimuli. Endothelial dysfunction is a condition characterized by reduced vasodilation
resulting from decreased NO bioavailability and increased oxidative stress, and it is usually
associated with the pathogenesis of atherosclerosis, hypertension, cardiovascular diseases,
and now COVID-19 [4,13,14]. Endothelial dysfunction has been dubbed as the cornerstone
in COVID-19 severity [15].

2. Risk Factors for Endothelial Cell Dysfunction

Endothelial dysfunction is synonymous with altered endothelial cell phenotype in
which the reduced production and bioavailability of NO promote a pro-thrombotic and
pro-inflammatory state [16]. During endothelial dysfunction, the decline in NO bioavail-
ability disrupts the physiological homeostasis of the vessel wall and favors the increased,
unbalanced bioactivity of vasoconstrictor and pro-atherogenic factors such as ET-1. This
predisposes the vessels to leukocyte adhesion, platelet activation, oxidative stress, throm-
bosis, coagulation, and inflammation, hence promoting the formation and progression of
atherogenic plaques [17,18]. Endothelial dysfunction is not only a hallmark of hyperten-
sion, atherosclerosis, and coronary heart disease, but also an early feature of aging, and a
distinctive aspect of metabolic disorders including insulin resistance, hyperglycemia, and
dyslipidemia. Several factors can affect the endothelium including and not limited to aging,
oxidative stress, low-density lipoprotein (LDL) oxidation, smoking, hypercholesterolemia,
hypertension, chronic hyperglycemia, genetic factors, and the recent SARS-CoV-2 infection
that causes COVID-19 pandemic. Dietary factors can also induce endothelial dysfunction.
Each factor and its specific effects on endothelial function are briefly described below.
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2.1. Aging

Aging is one of the main risk factors for dysfunction of both endothelial and vascular
smooth muscle cells. Endothelial cell injury is normally mitigated by endogenous repara-
tive processes mediated by bone marrow-derived endothelial progenitor cells (EPCs) [19].
Overtime, the endothelium ability to regenerate itself tends to decrease, partly as a conse-
quence of reduced EPC availability and/or mobilization. Even in the absence of specific risk
factors, senescence is accompanied by several structural and functional changes occurring
throughout the entire vascular system and contributing to alter endothelial barrier integrity.
Moreover, the aging process may damage the balance between vasodilator and vasocon-
strictor substances produced by endothelium [20]. Endothelium-dependent vasodilation
progressively declines with age and this is due to diminished eNOS expression and NO
production in endothelial cells while increased amounts of reactive oxygen species (ROS)
and reactive nitrogen species are observed [21,22]. With aging, endothelial dysfunction
increases the permeability of endothelium to lipoproteins, monocytes, and macrophages,
therefore enhancing smooth muscle cell migration and proliferation and aiding the forma-
tion of an intermediate lesion and progression to atherosclerotic plaques [23,24]. With aging,
endothelial dysfunction aids in the formation of an intermediate lesion and progression to
an atherosclerotic plaque [25–27]. The presence of endothelial abnormalities in old people
becomes a risk factor not only for the pathogenesis of cardiovascular disease, including
atherosclerosis and hypertension [28,29], endothelial dysfunction is also a risk factor for
aging-related diseases such as erectile dysfunction, renal failure, circadian cycle alterations,
osteoporosis, retinopathy, and Alzheimer’s disease [30–35].

2.2. Oxidative Stress

Reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and superoxide
anion (O2

−), are produced in a limited amount in endothelial cells under normal phys-
iological conditions. The balance between oxidant and antioxidant processes regulates
the amount of ROS generated by endothelial cells, and an imbalance due to an increase
in ROS is implicated in vascular dysfunction. Superoxide anion (O2

−) is a powerful and
long-lived oxidant which reacts with NO to produce peroxynitrite (ONOO-) and con-
tributes to endothelial barrier dysfunction by promoting vascular hyperpermeability and
leukocyte adhesion [8,36]. As a direct consequence, small and dense molecules such as
low-density lipoproteins can accumulate in the arterial intima, where the concomitant
increased adhesiveness of leukocytes facilitates their entry in endothelial cells and triggers
the inflammatory process [37,38].

Oxidative stress may be generated by several pathological conditions such as hy-
perglycemia, diabetes, hypertension, dyslipidemia, smoking, or high levels of oxidized
low-density lipoproteins; all these factors are able to produce ROS, which in turn rapidly
inactivate NO [39,40]. The increased ROS generation by mitochondria-mediated and
membrane-associated NADPH oxidase activity of xanthine oxidase and myeloperoxidase,
the decreased ability of free radical scavengers such as superoxide dismutase (SOD), and
the higher susceptibility of macromolecules to free radical damage are among mechanisms
involved in endothelial oxidative stress [41–43].

2.3. Oxidized Low-Density Lipoprotein

Oxidized low-density lipoprotein (Ox-LDL) can induce endothelial dysfunction by sev-
eral mechanisms including (1) binding to scavenger receptors such as receptor-A1, -A2, and
lectin-like oxidized low-density lipoprotein receptor (SR-A1, SR-A2, and LOX-1) [44,45];
(2) upregulating the expression of its own receptor LOX-1 on endothelial cells and acti-
vating endothelial cells; (3) promoting the growth and migration of smooth muscle cells,
monocytes/macrophages and fibroblasts; and (4) leading to oxidative stress through gener-
ation of excessive ROS amounts.
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2.4. Smoking

Exposure to cigarette smoke increases the rate of cardiovascular diseases by inducing
morphological alterations and functional exchanges in endothelial and smooth muscle
cells [46]. Smoking causes a progressive downregulation of the endothelial NO synthase
(eNOS) enzyme, predisposing the vessels to adhesion of platelets and leukocytes, and
promoting thrombus formation [47,48]. A decrease in GSH and 3-nitrotyrosine levels
and reduced expression of both Nrf2/ARE and heme oxygenase-1 (HO-1) pathways, as
well as glutamate-cysteine ligase catalytic (GCLC), have been demonstrated in endothelial
dysfunction of young smokers [49,50]. Chronic smoking favors elevated plasma levels
of free fatty acids, vasopressin and serum cholesterol, and concomitantly reduces high-
density lipoproteins that may indirectly damage endothelial cells and blood vessels by
increasing the permeability to lipids and blood components [51]. Interestingly, increased
blood pressure levels and endothelial dysfunction have also been documented in smokeless
tobacco consumers [52].

2.5. Hypercholesterolemia

Hypercholesterolemia (plasma cholesterol levels > 200 mg/dL) induces endothelial
dysfunction in arteries through increased production of O2

− and near-complete abrogation
of vascular NO bioavailability, predisposing to atherosclerosis [53]. Hypercholesterolemia
induces endothelial dysfunction in arteries through increased production of O2

− and near-
complete abrogation of vascular NO bioavailability, predisposing to atherosclerosis [54].
Hypercholesterolemia and more specifically high oxidized cholesterol derivatives such
as 7-ketocholesterol, 7α-hydroxycholesterol, and 7β-hydroxycholesterol constitute potent
inhibitors of endothelium-dependent arterial relaxation and have been considered as links
between hypercholesterolemia and endothelial dysfunction [55]. These oxysterols have
been shown to be associated with a marked reduction in vasorelaxation, which occurs early
before the formation of atherosclerotic lesions [56]. Further, activated monocytes releasing
inflammatory mediators (IL-1 and TNF-α) stimulate endothelial cells as well as smooth
muscle cells to secrete growth factors that will enhance atherogenesis [57]. Hypercholes-
terolemia is also associated with the production of asymmetric dimethylarginine (ADMA),
an endogenous inhibitor of NOS whose level is inversely related to NO production [58,59].

2.6. Hypertension

There is a reciprocal relationship between abnormal endothelial function and hyper-
tension. Studies have shown that in patients with essential hypertension, the decreased NO
bioavailability in endothelial cells results from increased oxidative stress and subsequent ac-
tivation of signaling pathways related to inflammation and contraction in vascular smooth
muscle cells [60–62]. ROS may directly alter vascular function and cause changes in vascu-
lar tone by enhancing the synthesis and activity of ROS-producing enzymes including the
NADPH oxidase and xanthine oxidase, by altering the mitochondrial respiratory chain, and
by uncoupling the activity of endothelial NOS [63]. Growing evidence indicates that ROS
generated by NADPH oxidase and activation of redox-dependent signaling cascades are
produced by angiotensin II (Ang II) signaling in vascular cells [63]. Ang II, acting through
the AT1 receptors, stimulates NADPH oxidase, causing the accumulation of superoxide
(O2
−), hydrogen peroxide (H2O2) and peroxynitrite (ONOO−) [43,63]. Therefore, abnormal

stimulation of AT1 receptor by increased circulating or tissue levels of Ang II can induce
endothelial dysfunction and hypertension, as well as inflammatory response. Inhibition of
vascular NADPH oxidase induction and subsequent preservation of arterial NO availabil-
ity during Ang II administration can prevent endothelial dysfunction [64]. Analogously,
treatment with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin receptor
blockers to reduce pressure levels in hypertensive patients significantly improves endothe-
lial dysfunction, therefore confirming that hypertension is a risk factor for endothelial
dysfunction [65].
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3. Dietary Risk Factors for Endothelial Dysfunction
3.1. Advanced Glycation End Products (AGEs)

Endothelial dysfunction represents an early, pivotal, and common denominator of
vascular and metabolic diseases including obesity and diabetes, both of which are major
risk factors for severe COVID-19 infection (Figure 1). A single oral AGE-rich beverage
challenge (approximately 1.8 × 106 AGE units) in 44 diabetic and 10 non-diabetic subjects
was associated with significant increases in serum AGEs with altered clinical measures of
endothelial function in diabetic and non-diabetic subjects [66]. Thus, chronic exposure to
high AGE-rich diets can lead to and/or accelerate endothelial dysfunction and vascular
disease over time [66]. In patients with type 2 diabetes (T2DM), a high-AGE meal induces a
more pronounced acute impairment of vascular function than does an otherwise identical
low-AGE meal.
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Figure 1. The relationship between dietary risk factor such as advanced glycation end products and
endothelial cell dysfunction.

Hyperglycemia is the initiating event in the formation of AGEs, a heterogeneous group
of modified proteins, lipids, and nucleic acids formed primarily through non-enzymatic
Maillard reactions between amino groups and glucose derivative dicarbonyls [67,68]. Ac-
cumulation of AGEs alters the functional property of matrix components and mediates
sustained cellular changes. AGEs decrease NO bioavailability and eNOS expression by
accelerating eNOS mRNA degradation [69,70]. The receptors of AGEs (RAGE) have been
found in many cells including monocytes, macrophages, and endothelial cells, where
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they mediate cellular migration and upregulation of pro-inflammatory and prothrombotic
molecules. Binding of AGEs to their RAGE receptor increases intracellular enzymatic
superoxide production [71,72] and promotes macrophage-mediated inflammation in the
vessel wall [73].

Soluble RAGE (sRAGE) is an endogenous decoy of RAGE that is inversely associated
with RAGE level. AGER1 is the best characterized RAGE so far. The expression of RAGE is
upregulated in aorta, retina, and kidney under diabetic conditions, thus contributing to the
progression of vasculopathy, retinopathy and vascular nephropathy in diabetic patients.
The interaction of circulating AGEs with endothelial RAGE causes increased permeability
of endothelial cells and subsequent alteration of endothelial physical integrity [9,74,75].
The covalent binding of AGEs to RAGE is associated with reduced levels of sRAGE, leading
to depletion of cellular antioxidant defense mechanisms such as glutathione and vitamin
C [76], activation of NADPH oxidase and resulting increased generation of intracellular
ROS. These free radicals are able to activate the redox-sensitive nuclear transcription
factor NF-κB in vascular wall cells via the phosphorylation of the RAS/ERK pathway.
Translocation of NF-κB to the nucleus promotes the expression of NF-kB-regulated genes,
culminating with upregulation of inflammatory cytokines such as TNF-α, IL-6 and IL-8;
adhesion molecules such as E-selectin, the intercellular adhesion molecule-1 (ICAM-1), and
the vascular adhesion molecule (VCAM-1); inflammatory enzymes such as cyclooxygenase-
2 (COX-2), and matrix metalloproteinases (MMPs) [9,77,78]. In addition, AGE–RAGE
interaction decreases vasculature elasticity quenching NO and inducing the expression of
the potent vasoconstrictor ET-1 [79], which contributes to defective endothelium-dependent
vasodilation in diabetes [80].

3.2. Chronic Hyperglycemia, Reactive Dicarbonyls and Glucotoxicity

Each increase in glucose concentration in the blood is associated with perturbation
of endothelial function. Chronic hyperglycemia provides a source of sugar molecules
that may promote reducing reactions and be converted by autooxidation into reactive
dicarbonyls. Reactive dicarbonyls, such as methylglyoxal (MG), can aggravate endothelial
dysfunction by impairing Ser-1177 phosphorylation on the eNOS catalytic site, thereby
inhibiting enzyme activity, and decreasing NO production [81], as well as by inducing
oxidative stress and production of inflammatory cytokines such as IL-6, IL-1β and TNF-
α. Even in healthy subjects, acute ingestion of glucose is associated with a transitory
increase in superoxide generation, with increased activity of transcription factors such
as nuclear NF-κB and activating protein-1 (AP-1) [82]. In diabetic individuals, chronic
hyperglycemia-induced peroxynitrite formation has been shown to generate nitrotyrosines,
harmful molecules able to interact and interfere with several distinct signal transduction
pathways [83].

3.3. Hypertriglyceridemia, Oxidized Ldl, Trans Fatty Acids, Free Fatty Acids and Lipotoxicity

High levels of lipids, including triglycerides (TGs), trans fatty acids, and low-density
lipoprotein cholesterol (LDL), damage vascular tissues and their functions. These lipid-
induced disturbances are referred to as lipotoxicity [84]. Lipotoxicity, characterized by
pathological changes at the cellular and organ levels that result from excess lipids in the
circulation or in tissues, is caused in large part by overnutrition. As for glucotoxicity,
lipotoxicity may impair endothelial function by a number of related mechanisms, including
increased production of ROS, pro-inflammatory signaling, mitochondrial dysfunction
which uncouples oxidative phosphorylation in endothelium, endoplasmic reticulum stress,
and apoptosis [85]. Regular consumption of high-fat meals raises the peak of circulating
lipids and insulin and can impair endothelial function by activating monocytes, and
enhancing ROS generation with the downstream signaling cascade leading to activation of
the NF-κB inflammatory signaling pathway [86].

Oxidized low-density lipoprotein can induce endothelial dysfunction by binding to
lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): this interaction increases
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the expression of angiotensin-converting enzyme and reduces the intracellular concentra-
tion of NO with mechanisms already described for Ang II [87,88]. Consumption of a single
high-fat meal rich in saturated fatty acids can induce endothelial dysfunction in otherwise
healthy subjects, as evidenced by the related increased concentrations of VCAM-1, ICAM-1,
IL-6, IL-18, and TNF-α [89,90]. As additional evidence of lipotoxicity, it has been shown that
incubation of endothelial cells with palmitate, the major saturated fatty acid present in most
foods, increases NADPH oxidase expression and stimulates superoxide production [91,92].
A more prolonged or higher intake of food rich in trans fatty acid, as well as sustained
high plasma levels of trans fatty acids, may lower HDL cholesterol, and concomitantly
increase plasma levels of triglycerides and LDL cholesterol, impair glucose uptake and
adversely affect endothelial function mostly by enhancing oxidative stress [83,93]. The
assumption that a high intake of trans fatty acids may exacerbate endothelial dysfunction
is supported by results obtained from the Nurses’ Health Study I, a cross-sectional study
on 730 women, showing that dietary fatty acids may increase concentrations of E-selectin,
soluble intercellular adhesion molecule (sICAM-1), and soluble vascular adhesion molecule
(sVCAM-1) [94].

3.4. Homocysteine and Endothelial Function

Smoking, alcohol consumption, and physical inactivity can elevate homocysteine
(Hcy) levels. Hyperhomocysteinemia (H-Hcy) is found more often in the elderly and in
men, which may in part be caused by lower serum levels of folic acid and vitamin B12,
reduced methionine metabolism, and higher serum creatinine levels in men compared to
women [95]. Hyperhomocysteinemia is directly related to vascular endothelial cell damage,
which derives from endothelial dysfunction induced by enhanced oxidative stress [95,96].
Oxidative radicals generated by hyperhomocysteinemia inevitably initiate the oxidative
degradation of lipids in endothelial cell membrane, leading to loss of membrane func-
tion [97]. Similarly, hyperhomocysteinemia-induced superoxide production by NADPH
oxidase activity indirectly decreases NO bioavailability by rapid consumption of NO and
generation of peroxynitrites [95]. Moreover, hyperhomocysteinemia may reduce NO pro-
duction by disrupting NO signaling via a mechanism that involves the PI3K/Akt and
PKC pathways.

Finally, in vitro studies have shown that elevated concentrations of homocysteine can
induce apoptosis of endothelial cells by activating the Fas cell-death pathway, the p53/NOx
pathway, and the cytochrome-c-activated caspase 3 and 9 pathways [98].

3.5. Obesity

The microvasculature from visceral fat of obese individuals is an important source of
low-grade inflammation and oxidative stress. Small vessels or perivascular adipose tis-
sue (PVAT) of obese individuals generate excessive proinflammatory cytokines, including
TNF-α. The latter stimulates the production of ROS mainly through NAD(P)H oxidase
activation, which leads to reduced NO bioavailability. Adipose tissue inflammation, re-
duced NO bioavailability, insulin resistance and oxLDL are major causes of endothelial
cell injury and dysfunction including imbalance between pro-inflammatory/pro-coagulant
and anti-inflammatory/anticoagulant in obesity. The obesity condition is associated with
worsening of the microvascular endothelial function as shown by flow-mediated dilation
in the brachial arteries of obese individuals [99]. Obese individuals are highly susceptible
to severe SARS-CoV-2 infection and severe COVID-19 development through several mech-
anisms including chronic inflammation, endothelium imbalance, dysregulated immune
response, metabolic dysfunction, and dysfunctional mesenchymal stem cells/adipose-
derived mesenchymal stem cell [100]. The vascular endothelium of obese individuals
may overexpress ACE2, transmembrane protease serine 2 (TMPRSS2), and furin, which
make the endothelial cells more vulnerable to severe SARS-CoV-2 infection and impair
endothelium balance [100]. Furin is a serine protease that may also be important to support
viral entry into cells, subsequent replication inside the cells and the exit of virus particles
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from cells [101]. All the comorbidities of COVID-19 including hypertension, diabetes,
cardiovascular and respiratory disease are tightly associated with obesity [100].

4. Identifying Dietary Inhibitors of Endothelial Dysfunction

Since endothelial dysfunction precedes and predicts the development of a wide range
of pathological conditions, strategies to prevent or delay the endothelial cell abnormalities
may help to protect against the progression of risk factors associated with the severity of
SARS-CoV-2 infection and COVID-19. The rationale of preventing endothelial dysfunction
with dietary components, rather than focusing on various therapies with antioxidants
or diet compounds administered when endothelial dysfunction is already evident, is
that several interventional studies aimed at restoring endothelial function with dietary
bioactives often show limited improvements and not total recovery [102]. A large number
of studies have investigated the role of dietary compounds identified among flavonoids,
flavones, terpenes, quinones, anthocyanins, phenolics and fatty acids, and found an inverse
association between consumption of these compounds and the presence and degree of
endothelial dysfunction.

4.1. Flavonoids, Isoflavones, Flavonols, Anthocyanins and Endothelial Function
4.1.1. Flavonoids, Flavonoid Metabolites, and Endothelial Function

Epidemiological and observational studies support a strong linear association be-
tween flavonoid consumption and healthy endothelial tissues. Several publications in-
vestigate the association of flavonoids and endothelial function in healthy subjects or
patients with risk factors for severe COVID-19 infection including obesity, diabetes, or other
pathological conditions.

Tea, cocoa, grapes, citrus, onions, wines, berries, pulses, and marine products are very
rich sources of flavonoids, and regular consumption of these bioactive dietary compounds
under appropriate conditions should protect the endothelium against injury, mainly by
decreasing oxidative stress. In fact, in vitro studies have provided evidence that flavonoids
protect the endothelium by scavenging superoxide anions, singlet oxygen, and low-density
lipoproteins [103,104]. Pycnogenol, a mixture of monomeric (catechin and epicatechin) and
polymeric procyanidins as well as phenolic acids, improves endothelial function because it
is anti-inflammatory, reduces platelet aggregation, improves microcirculation, and protects
against capillary leaking [105]. In addition, flavonoids may increase NO bioavailability
by decreasing superoxide-mediated NO breakdown, and several of them may directly
enhance NO synthesis and release by upregulating the expression of NO synthase [106,107].
Epidemiological studies have observed that regular moderate consumption of red wine, rich
in flavonoids, is associated with increased NO production, or that consumption of cacao and
green tea improve endothelial function as a consequence of their flavonoid components,
such as catechins [108,109]. A clinical investigation in the inpatient Clinical Research
Center of the Brigham and Women’s Hospital enrolled 19 healthy older adults (mean age
72 years) who consumed one packet of CocoaproTM, Mars Inc. containing 451 mg flavonols
(84 mg epicatechin, 28 mg of catechin, 339 mg flavonol oligomers, 19 mg caffeine, 204 mg
theobromine, and 119 calories) in one cup of water [110]. Flow-mediated vasodilation was
measured as reactive hyperemia peripheral arterial tonometry (RH-PAT) taken at 2, 4, 6
and 8 h after CocoaproTM consumption. Flavonols and their metabolites were measured
by HPLC. The results of the study showed a positive correlation between PAT response
and flavonoid concentration [110]. Individuals with habitual dietary intake of flavonoids
(2000–4500 mg of flavonols per week) had superior endothelial function compared to lower
flavonoid consumers. The study also confirmed once again that endothelial function varies
within populations, and the variability is in part associated with personal habitual dietary
intake of flavonoids.

The health benefits of dark cocoa (commonly referred to as Noir Amertume extreme,
or very dark chocolate) appear to be unique despite its content of 10–15 g of saturated fat
per serving size. Noir cocoa is bitter but healthier than most of the milk-loaded versions of
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chocolate on the market. In part, this may be because milk proteins bind to procyanidins
and suppress their activities. In addition, most Noir cocoa products appear to have trace
amounts of proteins unlike other milk-loaded cocoa products. The beneficial effects of
Noir or dark chocolate have been shown in patients with cirrhosis. In a phase 2, double-
blind, randomized controlled clinical trial, a significant decrease in hepatic venous pressure
gradient (HVPG) and concomitant amelioration of systemic hypotension and endothelial
function was observed in 11 patients 30 min after the ingestion of dark chocolate con-
taining 85% cocoa; conversely, patients with cirrhosis receiving white chocolate showed
a significant increase in HVPG [111]. The trust in cocoa products is so high that usual
consumers would undoubtedly achieve benefits if regulatory agencies could suggest to
manufacturers to voluntary remove from the market cocoa products that do not improve
endothelial function. Unfortunately, the market is saturated with both high-quality and
below-standard cocoa products, making cocoa product evaluation very difficult [112,113].

Black tea flavonoids activate eNOS in endothelial cells, increase NO production and
increase cGMP levels. Studies investigating the relationship between green tea consumption
and endothelial function concluded that populations consuming green tea on a regular
basis (1 or 2 cups a day) had a decreased risk of cardiovascular events [107]. Endothelial
dysfunction was found substantially improved in 20 healthy smokers who consumed
400 mL of green tea containing 24.72 mg of epigallocatechin gallate (EGCG) and 59.24 mg
of other catechins [114]. In chronic young smokers (n = 20), consumption of 8 g per day
of green tea improved the number of circulating endothelial progenitor cells (EPCs) as
determined by flow cytometry [115]. The health benefits of green tea were associated with
its content of EGCG, which enhances endothelial NO production by multiple mechanisms.
Other health benefits associated with black or green tea flavonoid consumption relate to
the improvement in NO-dependent brachial artery flow-mediated dilation. Reverse of
vascular endothelial dysfunction by green tea catechins in hypertension has been ascribed
to catechins ability to inhibit NF-κB activation, VCAM and ICAM activation, leukocyte
adhesion to endothelial cells and leukocyte penetration into the intima by MCP-1, IL-8,
and E-selectin.

Adzuki beans and peanut skins are good sources of procyanidins [115–117]. Although
the interactions of adzuki bean procyanidins and endothelial cells have never been inves-
tigated, it is straightforward to suggest that procyanidins from adzuki may be helpful to
improve endothelial functions when used appropriately.

4.1.2. Isoflavones and Endothelial Function

Soybean is a major source of isoflavones including genistein and daidzein. Isoflavones
can be found in several soy products including tofu, soymilk, natto, and soymilk whey,
depending on the matrix. Studies demonstrating the health benefits of soy isoflavones on
endothelial function are numerous [118]. In one study, endothelial function measured by
flow-mediated vasodilation (FMD) of brachial artery showed a significant improvement
in postmenopausal women with metabolic syndrome (n = 20) treated with 54 mg/day of
genistein for 6 months along with a Mediterranean-style diet (25–30% fat, <10% saturated
fatty acids, 55–60% carbohydrates and 15% protein) [119]. Postmenopausal women (n = 15)
consuming Konako soy (toasted ground soy containing 12.95 mg of soy protein + 50 mg
isoflavone) showed a significant increase in NO accompanied by a decrease in blood
pressure levels [120].

4.1.3. Flavonols and Endothelial Function

Quercetin has vasorelaxant and antioxidative properties. In human endothelial cells,
quercetin or its metabolite isorhamnetin inhibit the expression of biomarkers of endothe-
lial dysfunction including VCAM-1, ICAM-1 and MCP-1 at a physiologically attainable
concentration of 2 µM [121]. In healthy men (n = 23) consuming 4.3 g of onion extract
containing 51 mg of quercetin for 30 days, endothelial function was significantly improved,
as indicated by the postprandial FMD value increasing from 5.1 ± 2.2% to 6.7 ± 2.6% [122].
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Conversely, in a double-blind cross-over study evaluating the effects of 8 week administra-
tion of quercetin (150 mg) or placebo in 49 males with an APOE genotype, quercetin was
effective at increasing HDL cholesterol and reducing both waist circumference and systolic
blood pressure but had no effect on endothelial function [123].

4.1.4. Anthocyanins and Endothelial Function

Several in vitro and animal studies have demonstrated the potential of anthocyanins
to modulate endothelial function. Studies in humans are rare. The metabolites/catabolites
in berries, such as simple phenolic acids, are probably the in vivo bioactive compounds
that may have effects on the endothelium [124].

4.2. Stilbenes and Endothelial Function

Trans-resveratrol (3,5,4′-trihydroxy-trans-stilbene) is the most investigated stilbene.
It can be found in grapes, red wines, peanut skins and other food sources. Resveratrol
improves endothelial function and enhances NO production by several mechanisms, in-
cluding stimulation of eNOS phosphorylation, eNOS-mRNA and BH4, and decreasing
ADMA and the acylated and less active form of eNOSeNOS-Ac [125]. Pre-clinical studies
have confirmed that trans-resveratrol can inhibit endothelial dysfunction by enhancing
the bioavailability of resveratrol [126]. In a double-blind randomized cross-over study,
19 overweight/obese men or postmenopausal women were assigned to groups consuming
30, 90 or 270 mg of resveratrol. Plasma resveratrol levels reached 181, 532 and 1232 ng/mL,
respectively. At these nanomolar concentrations, resveratrol increased eNOS and FMD
from 4.1% to 6.6% and 6.6% to 7.7%, respectively. One important factor that may limit
resveratrol efficacy is its solubility. This stilbene is easily soluble in pure ethanol, suggesting
that wines with 14% alcohol do not carry significant amounts of resveratrol. Nevertheless,
studies using resveratrol supplementations have in most cases shown that resveratrol
provides a prolonged improvement in FMD following repeated administration [126].

4.3. Terpenes, Terpene Saponins and Endothelial Function

Saponins protect endothelial cells from dysfunction. Most of the data on saponins and
endothelial cell function have been obtained using ginseng or licorice. Ginseng saponins
Rb1 and Rg1 from panax ginseng improve endothelial cell function by modulating the
activity of PI3K/Akt/eNOs and l-arginine transport in endothelial cells [127]. Ginsenoside
Rb1 reverses homocysteine-induced endothelial cell dysfunction through eNOS downregu-
lation [128]. Glycyrrhizic acid is a triterpenoid saponin glycoside found in Licorice and used
to prevent diabetic vascular complications. Glycyrrhizic acid inhibits AGEs-induced en-
dothelial dysfunction [129]. Saponins protect endothelial cells from oxidized LDL-induced
cell injury. Other sources of dietary saponins including asparagus and fenugreek have
never been investigated for their potential protective effects on the endothelium.

4.4. Quinones and Endothelial Function

Anthraquinones including emodin, aloe-emodin, rhein, chrysophanol and physcion
are bioactive compounds present in rhubarb and Cassia alata [130,131]. Emodin, aloe-
emodin and rhein are pleiotropic molecules that interact with and inhibit several biomarkers
of endothelial function [130]. Emodin was reported to have potential to treat COVID-19
through its ability to act on a wide range of disease targets including BCL2L1, PTGS2, TP53,
CASP3, CXCL8, EGFR, CSF2, MAPK14, FNT, VEGFA, MCL1, MAPK1, and 1L1B [132].

Thymoquinone is the major bioactive molecule in black seed (Nigella sativa). Thy-
moquinone can protect constitutive and induced NOS from degradation by pyrogallol,
resulting in increased NO production and improved endothelial function [133].

Coenzyme Q10 (CoQ10) has important protective effects in endothelium. As men-
tioned above, Ang II is a major risk factor associated with the pathogenesis of hypertension
and cardiovascular disease. In vitro, Ang II is able to increase ROS, increase the expression
of p22 (phox) and Nox2 subunits of NADPH oxidase, upregulate ICAM-1 and VCAM-
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1, inhibit insulin-induced NO production, and overall impair endothelial function [134].
Coenzyme Q10 at 1–10 µM dose dependently inhibits Ang II activities in vitro. In vivo,
CoQ10 reduced superoxide production and recouples mitochondrial oxidative phosphory-
lation [135]. In patients with type 2 diabetes, CoQ10 quenches ROS, reduces superoxide
production and improves endothelial function by increasing brachial artery FMD [136].
CoQ10 plays an important role in cellular ATP production but is decreased in cardiovascular
disease and influenza infected patients. The possibility of C0Q10 alleviating inflammation
and myocardial inflammation in COVID-19 has been raised [137].

4.5. Olive Oil and Endothelial Function

Olive oil is to the Mediterranean diet what soybean is to the Japanese diet. It is om-
nipresent in meals and consumed in high amounts. The oil contains several bioactive
compounds including oleic acid, oleanolic acid, oleuropein, oleocanthal, taxifolin, hydrox-
ytyrosol, homovanillyl alcohol, caffeic and ferulic acid. Several in vivo studies involving
small and large numbers of participants have investigated the health benefits of olive
oil, and several of these studies have confirmed the beneficial effects of consuming olive
oil [138]. In a study at Mayo Clinic, designed to investigate the long-term effect of olive
oil and/or green tea supplementation on endothelial function, participants (n = 82 started
and n = 52 completed the study) with early atherosclerosis and presence of endothelial
dysfunction (EndoPAT score < 2.0) were randomized to receive 30 mL of polyphenol-rich
olive oil alone or in association with green tea EGCG for 4 months [139]. To determine
the effect of olive oil or olive oil and EGCG on endothelial function, Endo-PAT and in-
flammatory biomarkers including hsCRP, IL-6, sICAM-1 and sVCAM-1, and oxidative
stress biomarkers including oxLDL and 8-isoprostane, were measured in the 52 patients
who completed this study. The results showed that the consumption of olive oil alone
significantly improved endothelial function in patients with low to intermediate risk of
atherosclerosis, with no additional beneficial effects associated with EGCG. Several olive
oil constituents have potent anti-inflammatory activities and can restrict the progression
of various inflammation-linked diseases ranging from endothelial dysfunction to arthritis,
cancer, and the severity of COVID-19 [140,141].

4.6. Curcuminoids and Endothelial Function

Age is the major risk factor for declining endothelial function. Menopausal women
are not exempt from age-associated endothelial function decline. Thirty-two menopausal
women were enrolled in a study that evaluated the effect of curcumin vs. exercise on
endothelial function [142]. The participants were divided into 3 groups: a control group, a
group that underwent moderate aerobic training for 8 weeks and a group of participants
that ingested curcumin for 8 weeks. Flow-mediated dilation was measured as a marker
of endothelial function and showed that curcumin was equally as effective as exercise
in improving endothelial function in postmenopausal women. In a recent pilot study,
the effect of curcumin phytosome (Meriva) was evaluated on the progression of diabetic
microangiopathy [143]. Twenty-five diabetic patients received and ingested two tablets
containing 1 g Meriva per tablet daily for four weeks [143]. Meriva is a water-soluble
curcumin-phosphatidylcholine conjugate that has better solubility properties for human
studies and uses than curcumin.

Endothelial dysfunction is an early marker of atherosclerosis. Flow-mediated dilation
(FMD), measured by ultrasonography, is used to non-invasively assess endothelial dysfunc-
tion. Preparations of curcumin may improve FMD and thus endothelial dysfunction [144].

4.7. Factors That Reduce Hyperhomocysteinemia

Methionine converts to homocysteine in absence of folate and B12 vitamin, suggesting
that a combination of both reducing the consumption of methionine-rich foods and taking
adequate amounts of folate and B12 vitamin should help reduce the risk of developing
hyperhomocysteinemia. Foods rich in melatonin such as pistachios, tart cherries, almonds,
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and sunflower seeds, and foods rich in betaine such as quinoa or spinach, can help prevent
the buildup of homocysteine.

5. Dietary Inhibitors of Endothelial Dysfunction and SARS-CoV-2 Infection

Increasing evidence demonstrates that endothelial dysfunction is a risk factor and
predictor of SARS-CoV-2 infection and COVID-19 severity. The correlation between the
severity of SARS-CoV-2 infection and COVID-19 progression has been demonstrated in
individuals with dysfunctional endothelium including obese, diabetic, hypertensive, and
immunocompromised people. Preventing endothelial dysfunction may delay or weaken
SARS-CoV-2 infection.

Section 4 of this review provided dietary bioactives that maintain endothelial home-
ostasis; the current section lists dietary bioactives that have shown in vitro inhibitory
activities of SARS-CoV-2 infection and have potential for in vivo inhibition of the virus and
attenuation of the COVID-19 disease. Edible marine polysaccharides including fucoidan,
carrageenan, and chondroitin sulfate have been investigated. Plant terpenoids such as
glycyrrhizic acid are also being studied.

Fucoidan is a heterogeneous group of sulfated polysaccharide with a high content of
l-fucose. Brown algae and marine invertebrates such as sea cucumber are major sources
of fucoidans. Fucoidan is a good candidate for prevention and inhibition of endothelial
dysfunction in metabolic syndrome and SARS-CoV-2 infection [145]. Fucoidan antioxidant
activity, complement inhibition and interaction with the vascular endothelial growth factor
(VEGF) are of high interest for application in SARS-CoV-2 infection and COVID-19 pro-
gression. Interest in using fucoidan in protecting endothelial cell homeostasis has so far
received little attention. Fucoidan induces NO production by activating and enhancing
eNOS and AkT phosphorylation, scavenges ROS, induces Nrf2, binds to VEGF165 and
reduces VEGF165 expression and VEGF165 receptor expression and activation [146,147].
Fucoidan also binds C1q, C4 and inhibits CFB/C3 binding [146]. Fucoidan can reduce the
vascular inflammation and oxidative stress caused by iNOS expression [147].

Carrageenan (Iota, λ, and κ-carrageenan) a polymer from marine alga Rhodophyceae is
variably used as an emulsifier, a stabilizer, colloid, thickener, suspender, syneresis control,
or gelling that improves the consistency of several foods and beverages including infant
formula, dairy products, soymilk, chocolate and flavored milk, and nutritional supplement
beverages. Carrageenan exhibits high antioxidant, free radical scavenging, antibacterial,
anticoagulant, and immunomodulatory activity [148]. Several in vitro studies indicate that
λ-carrageenan inhibits several enveloped RNA viruses including SARS-CoV-2 with an
EC50 value of 0.9± 1.1 µg/mL by preventing viral attachment to cell surface receptors and
virus entry [149]. Iota-carrageenan combined with ivermectin and nasally administered
improved the outcome in COVID-19 patients in clinical trial NCT04425850 completed in Ar-
gentina [150]. Clinical trials NCT04590365 (UK), NCT04681001 (Austria), and NCT04793984
(Austria) for iota-carrageenan alone have recruited and are in progress [150]. Other studies
have shown that Iota and λ-carrageenan had potent antiviral activity (EC50 between 3.2
and 7.5 µg/mL, respectively) and carrageenan and griffithsin combination exhibited syner-
gistic activity with very low EC50 values between 0.2 and 3.8 µg/mL; and a combination
index < 1 against recent SARS-CoV-2 mutations [151]. Carrageenan specifically interacts
with the viral envelop of glycoprotein gp120 and inhibits the interaction of the virus with
CD4 [150].

Glycyrrhizic acid (GLR) is a terpene saponin food additive with FDA Generally
Recognized as Safe (GRAS) status. GLR has anti-inflammatory, antioxidative, antiallergenic,
antimicrobial, antiviral including HIV, antiparasite, and anticancer properties. GLR has the
ability to prevent SARS-CoV-2 viral infection of endothelial cells by binding to the ACE2
receptor [152,153].
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6. Current and Future Directions

Endothelial dysfunction occurs in the early stages of several chronic degenerative
diseases including COVID-19. Glucotoxicity, lipotoxicity or glucolipotoxicity caused by
chronic consumption of high levels of reducing sugars or high levels of saturated fats
impairs endothelial cells in various tissues and sets the tone for chronic disease including
SARS-CoV-2 infection and severe COVID-19 development and progression. Metabolic
syndrome is a major risk factor associated with endothelial dysfunction with or without
SARS-CoV-2 infection. However, SARS-CoV-2 infection of subjects with severe defective
endothelial cells leads to severe COVID-19 progression. The correlation between metabolic
syndrome and the severity of SARS-CoV-2 infection and COVID-19 development has
been established.

Since the gut is also a site of infection and the ACE2 receptor for SARS-CoV-2 is found
in the gastrointestinal tract, dietary treatment has a role in reducing SARS-CoV-2 infection
through the gastrointestinal tract. Although SARS-CoV-2 is mostly a respiratory disease,
the lung–gut axis has been identified and exacerbates/accelerates COVID-19 progression.
Dietary bioactives can protect endothelial cells in the gastrointestinal tract and bioavailable
dietary bioactives can protect endothelial cells in other organs.

In clinical trial NCT04521322, 394 healthy hospital personnel including physicians,
nurses, kinesiologists, and other healthcare providers dedicated to care of COVID-19
patients were randomly assigned to receive a nasal spray containing iota-carrageenan
(196 participants) or placebo (saline solution, 198 participants) for 21 days at 10 hospitals in
Argentina [154]. COVID-19 developed in 1.0% (2 out of 196) of participants who received
the iota-carrageenan spray and COVID-19 developed in 5% (10 out of 198) of participants
who received the placebo. The primary end point was clinical COVID-19, as confirmed
by RT-PCR. Iota-carrageenan was safe and effective in preventing COVID-19 disease in
hospital workers who care for COVID-19 patients.

Preventing and reversing endothelial dysfunction appear to be feasible, as shown by
some of the work cited in Sections 4 and 5. Prevention of endothelial dysfunction may
weaken SARS-CoV-2 infection and subsequent COVID-19 disease. Well-designed healthy
diets can help prevent endothelium dysfunction. Current and future efforts in food research
and product development should consider vascular dysfunction as an important target in
healthy eating because improving vascular function helps prevent endothelial dysfunction,
metabolic syndrome, and reduces the severity of SARS-CoV-2 infection. Potential dietary
bioactives that address vascular system dysfunction and its sequelae in comorbidities
such as obesity may have an important role in reducing SARS-CoV-2 infection and its
long-lasting effects. Identifying biomarkers of endothelial dysfunction in clinics should
help medical practitioners to work with food scientists and designers in developing foods
that help prevent viral infectivity and progression. Other viruses worse than SARS-CoV-2
and COVID-19 may be awaiting in nature.
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