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Abstract

Johne’s disease is a chronic wasting disease of ruminants caused by Mycobacterium avium

subsp. paratuberculosis (MAP), resulting in inflammation of intestines and persistent diar-

rhea. The initial host response against MAP infections is mainly regulated by the Th1

response, which is characterized by the production of IFN-γ. With the progression of dis-

ease, MAP can survive in the host through the evasion of the host’s immune response by

manipulating the host immune response. However, the host response during subclinical

phases has not been fully understood. Immune regulatory genes, including Th17-derived

cytokines, interferon regulatory factors, and calcium signaling-associated genes, are

hypothesized to play an important role during subclinical phases of Johne’s disease. There-

fore, the present study was conducted to analyze the expression profiles of immune regula-

tory genes during MAP infection in whole blood. Different expression patterns of genes were

identified depending on the infection stages. Downregulation of IL-17A, IL-17F, IL-22, IL-26,

HMGB1, and IRF4 and upregulation of PIP5K1C indicate suppression of the Th1 response

due to MAP infection and loss of granuloma integrity. In addition, increased expression of

IRF5 and IRF7 suggest activation of IFN-α/β signaling during subclinical stages, which in-

duced indoleamine 2,3-dioxygenase mediated depletion of tryptophan metabolism. In-

creased expression of CORO1A indicate modulation of calcium signaling, which enhanced

the survival of MAP. Taken together, distinct host gene expression induced by MAP infec-

tion indicates enhanced survival of MAP during subclinical stages.

Introduction

Paratuberculosis (PTB) or Johne’s disease (JD) is a chronic infectious disease leading to persis-

tent diarrhea, progressive wasting, and cachexia, all of which are caused by Mycobacterium
avium subsp. paratuberculosis (MAP) [1]. MAP can affect a range of ruminants, including
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cattle, goats, lamb, and deer [1] as well as non-ruminants such as parrots, baboons, tamarins,

cavies, lemurs, and wallabies [2]. The transmission of PTB usually occurs through the inges-

tion of contaminated materials such as feed, colostrum, water, and soil [3, 4].

After ingesting contaminated materials, intestinal M cells, which are located in Peyer’s

patches in the ileum, uptake and transfer MAP to macrophages that are distributed in the

mesenteric lymph nodes [5]. Generally, ingested pathogens are eliminated within the macro-

phage. However, MAPs can survive in host macrophages by interfering with phagosome matu-

ration [6]. Previous studies have suggested that MAP can inhibit host Rab proteins, which are

essential for the phagosome–lysosome fusion following phagocytosis in human and mouse

macrophages [7].

Due to the persistence of MAPs, macrophages form granulomas during subclinical phases

of infection in the intestinal lymphoid tissue [8]. Previous studies have suggested immunologi-

cal changes related to fecal shedding during the progression of disease [9, 10]. Fecal shedding

has been shown to occur with the downregulation of cell-mediated immune response and

upregulation of the humoral immune response in vivo [10]. In contrast, some infected animals

show increased fecal shedding with the activation of cellular immunity [9]. However, specific

mechanisms of the immune response that induces fecal shedding are not clear.

In the subclinical stages, infected macrophages with MAP upregulate expression of CD29,

CD56, IL-1α, and TRAF1, resulting in the recruitment of immune cells to the sites of infection

[11]. Activated macrophages with MAP move to the local lymph nodes and present an antigen

for stimulating naive T cells to induce the Th1 response, which involves the production of

interferon gamma and pro-inflammatory cytokines such as IL-6, IL-1α, and IL-2 [12]. Domi-

nance of the Th1 response continue during the subclinical stages, and activated Th1 lympho-

cytes induce the cell-mediated immune response by producing IL-2, TNF-β, and IFN-γ [12].

During the late subclinical stages of PTB, the Th1 response is gradually diminished and the

Th2 response is enhanced, which induces the humoral immune response [13]. With the pro-

gression of disease from the subclinical phase to the clinical phase, the cell-mediated immune

response totally diminishes, and the humoral immune response, which is characterized by the

production of IL-4 and IL-10, becomes prominent [13]. Furthermore, with the shift from the

Th1 to Th2 response, clinical signs and lesions become more severe. Therefore, understanding

the host response during subclinical phases is critical in identifying the pathogenesis of JD. We

hypothesized that immune regulatory genes play an important role in the subclinical phases of

JD during the immunological shift from the Th1 to Th2 response.

The Th17-derived cytokine is known to protect hosts from extracellular bacteria causing

respiratory and intestinal tract infections [14]. However, several studies have suggested that

Th17-derived cytokines may have immune regulatory roles against the infection of intracellu-

lar bacteria such as Salmonella and Listeria monocytogenes [15, 16]. IL-17 deficient mice show

enhanced bacterial numbers in the spleen and liver after an infection by Salmonella enterica
[15]. In addition, with the infection of Listeria monocytogenes, bacterial numbers and granu-

loma formation were increased in the liver [16]. Interferon regulatory factor (IRF) is a tran-

scription factor that has regulatory roles in the immune system [17]. In particular, IRFs

regulate the innate immune response via pattern recognition receptor signaling such as TLRs,

CLRs, RLRs, and NLRs [18]. High mobility group box 1 (HMGB1) is a non-histone nuclear

protein that is involved in the regulation of the immune response [19, 20]. PIP5K1C has been

known to have an immune-regulatory function via the modulation of neutrophil polarization

and infiltration [21]. In addition, CORO1A have diverse functions, including calcium homeo-

stasis, cytoskeletal dynamics, and maintenance of immune cell diversity and function [22].

However, the role of these immune-regulatory genes in JD has not been yet fully understood.

Therefore, we analyzed the expression of immune regulatory genes among cattle groups that
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have different levels of antibodies to MAP and fecal shedding in order to determine the role of

immune-regulatory genes during subclinical phases of JD.

Materials and methods

Animals

The animals were selected from a national farm in the mid-west region of South Korea. In

this farm, the presence of infectious diseases, including paratuberculosis, bovine tuberculosis,

brucellosis, infectious bovine rhinotracheitis, and bovine viral diarrhea, were investigated

two times per year in spring and autumn. In total, 79 Holstein cows were selected for the

experiments, according to the results of ELISA performed using a commercial ELISA kit

(IDEXX Laboratories, Inc., Westbrook, ME, USA) and fecal detection of MAP by PCR. In

brief, fecal DNA was extracted using the mGITC/SC method [23] and amplification of IS900

and ISMAP02-targeted real-time PCR was conducted as previously described with slight mod-

ification. [24, 25]. In total of 20μl of reaction mixture consisted with 10μl of 2 × Rotor-Gene

Probe PCR master mix (Qiagen, Hilden, Germany), 500 nM primers, 200 nM probes, 4 μl

fecal DNA, and 4 μl nuclease free water. Real-time PCR reaction was performed under the fol-

lowing conditions: 1 cycle at 95˚C for 5 min, followed by 45 cycles at 95#x00B0;C for 15 s, and

60˚C for 1 min. The fecal sample was regarded to be positive when both IS900 and ISMAP02

real-time PCR results were positive. Primers used in real-time PCR were listed in Table 1. For

the selection of animals, ELISA and fecal PCR were performed 4 times within a 6-month inter-

val to ensure precise classification of animals. For evaluation of clinical status of animals, all

animals were monitored for two years for the presence of chronic diarrhea and cachexia. This

study was carried out in strict accordance with the guidelines of the Institutional Animal Use

and Care Committee of the National Institute of Animal Science. The protocol was approved

by the Institutional Animal Use and Care Committee of the National Institute of Animal Sci-

ence (Permit number 2013–046).

Sampling and extraction of total RNA from whole blood

Peripheral blood samples (3 ml) were collected from the tail vein of cattle with the BD Vacutai-

ner1 Plus Plastic K2EDTA Tubes and BD Vacutainer1 Plus Plastic Serum Tubes. The extrac-

tion of total RNA from whole blood was performed as previously described [26]. In brief,

125 μl of whole blood was mixed with the same volume of RNase-free water and 750 μl of Tri-

zol LS reagent (Ambion) and incubated at room temperature for 5 min. Thereafter, 200 μl of

chloroform (Sigma-Aldrich) was mixed and centrifuged at 13,523 ×g and 4˚C for 15 min. The

supernatant was collected into a 1.5 ml tube, mixed with the same volume of 70% ethanol, and

then transferred to an RNAeasy column (Qiagen, Hilden, Germany) and centrifuged at 8,500

×g for 15 sec. After the wash steps, 30 μl of RNase-free water was added and centrifuged at

8,500 ×g for 1 min. Eluted RNA was stored at -80˚C until use. For the separation of serum, 3

ml of blood samples were centrifuged at 1,500 ×g for 10 min. Separated serum was transferred

to 1.5 ml tube and analyzed for the presence of MAP-specific antibodies using a commercial

ELISA kit.

Selection of immune regulatory genes

Eleven genes that are related to immune regulatory function were selected based on previous

studies [27, 28] and classified to three categories as follows; Th17-derived cytokines (IL-17A,

IL-17F, IL-22, and IL-26), calcium signaling (HMGB1, CORO1A, and PIP5K1C), and inter-

feron regulatory factors (IRF3, IRF4, IRF5, and IRF7).

Host gene expression in subclinical phases of paratuberculosis
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Optimization of real-time PCR conditions

Real-time PCR conditions were optimized with an identical cDNA template for each gene.

Five concentrations of both forward and reverse primers ranging from 0.25 μM to 1.25 μM,

with a 0.25 μM interval, were tested. In addition, five annealing temperatures from 56˚C to

64˚C with a two-degree interval were tested. For further experiments, optimal primer concen-

trations and annealing temperatures that showed the highest fluorescence value were selected

for further analysis.

Real-time PCR

The cDNA was synthesized with random primers using a QuantiTect1 Reverse Transcription

Kit (Qiagen Inc., Valencia, CA, USA) according to the manufacturer’s instructions. The

expression of eleven immune regulatory genes was identified by quantitative real-time

RT-PCR with a Rotor-Gene multiplex PCR kit (Qiagen Inc). Briefly, a total of 18 μl reaction

mixture included 10 μl of SYBR master mix, RNase-free water, and 0.5 μM forward and reverse

primers. Finally, 2 μl of cDNA template was added to the mixture to a final volume of 20 μl.

Table 1. Oligonucleotide sequences of primers used for real-time PCR.

Target gene Primer sequence (50!30) PCR product size

(base pair)

Reference

Beta actin F GCA AGC AGG AGT ACG ATG AG 134 [26]

R GCC ATG CCA ATC TCA TCT CG

IL-17A F CAC AGC ATG TGA GGG TCA AC 101 In this study

R GTG GAG AGT CCA AGG TGA GG

IL-17F F GAG GAA GCA AAA CGG CTG TC 115 In this study

R CTG ATC TGC CAT CGG GTC AT

IL-22 F CTG TAG GCT CAA CGA GTC CG 150 In this study

R CGC TTC GTC ACC TGA TGG AT

IL-26 F AAC GAT TCC AGA AGA TCG CA 164 In this study

R CCA CAA AGT GCA TTT CCT TGC

HMGB1 F CGA ACA TCC TGG CCT GTC TA 150 In this study

R TTA GCT CGG TAT GCG GCA AT

CORO1A F ACC CTG ACA CCA ACA TCG TC 166 In this study

R TTG TTC ACC TCC AGA CCA CG

PIP5K1C F GAG ATT GTG GTC CCC AAG GA 191 In this study

R CTC CTC TCA TCG GTG GGA AA

IRF3 F GAA CCC AAA AGC CTC GGA TAC 162 In this study

R CCT GGA AGA TGC CGA AAT CC

IRF4 F GCA GAG ATC CCG TAC CAG TG 167 In this study

R TCG GCA GAC CTT ATG CTT GG

IRF5 F AGA CCT CAA AGA CCG CAT GG 154 In this study

R TTA CTG CAT GCC AAC TGG GT

IRF7 F CGC AAC GCT TTG TGA TGT TG 146 In this study

R TGC AGG TGG GGC ATC TTC TA

IS900 F ATG ACG GTT ACG GAG GTG GTT 76 [24]

R TGC AGT AAT GGT CGG CCT TAC

Probe FAM-CGA CCA CGC CCG CCC AGA-TAMRA

ISMAP02 F CGG CTG GAC ACG GAA TG 67 [25]

R CAT GAG CGA CAG TAT CTT TCG AA

Probe JOE-ATC CGT CCC AGT GGC GGA GTC AC-BHQ-1

https://doi.org/10.1371/journal.pone.0196502.t001
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Specific amplification with primers for each target was identified by a homology search

(https://www.ncbi.nlm.nih.gov/tools/primer-blast) and agarose gel electrophoresis. The prim-

ers used in this study are shown in Table 1. Real-time PCR was performed with triplicate sam-

ples at 95˚C for 10 min, followed by 45 cycles of 95˚C for 15 s and 60˚C for 45 s. A no-

template sample was used for the negative control. The gene expression was calculated by the

2-ΔΔCt method with β-actin for the housekeeping gene.

Statistical analysis

Statistical significance was confirmed by ANOVA with Tukey’s post hoc test among the exper-

imental groups using the GraphPad Prism software version 7.00 (GraphPad Software, Inc., La

Jolla, CA, USA). A P value of less than 0.05 (p< 0.05) was considered as statistically significant,

and all experiments were recorded as the means of biological triplicates.

Results

Animals

The study subject included 79 heifers that were classified into five groups based on the results

of the PCR and ELISA. Non-infected group (n = 27) was defined as those that were ELISA-

and PCR-negative during the entire examination. Infected animals were classified into four

groups according to the ELISA sample to positive (S/P) ratio. The EL Neg group (n = 23) was

defined as those with a S/P ratio < 45 and PCR-positive. The EL Low group (n = 9) was de-

fined as those with a S/P ratio <100 and�45. The EL Mid group (n = 8) was defined as those

with a S/P ratio <150 and�100. The EL High group (n = 12) was defined as those with S/P

ratio�150. All animals did not show chronic diarrhea and cachexia for two years. Further-

more, infected animals were classified into two groups based on the presence of fecal shedding.

The FP group (n = 41) was defined as fecal PCR-positive, and the FN group (n = 11) was de-

fined as fecal PCR- negative. The age of animals ranged from 2 to 10 years, and the mean ± SD

for the age of the animals for each group was as follows: Non-infected group, 4.92 ± 2.09 years;

EL Neg group, 4.69 ± 1.74 years; EL Low group 6.11 ± 1.45 years; EL Mid group 4.87 ± 1.35

years; EL High group 5.16 ± 1.02 years; FP group, 5 year ± 1.61 years; FN group, 5.36 ± 1.28

years. Among these groups, age did not show any significant differences (p> 0.05) (Fig 1).

Detailed information of all animals was listed in the supplementary materials (S1 Table).

Optimization of real-time PCR conditions

The optimal concentration of primers and annealing temperature was determined by conduct-

ing real-time PCR with three primer concentrations and annealing temperatures. The combi-

nation of forward and reverse primers at 0.5 μM and an annealing temperature of 60˚C

showed the highest florescence and lowest CT value. The combination of 0.5 μM forward and

reverse primers and an annealing temperature of 60˚C were used in further analyses.

Gene expression profiles between the infected groups

The expression of Th17-derived cytokine genes is presented in Figs 2 and 3. IL-17A was down-

regulated in the EL Low, Mid, and High groups compared to the non-infected and EL Neg

groups. In addition, IL-17A was downregulated in the EL Mid group compared to the EL Low

group and upregulated in EL High group compared to the EL Mid group. IL-22 was downre-

gulated in the EL Middle and High groups compared to the EL Neg group. IL-26 was downre-

gulated in EL Neg and High groups compared to the non-infected group. Furthermore, IL-26

was upregulated in the EL Mid group compared to the EL Neg group (Fig 1). When compared

Host gene expression in subclinical phases of paratuberculosis
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with the presence of fecal shedding, 3 genes (IL-17A, IL-17F, and IL-26) were downregulated

in the FP group compared to the non-infected group. In addition, two genes (IL-17F and IL-

26) were downregulated in the FN group compared to the non-infected group. Furthermore,

the expression of IL-17A was increased in the FN group compared to the FP group.

The expressions of interferon regulatory factors are presented in Figs 4 and 5. IRF3 was

downregulated in the EL Mid and High groups compared to the EL Neg group. On the other

hand, IRF5 was upregulated in the EL Neg, Low, and High groups compared to the non-

infected group. The expression of IRF7 was increased in the EL Neg group compared to the

non-infected group. In addition, IRF7 was downregulated in the EL Mid group compared to

the EL Neg group. According to the fecal shedding-based classification, IRF5 was upregulated

in the FP group compared to the non-infected group. In contrast, IRF4 was downregulated in

the FP and FN groups compared to the non-infected group. In addition, IRF3 was downregu-

lated in the EL Mid and High groups compared to the EL Neg group.

The expressions of calcium signaling-associated genes are presented in Figs 6 and 7.

HMGB1 was downregulated in the EL Neg, Low, Mid, and High groups compared to the non-

infected group. In addition, the expression of HMGB1 was decreased in the FP and FN groups

compared to the non-infected group. The expression of PIP5K1C was increased in the FP

group compared to the non-infected group and decreased in the FN group compared to the

FP group. CORO1A was upregulated only in the FP group compared to the non-infected

group. All data of gene expression fold change in this study were recorded in the supplemen-

tary materials (S2 and S3 Tables).

Discussion

Gene expression profiling of whole blood is a useful indicator of the progression of diseases

and immune responses in chronic infectious diseases [29, 30]. Although gene expression in

Fig 1. Comparison of mean age among the experimental animals. The mean age of the experimental animals among

the experimental groups was represented with a bar graph.

https://doi.org/10.1371/journal.pone.0196502.g001
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Fig 2. Differences in gene expression levels of Th17-derived cytokine genes between the non-infected, EL Neg, EL Low, EL Mid, and EL High groups. Scatter

plots for each gene represent for each individual animal. Values of relative gene expression were normalized to the reference gene β-actin. � indicates a p-value<0.05;
�� indicates a p-value<0.01; ��� indicates a p-value<0.001; ���� indicates a p-value<0.0001.

https://doi.org/10.1371/journal.pone.0196502.g002
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whole blood does not completely reflect the immunological changes at the site of infection,

alteration of gene expression in peripheral blood may be specific to disease progression and

provide useful information for identification of pathophysiology [31–33]. Several studies have

investigated the host response to MAP infection in whole blood, peripheral blood mononu-

clear cells (PBMC), and monocyte-derived macrophages (MDM) [34–40]. However, the host

response during the immunological shift period between early subclinical to late subclinical

stages were not fully understood. Therefore, the present study was conducted to identify the

host response during the subclinical stages that revealed different levels of antibodies and the

presence of MAP shedding in feces.

Fig 3. Differences in gene expression levels of Th17-derived cytokine genes between the non-infected, FP, and FN groups. Scatter plots for each gene

represent for each individual animal. Values of relative gene expression were normalized to the reference gene β-actin. � indicates a p-value<0.05; �� indicates

a p-value<0.01; ��� indicates a p-value<0.001; ���� indicates a p-value<0.0001.

https://doi.org/10.1371/journal.pone.0196502.g003
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Fig 4. Differences in gene expression levels of interferon regulatory factors between the non-infected, EL Neg, EL Low, EL Mid, and EL High groups. Scatter

plots for each gene represent for each individual animal. Values of relative gene expression were normalized to the reference gene β-actin. � indicates a p-value<0.05;
�� indicates a p-value<0.01; ��� indicates a p-value<0.001; ���� indicates a p-value<0.0001.

https://doi.org/10.1371/journal.pone.0196502.g004
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The present study suggests a difference in the gene expression profile of non-infected ani-

mals and infected animals with subclinical phases with different levels of fecal shedding and

antibodies to MAP. The expression of Th17-derived cytokine genes differed between the ex-

perimental groups. Although the expression of all genes was not perfectly matched, Th17-der-

ived cytokine genes were downregulated during the progression of disease. Th17-derived

cytokines play an important role in the early stage of mycobacterial infection [41]. IL-26 and

IL-17F are the main effector cytokines of the Th17 response and are associated with host

defense against intracellular bacteria [42, 43]. IL-26 induces priming of immune cells and

direct killing of pathogens via membrane pore formation [44]. Furthermore, previous studies

have revealed that IL-26 upregulates tumor necrosis factor (TNF)-related apoptosis-inducing

ligand (TRAIL) expression in human NK cells, which induces the elimination of hepatitis C-

Fig 5. Differences in gene expression level of interferon regulatory factors between non-infected, FP and FN groups. Scatter plots for each gene represent

for each individual animal. Values of relative gene expression were normalized to the reference gene β-actin. � indicates a p-value<0.05; �� indicates a p-value

<0.01; ��� indicates a p-value<0.001; ���� indicates a p-value<0.0001.

https://doi.org/10.1371/journal.pone.0196502.g005
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infected hepatocytes [45]. Moreover, IL-17 provides protective immunity against intracellular

pathogens by modulation of Th1 response and neutrophilic recruitment [46, 47]. In addition,

Robinson et al. analyzed the expression of Th17 cytokines in tissue samples pooled with

Fig 6. Differences in gene expression level of calcium signaling-associated genes between the non-infected, EL Neg, EL Low, EL Mid, and EL High groups.

Scatter plots for each gene represent for each individual animal. Values of relative gene expression were normalized to the reference gene β-actin. � indicates a

p-value<0.05; �� indicates a p-value<0.01; ��� indicates a p-value<0.001; ���� indicates a p-value<0.0001.

https://doi.org/10.1371/journal.pone.0196502.g006
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jejunum, ileocecal valve, and adjacent lymph node of MAP-infected red deer [48]. Expression

of IL-17 was not significantly changed in early stage of infection, but was significantly

increased at late stage. On the other hand, the expression of IL-21, IL-22, and IL-23 did not

change significantly depending on the stage of infection [48]. In this study, the expression of

IL-17A and IL-17F tended to decrease with the progression of disease. This difference may be

due to the difference between the host animal (red deer vs cattle) and the sample (jejunum vs

whole blood). Park et al. found that the expression of IL-17, IL-22, IL-23 and RORC was upre-

gulated after the stimulation of MAP in PBMC isolated from cattle infected with MAP [49].

This suggests that Th17-derived cytokines play an important role in the early stages of JD.

Fig 7. Differences in gene expression levels of calcium signaling-associated genes between the non-infected, FP, and FN groups. Scatter plots for each

gene represent for each individual animal. Values of relative gene expression were normalized to the reference gene β-actin. � indicates a p-value<0.05; ��

indicates a p-value<0.01; ��� indicates a p-value<0.001; ���� indicates a p-value<0.0001.

https://doi.org/10.1371/journal.pone.0196502.g007

Host gene expression in subclinical phases of paratuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0196502 April 26, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0196502.g007
https://doi.org/10.1371/journal.pone.0196502


Therefore, downregulation of Th17-derived cytokine genes reflects insufficient immune

response for eliminating intracellular MAP during all subclinical stages in this study.

Formation of granuloma is an important factor in the pathogenesis of JD [50]. MAP crosses

the intestinal barrier through M cells or enterocytes and are subsequently uptaken by macro-

phages located in the lamina propria. Thereafter, cytokine production by activated macro-

phages and MAP antigens attracts new monocytes. Finally, multi-nucleated giant cells and

epithelioid cells are formed, resulting in the formation of new granulomas [50]. Formation of

granulomas is tightly regulated by immune responses such as TNF-signaling and neutrophil

trafficking [51]. Neutrophil recruitment regulated by the TNF/IL-8 axis is essential for the

establishment and maintenance of granulomas, which provides protective immunity to the

host during mycobacterial infections [51, 52]. Therefore, impaired recruitment of neutrophil

can induce unstable maintenance of granulomas. Th17-derived cytokines, including IL-17, IL-

23, and IL-26, enhance granuloma integrity through the modulation of neutrophil recruitment

via CXCR3 signaling [53]. In addition, PIP5K1C encodes protein phosphatidylinositol phos-

phate kinases, which regulate E-cadherin sorting for degradation, and increased activity of

PIP5K1C induced the downregulation of E-cadherin [54]. A previous study suggested that E-

cadherin is expressed in macrophages if the macrophages fail to eliminate intracellular patho-

gens, which subsequently contributes to the formation of granulomas [55]. Therefore, upregu-

lation of PIP5K1C and downregulation of IL-17A and IL-17F in the whole blood can reflect

loss of granuloma integrity, which induces bacterial shedding through feces.

Maturation of phagosomes is an important process in the defense against microbial pathogen

[56]. However, intracellular pathogens can survive and replicate in the phagocytes by disrupting

phagosome maturation [57]. CORO1A encodes protein coronin 1 in mammalian cells, and is

involved in actin dynamics [58]. A recent study revealed that coronin 1 is an essential factor for

modulating calcium signaling after the invasion of pathogenic mycobacteria [59]. Coronin 1 mod-

ulates physiological Ca2+ fluxes and induces the activation of calcineurin, subsequently blocking

phagosome–lysosome fusion [59]. Moreover, IL-22 activates phagosome maturation via enhanc-

ing calgranulin A expression in MDMs infected with Mycobacterium tuberculosis. [60]. Calgranu-

lin A was upregulated in MAP-infected animals and has been proposed as a diagnostic biomarker

for subclinical MAP infections [37, 40]. Thus, upregulation of CORO1A and downregulation of

IL-22 indicate enhanced intracellular survival of MAP during subclinical stages.

Expression of interferon regulatory genes was different between experimental groups. First, the

expression of IRF4 was decreased in all infected groups compared to the non-infected group. IRF4

is an essential factor for the differentiation of T and B cells as well as the generation of plasma cells

[61]. In a previous study, IRF4 knockout mice failed to provoke Th1 immune response against Lis-
teria monocytogenes infections [62]. Decreased expression of IRF4 can induce downregulation of

the Th1 immune response, which can enhance the persistent survival of MAP. HMGB1 expression

is upregulated by the IFN-γ that is secreted in activated macrophages [63]. During early infections,

mycobacterial pathogen can inhibit the activation of macrophages via the induction of anti-apo-

ptotic and anti-inflammatory response [64, 65]. This result coincided with a previous study that

showed downregulation of a complement immune pathway induced by MAP and consequently

enhanced intracellular survival in macrophages [38].

Interferon regulatory factor (IRF) is the transcriptional regulator of IFN genes that regulates

the immune response to intracellular pathogen. IRF5 and IRF7 have been shown to activate

type I interferons including IFN-α, -β, -ω, -ε, -κ, and pro-inflammatory cytokines [17, 66].

IFN-α/β is the most widely expressed type I IFN, which has diverse effects on innate and adap-

tive immunity [66]. In general, IFN-α/β have been shown to protect the host from intracellular

pathogens, including Chlamydia trachomatis, Legionella pneumophila, and Salmonella Typhi-

murium [67, 68, 69]. More specifically, IFN-α/β inhibit intracellular replication of Chlamydia

Host gene expression in subclinical phases of paratuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0196502 April 26, 2018 13 / 19

https://doi.org/10.1371/journal.pone.0196502


trachomatis through indoleamine 2,3-dioxygenase (IDO) mediated depletion of L-tryptophan

[67]. A previous study showed upregulation of IDO in THP-1 monocytes, PBMCs, and intesti-

nal tissues of MAP-infected animals [70]. However, IDO-mediated tryptophan depletion also

has a detrimental effect on the host. For example, low concentrations of tryptophan inhibit T

cell proliferation [71]. In addition, metabolites of IDO-mediated tryptophan metabolism such

as kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid can inhibit T cell prolif-

eration via apoptosis and arrest of the cell cycle [72, 73, 74]. Therefore, upregulation of IRF5

and IRF7 can result in the inhibition of T cell proliferation via IDO-mediated tryptophan

depletion. In another study, expression of IRF5 was downregulated after 3 weeks of infection

with MAP in the spleen of mice [27]. These differences are possibly related to different host

species or differences in the first infection time and dose. Taken together, whether IFN-α/β is

beneficial or detrimental for the host is not clear in MAP infections. Therefore, the specific

role of IFN-α/β during subclinical stages of JD should be identified in further studies.

Several studies revealed molecular mimicry between MAP protein and host IRF5 protein

[75, 76, 77]. Mameli et al. identified that molecular mimicry between MAP_402718−32 and

IRF5424-434 peptide [75]. Also, they found that antibodies to both MAP_402718−32 and IRF5424-

434 peptides were significantly elevated in sera and cerebrospinal fluid of multiple sclerosis

patients when compared to healthy individuals [75]. Cossu et al. found similar result in sera of

multiple sclerosis patients and these two peptides induce activation of the Th1 response in the

whole blood while suppressing the Th2 response [76]. Recently, Bo et al. analyzed the serum of

rheumatoid arthritis patients and suggests exposure to MAP can trigger specific humoral

immune response against host IRF5 protein due to molecular mimicry between MAP_402718

−32 and IRF5424-434 peptides in rheumatoid arthritis patients [77]. Taken together, humoral

immune response to IRF5424-434 peptide which induced by exposure to MAP may weaken the

Th1 response and activate the Th2 response during subclinical stage of JD.

In conclusion, we propose a novel model for the host response, which enhances the survival

of MAP (Fig 8). Downregulation of IL-17A, IL-17F, IL-26, and upregulation of PIP5K1C and

Fig 8. Novel model for the manipulation of host responses by Mycobacterium avium subsp. paratuberculosis
(MAP) for its survival during subclinical stages of Johne’s disease. MAP can manipulate host responses to enhance

its survival. Upregulation of PIP5K1C and downregulation of IL-17A, IL-17F, and IL-26 induces a loss of granuloma

integrity, which can result in fecal shedding and dissemination of MAP. In addition, downregulation of IRF4 and

HMGB1 can impair intracellular elimination of MAP. Upregulation of CORO1A modulates intracellular Ca2+, which

can block phagosome–lysosome fusion. Moreover, decreased expression of IL-22 indicates an inhibition of phagosome

maturation. Upregulation of IRF5 and IRF7 activates IFN-α/β signaling, which upregulate IDO-mediated tryptophan

depletion and subsequently induce the inhibition of T cell proliferation. Taken together, a manipulated host response

enhances the survival of MAP during the subclinical phases of JD.

https://doi.org/10.1371/journal.pone.0196502.g008
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loss of granuloma integrity results in fecal shedding and dissemination of the pathogen. Down-

regulation of IRF4 resulted in impaired Th1 immune response, which decreased expression

of HMGB1 and enhanced the downregulation of the Th1 immune response. In addition,

increased expression of IRF5 and IRF7 suggest that activation of IFN-α/β signaling during

subclinical stages induce IDO-mediated tryptophan metabolism. IDO-mediated depletion of

tryptophan indicates an inhibition of T cell proliferation, subsequently leading to an immuno-

suppressive state. Upregulation of CORO1A suggest the possibility of the failure to intracellu-

larly eliminate MAP. Taken together, this model suggests manipulation of host responses for

the survival of MAP that occurs during the subclinical phases of JD. However, this model was

established based on the gene expressions of whole blood, which is not specific to individual

immune cell subsets. Therefore, more specific roles of the immune regulatory genes during

subclinical phases should be identified via interactions between different immune cells in co-

culture systems or in vivo in further studies.
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