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Abstract

A theory of chemical graphs is a part of mathematical chemistry concerned with the effects
of connectedness in chemical graphs. Several researchers have studied the solutions of
fractional differential equations using the concept of star graphs. They employed star graphs
because their technique requires a central node with links to adjacent vertices but no edges
between nodes. The purpose of this paper is to extend the method’s range by introducing
the concept of an octane graph, which is an essential organic compound having the formula
CsH;sg. In this manner, we analyze a graph with vertices annotated by 0 or 1, which is influ-
enced by the structure of the chemical substance octane, and formulate a fractional bound-
ary value problem on each of the graph’s edges. We use the Schaefer and Krasnoselskii
fixed point theorems to investigate the existence of solutions to the presented boundary
value problems in the framework of the Caputo fractional derivative. Finally, two examples
are provided to highlight the importance of our results in this area of study.

1 Introduction

Chemical graph theory is concerned with all elements of graph theory’s application to chemis-
try. In contrast to graph theory, the term chemical emphasizes that one may rely on the intui-
tive understanding of several concepts and theorems in chemical graph theory rather than
precise mathematical proofs. On the other hand, graph theory is used to mathematically por-
tray the structural properties of chemical compounds to understand them. A substance’s phys-
ical properties, such as its boiling point, are related to its geometric structure.

The concept of chemical indices is one of the most fundamental ideas in chemical graph
theory. This is done by associating a numerical value with a graph structure that frequently has
some relationship with the characteristics of the relevant molecules. As a result, these chemical
indices are often presented as identifiers of chemical components. From a graph-theoretical
standpoint, investigating such a chemical index often entails researching its behavior in
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various graphs, particularly minima and maxima, as well as upper and lower limits in terms of
various graph characteristics.

Graph theory is closely connected to topology (in fact, it is one-dimensional topology [1]),
probability, group theory, matrix theory, set theory, numerical analysis, and combinatorics. It
has been used in a wide range of subjects, including psychology [2] and nuclear physics [3],
economics [4] and theoretical physics [5], biomathematics [6] and linguistics [7], technology
[8] and anthropology [9], sociology [10] and zoology [11], biology [12] and engineering [13],
computer science [14] and geography [15], and so on.

Chemical graph theory has grown significantly in popularity in recent years (for the detail,
see [16-18]). Numerous factors contribute to graph theory’s growing prominence in chemistry
(see [19-21]). First, few concepts in the natural sciences are more closely related to the concept
of a graph than the institutional formula of a chemical compound (see [22]). Thus, it would
seem that (chemical) graph theory provides the natural language of chemistry through which
scientists interact. Second, graph theory enables researchers to make many intuitive assump-
tions about the composition and reactivity of diverse substances using simple principles.
Thirdly, graph theory may describe, classify, and categorize a vast range of chemical interac-
tions (for the detail, see [23-25]). Lastly, graphs provide practical tools for the computer-assis-
ted synthesis design (see [26, 27]).

In [28], Lumer modified the specified local operators on ramification spaces and investi-
gated the solutions of evolution equations on graphs. After that, some researchers examined
the solutions of differential equations on graphs by using different methods (for the detail, see
[29, 30]).

However, there are just a few research on boundary value problems with graphs in which
particular fixed point methods have shown the existence of solutions (see [31, 32]). In such
studies, the authors utilized the concept of a star graph, which has only one junction node (see
Fig 1). Since then, various authors have used notable methods to extend the problem in differ-
ent directions see [33-38] and the references within.

The methods described in [31, 32] for determining the origin at edges other than the junc-
tion node w,, are inadequate since graphs might contain several junction nodes in general (for
examples, see Figs 2 and 3).

Additionally, the authors of [31, 32] treated the length of each edge as a variable, but the
length of all edges may be considered constant from the start. Here, we use a novel approach
in which we assign a value of 0 or 1 to the vertices of the proposed graph with |¢,| = 1, for all
k=1,2,...,25 (see Fig4).

By utilizing the ideas mentioned above, here, we investigate the existence of solutions to the
boundary value problem, which is stated for each k=1, 2, ..., 25 by

Dpyk(s) = Zk(sayk(s)vquk(s)’y;c(s)7yl(s)) (5 € [Oa 1])7

10+ (0 =y [ () .

where y, : [0, 1] — R is an unknown function, pt;, u,, fy; € R\{0} with y3 # p;, DF and D*
represent the Caputo fractional derivative of orders p € (1, 2] and q € (0, 1), respectively. Also,
Z,:[0,1] x R x R x R x R — R is a continuously differentiable function fork=1,2, ...,
25.

In this way, the orientation of the linked edge determines the label given to each vertex.
When we proceed along a random edge, the starting and ending vertex labels are interpreted
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Fig 1. A structure of a star graph G having one junction node and two edges.

https://doi.org/10.1371/journal.pone.0270148.9001

Fig 2. An example of a non-planar graph.

https://doi.org/10.1371/journal.pone.0270148.9002
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Fig 3. Chemical bonds of an octane compound CgH, 3 having more than one junction nodes.

https://doi.org/10.1371/journal.pone.0270148.9003

as 0 and 1, and vice versa. As a consequence, some vertices may have the labels 0 and 1, and
the origin of each edge is not constant; it fluctuates depending on the path of motion along the
border. We are not obliged to normalize the length of each edge using the provided adjust-
ment, and we may also pick one of the associated edge’s two vertices as the origin using such
procedures.

There are two points on each edge where unknown functions’ boundary values and their
q—derivatives are linearly combined. This study shows that the anonymous functions’ integral
is a multiple of these combinations. Additionally, it is worth noting that the solutions derived
for the proposed boundary value problem (1.1) can be applied in various chemical graph the-
ory applications. As a result, we assert that this generic concept may be beneficial to future
work by young scholars.

On the other hand, numerous advanced fractional modeling techniques are discussed in
the literature, notably (but not limited to) the well-known Caputo and Riemann-Liouville
operators (for the detail, see [39-45]). This decade has seen the introduction of several novel
modifications of the Hadamard, Caputo-Hadamard, and Hilfer operators and numerous sim-
ulation efforts using these new operators (for the detail, see [46-50]). Fabrizio and Caputo sug-
gested a new formulation of a fractional framework without singularity six years ago (see [51]).
Shortly after this work, Nieto and Losada concentrated on significant computational aspects
(see [52]). The inclusion of nonsingular operators resulted in many research publications on
fractional modeling (for example, see [53-55]).

This study aims to establish the existence of solutions to the specified boundary value prob-
lem (1.1) by using well-known fixed point techniques. Finally, two examples are presented to
emphasize the significance of our results in this field of study.

& és &g 11 814 &y &0 é23 &z
| — ——»| M

Fig 4. A structure of an octane compound CgH, g with labeled vertices 0 or 1.

https://doi.org/10.1371/journal.pone.0270148.g004
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2 Preliminaries

The succeeding results will be needed in the following sections.
Definition 2.1 ([51]). Let p > 0. The Caputo fractional derivative of order p for a function
Z € C*([a, b],R) is defined by

! )/5 (=) EY(Qds (1—1<p<z 1=[pl+1).

PO

For p > 0, the general solution of D’y(s) = 0 is given as
y(s) =z,tzs+ 2252 et Zn—lsn_17

wherez, e R, k=0,1,....,n-1(n-1<p<nn=[p]+1).
Lemma 2.2. Suppose that y € C ([0, 1],R). Then y* : [0,1] — R is a solution of

Dy(s) =y(t) (s<[0,1]),

u0) -+ P¥O) =, [ ¥ o)
1)+ @) = [ ¥

if and only if y* is a solution of the integral equations stated below

) = /Us%wg)m(m_%) / | Er v

F2—q)(p—2t( s — 1)) %
+(2( = )y + (2 — q))> (2:2)

B o pede s =t [
[F(p)/o (1= oy e+l [ —af e .

Proof. Let y* : [0,1] — R isa solution of (2.1). Also, there are constants z,, z, € R such that

o= S%w@m fatas 23)

Using the boundary conditions for (2.1), we have

(u;—m)/ [ S )d’dg‘(mg—ﬁfﬁiﬁ_ﬁr<2—q>>>x
{fo g o)ds + /01<1r(pgf;)lw<g>dg},

0 (%>{“1/01%WW€+ ”Z/OI%W(QMQ}.

Substituting the values of zy and z; in (2.3), we get the solution (2.2). On the converse part,
it is clear that y* can be consider as a solution for (2.1) if y* is a solution of (2.3).

We now present the Krasnoselskii and Schaefer fixed point theorems, respectively.

Theorem 2.3 ([56]). Let P be a closed, bounded, convex, and nonempty subset of a Banach
space BandU,, U, : P — B are two operators satisfying the following conditions:

1. Uyja+U,b € Pforalla,b € P;

2y
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2. U, is compact and continuous on P;

3. U, is a contraction mapping on P, that is, there is an ¢ € [0, 1) such that
[ Usa—Usb [[<olfa—b]

foralla,b € P.

Then U, + U, has a fixed point.

Theorem 2.4 ([56]). Let B be a Banach space. If U : B — B is a completely continuous
function, that is, U is continuous and totally bounded, then either the set {a € B : a =
n U a for some n € (0,1)} is unbounded or U has at least one fixed point in B.

3 Main results

We define the Banach space B = {y : [0,1] — R : y, D%, y,y" € C ([0,1],R)} having the
norm

lyllz= sup ly(s)| + sup [Dy(s)| + sup [y'(s)] + sup [y"(s)].

s€(0,1] s€(0,1] s€(0,1] s€(0,1]

Furthermore, it is obvious that 5 = B is a Banach space with

25
1y =01 Yo 90) s = Dl i Ml
k=1

Also, by addressing Lemma 2.2, we can define an operator If : 3 — B for each
(V1> Y25+ -+ ¥a5) € Bby

UG as 3 Yos) =UL D1 Yoy Y05) Us (15 Yoy - s) oo sUns (P10 D, -+ 005)), - (3:1)
where for each k=1,2, ...,25,U, : B — B is defined for each (y,,,,...,y,) € Bby
UeD1: Yo -+ 25) (5)

- [%Zk(@’yk(c),D"yk(c)w’k(c),y’k/(c))dc

‘E)Pl . ,
Jr(ﬂq _— ) fo ﬁ) T(p) Zk(f7yk(f)apyk(f)v)’k(f)y

"(t))dt (2—q)(pus —2t(py — 1)) (3-2)
yi(x))drds + (2( s — 1) (py+ (2 — Q))> )

Hy

2 [ 0= 20 P 6 1)

+#iq) /0 (1 —c)”1Zk(c7yk(c)»quk(c%y’k(c),y’k’(c))ciC]

foralls € [0, 1].
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For the ease of calculations, we use the following abbreviations:

|45
P+ +——
— s — F'2—9q) 21 —
M= e (s it are=an) (53
|| |,
<F(P+1)+F(p—q+1))’
D= ! L | 1]
M T TR gk H1F(2—q)|(F(p+1)+r(p—q+1)>’ (34)
1 1 | Iy
Moo Ip) ' Ju+ M1F(2—q)|<F(p+1)+r<p_q+1))a (3.5)
. 1
M = Tp-1) (3.6)
- 51 T2 —q)2m —
f = L(p+2)|u; — u1|+(l2( ty = 1) ( By + M1F(2—Q))>X 67
( |,u1| + |.“2| ) ’
Ilp+1) T(p—q+1))
- 1 || ||
L = (2 —q)lu, + ,ulr(Z—q)|<F(p_|_1) p(p_qﬂ)), (3.8)
= 1 |:u1| |1u2|
L= T u1F(2—q)I<F(p+1) F(pq+1))' (3.9)

Theorem 3.1 Consider the fractional boundary value problem (1.1). Assume that
2,2, ..., 2,5 :]0,1] x R x R x R x R — R are continuous functions and there are con-
stants Q, > 0, forallk=1,2, ..., 25 with

|Zk(57 21,22,23,24)| S Qk

forallz,,z,,z,,z, € R,s €0, 1]. Then (1.1) has a solution.

Proof. The fixed points of U given in (3.1) exist if and only if (1.1) has a solution, as shown
by the consequence of (3.2). To demonstrate this, we must first prove that I/ is completely
continuous.
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As Z,Z,,..., 2, are continuous, therefore I/ : B — B is continuous too. Let O € Bbea
bounded setand y = (y,, y,, ..., ¥o5) € B, so for each s € [0, 1], we have

[(Uy)(s)]

S(S_g)p—l ) i o |:“5
< A Fi(}))‘zk(svyk(ﬁ)’pyk(5)’yk( ) yk( ))I :u1|/ /

9 (1) v (2). v (D) dede 4+ — L2~ )Iur t( Hy — u1)|
X|Zk(f7yk(r)’pyk( )J’k( )’)/;(( ))‘d d5 + |2( Ly — 'ul)( 'u2+ 'ull"(2_q))|

|, | 1 -1 ~ ) B ) |
F(p)/o (1= 120600 DD A AG N + s

X /0 (l—c)”1|Zk(c,yk(c)7quk(c),yi(g)%(@))lds]

(s—9"" Iud / / r2-gq
d dvdc + ——
/0 T Tl Qs T, — u]

[ lh)| | o wl [ e
+ I, + 1, (2 —q)] X [F(p)/ (1-59) deC+F<Pq)/0 (1-¢) deg]

|5
+1) 4
(v iy — ull+ T2 —q)2un, — w ( || N |, | )

T(p+2) 20— w)(m+ pI2=qg)[\I'p+1) Tlp-q+1)

IN

IN

&

= QkMza

where M is given in (3.3). Also,

(DU
(s=9) N e st
< /OF@ S IZ6 M) PR A A + o e
’ “@) [ 0= 2@ DA A AN + L
/0 (1= "2 (e, p(c), quk(g),y’k(c),y’k’(c))dzl
<

1 1 1| |,
Qk[r@q+1> Tt wf@—q) (r<p+1> +r<pq+1>>]
— QkM
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and
@0] < [ TG R PRDADAOIE + gy
y lrlﬁ(tp I) | 0= 120 D) A e

e S w1zk@,yk(g),Dﬂyk<s>,y;<;>,y;:<g>>|dg]

IN

1 1 |:u1| |,u2|
% {np)*mﬁ T2 = q)] <r<p+1>+r<p—q+1>>]
= QkM;

for all s € [0, 1], where M| and M; are defined in (3.4) and (3.5), respectively. Similarly,
(Up)E)] < QM
for all s € [0, 1], where M is given in (3.6). Therefore
U llz < QMg+ M+ M, + M;).

Hence,

Uy s

25
Z” Uy Iz
k=1

25

< QUM+ M+ M+ M)
k=1

< oo,

which reveals that I/ is uniformly bounded.
To prove the equicontinuity of the operator U, welet y = (¥,, ¥, ..., ;) € Oand s, s, €
[0, 1] with s; < s,. Then we have

[(Uy)(s,) = UY)(s)]

- / RS e Gt
0 I(p)

i /12 % 1245, 7(), Dy(€), i), 5 () s

12,(¢, () Dy,(6), (), ¥ (<)) de

S8
X
‘/“‘2 + .u1r(2 - Q)|

1
'u - J/ 7 'LL
+| ol / (1= 124 &) D)) e + 2l
0

T(p) I'p—9q)

/U (1= 126, 22(0), D), (), 4 (0)lde | -

It is clear that if s; — s, then, independently, the right-hand side of the above equation con-
verges to zero. Also

lim [(D'U,y)(s,) = (D'UY)(s,)| = 0,

$1—89
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and
Jim U)(52) = U)(s)] = 0, i @) (s2) = ) (s)] = 0.
Hence, we deduce that the operators U, (k =1,2,...,25) are equicontinuous, which

implies that I{ is equicontinuous. The Arzela—Ascoli theorem now entails the complete conti-
nuity of the operator.
Further, we define a set

Y={ (s Yor 0 05) € B (013005 905) = MUG 1 Y55 955), 1 € (0,1)}
on B. Now, we will prove that Y is bounded. For this, let (y1, ¥», . . ., ¥25)€Y. Then, we can write
D15 Yar -5 ¥25) = MU a5+ 5¥55)
and so
Yi(8) = nUY, s -5 755))(5)s
forallse [0,1]and k=1, 2, ..., 25. Thus,

7()]
(s—9"

) q / (A |:u5| ' ; (C — T)P_l
/0 ) IZk(wk(c),Dyk(c)vyk(c),yk(s))ldc+r_ M/O /U IO

(2 —q)|ps — 2t( s — )|
|2( Uy — :“1)( U + le(Q - m))|

{#&&A(1_gy4ZAQ”@%DWA@JK@JHQ»MC

< 1

|12(t, (1), Dy(2), 74(2), ¥ (7)) |dede +

+fé?%ﬂl‘“_qu”Zﬁgn@LDWAOJKQJﬂd)x}]

< 7 QkM;>
and by similar computations, we have
D% (s)] nQM;,

e (s)l noM,,
i(s)) < nQM;,

IN

IN

where M — M; are given in (3.3)-(3.6). Hence,

2%
[y =01Yer-00) Is = ZH Vi llg
k=1

N

25
< Y QUM+ M; + M+ M;)
k=1

< oo,

which demonstrates the boundedness of the operator Y. Now, using Lemma 2.2 and Theorem
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2.4, it is clear that the operator U has a fixed point. Consequently, (1.1) does indeed have a
solution.

We shall now investigate the solution of (1.1) by applying various conditions.

Theorem 3.2 Consider the fractional boundary value problem (1.1). Suppose that
Z.,..., 24 1 [0,1] x R x R x R x R — R are continuous functions and there are bounded
continuous functions IC,, ..., Koy : [0,1] = R, R, ..., Ry : [0,1] — [0, 00) and nondecreas-
ing continuous functions oy, . . ., 0s: [0, 1] — [0, oo] such that

124(5,2,, 25, 25, 2) | < Ry (s)a,(|2,] + |2| + |z5] + [2,])
and
|24(s, 27, 25,25, 2;) — Z,(5, 21, 2,23, 2,) | S K ($)(|2] — 20| + |25 — 2] + |25 — 2| + |2} — 2,])

foralls€[0,1], 2,25, 25,25, 2, 29, 25,2, € Rand k=1,2, ..., 25.If

25
M=(Ly+ L+ L)Y K Il <1,

k=1

then (1.1) has a solution, where || K, || = sup,, | |IC,(s)| and the constants L-L; are given in
(3.7)-(3.9), respectively.
Proof. For each k=1, 2,...25,let | R, || = sup, )| R;(s)| and for suitable constants v,

we have

25
@ 2 Do,y lls) | R MG+ MG+ M+ M}, (3.10)

k=1
where M| — M are given in (3.3)-(3.6). We define a set
Owkzz{y = (yuyzﬂ s 7)/25) €B: ” y ||B < wk}v

where @, is defined in (3.10). It is obvious that O_, be a closed, nonempty, bounded, and con-

vex subset of B = B, x B, X ... x B,;. Now, we have i, and U, which are define on O, as

(ugl)(yuyw e 7)’25)(5)a e au?s)(yuyw s ,)’25)(5)),
(u;1>(y1,y27 s Yas) () 7“&25)@1>)’27 s Y5)(5))

Uy (1, Y, - - ,)’25)(5)
Us(15 Vs -+ 25)(8)

where

wne = [ o (0 D) ) () e (3.11)
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and

U )

<#;— ul)/ / g_f - (1, 7:(1), Dy (1), (1), yi () )drds

( F(2—q)u3—2t(u3— Hy) >><
2y — 1)+ wI'(2—q))

(3.12)

X / (1= 0" Zu(e () DWl0),24(0), 71 (0))) e

Hy
+
Lp—4q)Jo
fOI'aHSE [0 1] and)"@ﬁ»)’muw)’m) € O

Letg, = supykeBka(H Yk ||Bk) Now, for everyz = (21,23, 255), Y = (V13 Y0s -+ 1 Va5) €
0,,, wehave

/ (1= oY " 2 7(2), Dyil), i)yt (c))dgl

@z + U)(6)
= D) 2 () (e [
| 12,626 D640 4@ + 2 [ [ B

T
0 (2. v (1) o () e U2 —q)lps — 2ty — 1)
|Z,(7.34(0), DYy, (2), ¥, (1), i (7)) | dede + 20— 1)1+ pLC—q))]

F“Zzlj) /0 (1= 12u(2(9), D9, 24(0), 24 (9))lde + r(;LM?—' q)

IN

/0 (1= 0 2 (0), D), 4(0), 1 (0)) e

IN

/OS(S‘(;);Rk<g>ok(zk<c>| D720 + ()] + 12 )')d”m

/ C_T (Do (O] + D ()] + ()] + [y (0)]) dede

(2—q)lu3— t( s — )l
120 45 — ) (py + (2 —q))|

r"éi,') /0 (1= )" "R (@) (1%: ()] + 1D ()] + ()] + [y ()]) de

+

s [ - T R (6] + D)+ A + DO

|,u3|
1) 4l
P+ D+ r@ - 2 — u)

F(PJFZ) |2( Ky — /11)( My + ﬂlF(Q_m)”

IN

IRl 0

|, | |, | )
X(F(p+1)+r(p—q+1)
= || Ry |l 6:Mq,
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and
DU () + DULY(s)
< / (r(‘pg_)m) 12406, 2(0), D(0),54(6), A s + s iqum =
S XS IER MERAERAEIS
+%/{)] (1- c)”1|Zk(c7yk(§)>quk(g)wi(c)’yﬁé(c))ldc]
= IR lf@ —1q+ D TE- q>|u2+1 w2 =q) (ru'fl' 0Tk |—#Z|+ 1))

= [ Rl oM.
By using similar computations, we have

|@P2)'(s) + Uyy) (5)]

IN

) (S B Q)IFZ ~ q, [~ ~ I ~ 1
| Fo 126 506, D6, 40, L + o

FVZ;J') /o e AT AS R SACBACSACNIES

+% /0 (1— o |2, yk(g),quk(cw'k(c),y’k’(g))ldc]
|,

B 1 1 i, |
7l ak[r(p)+|u2+ W2 —m)| (F(p+1)+l"(p—q+1)>}
= [ Ry |l 6,:M;,

IN

also
(U 2)"(s) + UYY)"(5)] < || Ry || 5M;.

This yields that

2
Dl UPz Uy Iy,

k=1
I R Il 6 (M + M+ M, + M)

< w,

| Uz +Usy |5

IN

and so U,z + U,y € O_, . Additionally, continuity of Z, entails the continuity of /.

We now need to demonstrate that ¢/, is uniformly bounded. This is why, we have

|@y)(s)]

IN

/0 S%gk@, 2(0) Dl€) 1il8). ¥ (0)))lds

1

< oD | R Il o (17e(S)] + D)) + ()] + [ (9)1)-
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forallye O_ . Also,

(s — S i / /"
EUE < [ S 120 PR
1 / "
< Tp—q+1) I R | (17| + D] + ()] + i (o)1)
and
! 1 ! /!
@y ()] < ) I Ry F o (vl + D7 (9] + ()] + i (9)]),
" 1 / /"
(@) (o)) < =1 IRy | o ()] + 1Dy ()] + i)l + i (9)1)
forally € O_ . Thus,
25
Ity lls = D IUPyls
k=1

pPP+1 1 k)
e A e DM LN EX A B!

It shows that the operator ¢/, is uniformly bounded on O_, . Here, we need to prove the

compactness of I/, on Owk. For this, let s, s, € [0, 1] with s; < s,, we have

U y)(s2) = Uy (s)

= /052%Zk@%(g)vD"yk(c)w’k(c),yﬁi(@))d;
_/051(Slr_i(;rzk(@’yk(@)’quk(c)vy’k(c)w’k’(c))dg

= USI (SQ_Q)P]r(_p)(51_gy1 Z,(c2(0), DUyi() 24(0), yi (<) ) de]
" /j%Zk@’yk(g%D"yk(c),yk(c),yz’(;))dg‘

< [N T e, PO
+/5,52%|Zk(€’yk(€)7quk(c),yi(c),yl(c))ldc

Sg - 5117 - (52 — SI)P (32 — SI)P
< { T +r@+n}nnmamwmw.

Hence, |(UMy)(s,) — (UPy)(s,)] — 0ass; — s,. Also, we have

lim [(DUy) (s,) — (DU ) (s,)| = 0,

$1—89
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and
Bim @4) (5) = @) ()] =0, Hm @) () = @) s =0
Hence, we deduce that the operators U, (k=1,2,...,25) are equicontinuous, which

implies that I{ is equicontinuous. The Arzela-Ascoli theorem indeed reveals the compactness
of the operator ¢/, on O, .

Lastly, we need to prove that U, is a contraction mapping. For this, lety,z € O_ . Thus, we
have

@2)(6) ~ U )
wl [ [ _ )
[ SR 00 0] + 1) - D)

F(Q - m)|,“5 - Qt( U3 — .“1)|
2y — w)( i+ 1, 0(2 —m))|

+12(7) = 7 (D] + 12{(x) =y (r)[)drde + |

rll&)/o (1= )" 'Kul6) (lz(6) = 3] + [D2(6) = D ()]) + [zi(6) = ¥ (<))

HELE) =DM+ s [ 1= 9 K (6) - 06)

+Dz(c) — Dy (0)]) + |z.(c) — ¥l + 12{(c) — ¥ (c))de

< IR Lol 2=y Ml
foreachk=1,2,...,25, where £ is given in (3.7). Also, by the similar computations, we have

sup |(DUy'2)(s) — (DU y) ()] <[ K Il £31] 25 = i -

s€[0,1]

sup [(Uyz)'(s) = (UYy) () < || Ky I L3l 2 =y Il

s€[0,1]

sup [(Uy2)"(s) — (Uyy)"(s)] < 0.

5€[0,1]

where £] and £} are given in (3.8) and (3.9), respectively. Thus, we have
25
| Uz = Uy |l = Z” uék)z - u(zk)y I
k=1

25
< (LHL L)Y N 2=y s,
k=1

and so
| Upz = Usy |l < Ml 2=y |-

As M < 1, which means that i/, is a contraction on O, . We deduce that I possesses a

fixed point that is a solution to the fractional boundary value problem (1.1) as a consequence
of Theorem 2.3.
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4 Examples

In this section, we present the following two examples to illustrate the relevance of our key

findings.

Example 4.1 Consider the system of differential equations given below

__ earctany,(s)

D],S
yl (S> 5000

5000

DI.E))’Q (s)

1000
elys)”

1.5

+0.0002¢° sin(D" "y, (s)) +

= 0.008ssin y,(s) +

80s siny; (s)

30¢'[y, (s)]’
150000(1 + [y, (s)]*)

e sinh™' y/(s)

)

160s[D" %y, (s)]*
2000 + 2000[D" "y, (s)]*

8ssinh ™' y,(s)
1000

)

2¢* sinh ™' y,(s)

D7) = 2500(1 + [y,(s)]

20000

with boundary conditions

2

2y,(0) + 8(D"",(0))
2y,(1) +8(D""y, (1))

27,(0) + 8(D""y,(0))

+0.0004¢° sin(D"*y,(s)) +

) 5000

8e* arctan y; (s)

i

2y,(1) + 8(D""y,(1))
2y,(0) + 8('D0408y3(0))

2y;(1) +8(D""y,(1))

where p = 1.5, 9 = 0.08, 1 =2, 4, = 8 and y3 = 10.
Let Z,,2,,2,:[0,1] x R x R x R x R — R are continuous functions given by

Z,(5,2,,2y, 23, 2,)

Zy(5,2,, 25,23, 2,)

23(5,21722,Z3,z4)

- % +0.0002¢ sin z,
30¢(z)”
150000(1 + [z,])
160s[z,)*
2000 + 2000(z,]*
80s sinz)
1000 ’

efsinh ™' 2/
5000 ’

= 0.008ssinz, +

8ssinh™' zZ,
1000
_el]
2500(1 + [z,])
2¢° sinh ™’ z;
5000

+ 0.0004¢’ sin z,

8e’ arctan z)
20000 ’
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foralls € [0,1], z,,2,,2;,2, € R, whereas Z,, Z;,..., 25 : [0,]] x RXR xR x R — Rare
zero functions. For each s € [0, 1], z}, 2}, 25, 2}, 2,, 2, 23, 2, € R, we have

|21(S7ZI’Z;’Z§’ZZ) = Z,(s, Z1,22>Z3vz4)|

< g | t * t | Jr | : * : | + I:Z:;)*]2 [Zé]2
arctan z} — arctan z sinz, — sin z, -
= 5000 ! ' ’ N R 7 L I A
+|sinh " 2 — sinhlz4|>
es kg * * hs
< qul — 7|+ |2 — 2| + |25 — 2] + |2 — 2,),
12,(s, 27,25, 25, 2;) — Z,(5, 21,25, 23, 2,)|
8 . . 5]’ 2]’ S S
< —— | |sinzf —sinz, | + 2 — + |sinh™ zZ(s) — sinh™ z,(s
+|sinz} — sinz4>
85 kg x * *
< qul — gl +1z — 2|+ 7 — 2| + |2 — 2))),
|Z3(5>ZI>Z§72§722) - 23(57 21722723az4)|
< d Al - =] + [sinz} — sinz,| + |sinh ' 2} — sinh 'z,
— 2500 1+ [Zﬂ2 1 + [Z1]2 2 2 3 3
+|arctan zj — arctan z4|>
eS K * * K
< m(h — |tz — | +17 —z| + |2} — z,])-
Here, K,(s) = ﬁJCz(S) = IS%JC:;(S) = ﬁa and K,(s) = Ky(s) = -+ - = Ky(s) =0,
where [| K || = o5 | Ky [ = 65, | Ks | = 5 and [| K, [ =1 K5 || =+ = Ky | =0.

Letg,,0,,...,0. : [0,00) — R are identity functions. Then we obtain

e : [Z:/]2 -
|Z,(s,21,25,25,2,)] < £000 <|arctanz1|+|s1nz2|+ Tizg]z + |sinh z4|>
eS
< m(|z1| + 2| + |z5] + |24])

foralls € [0, 1], z,, z,, 2, 2, € R. Also,

[22]2 .

2

8s . .- .
265,202 202)| < oo <|smzl + + [sinh”'z,| + |smz4|>

8s
w(|zi| + |z,| + |Zsl + |z,])

IN

PLOS ONE | https://doi.org/10.1371/journal.pone.0270148  August 12, 2022 17/24


https://doi.org/10.1371/journal.pone.0270148

PLOS ONE Fixed point approach to study the existence of solutions. . .

and

e [z ]z . L1
Z.(8,2,,29,25,2 < L |+ |sinz,| + |sinh~'z,| + [arctan z
| 3( 17 %27 %3 4)| = 2500( 1+[Z1]2 |1 z| |1 3| | 4|>
eS

foralls € [0, 1], z,, z,, 25,2, € R.
Moreover, the continuous functions R, R,, ..., Ry : [0,1] — R are defined by

e 8s e
R =ga000 Rl =150 Reld) = 5500

Also,
L, ~0.6741, L] ~0.8155 and £, ~0.7902,
and so
Lo+ L+ L ~2.2798.
Hence

Me=(Ly + L1+ L)+ 1 [+ 1 ) = 0.0219 < 1.

It can be seen that all the conditions of Theorem 3.2 are satisfied, therefore, the proposed
problem (4.1)-(4.2) has a solution.
Example 4.2 Consider the system of fractional differential equations given below

48[D"y, ()]s
3000 + 3000[D"*y, (s)]
64s[sin y"(s)]°
4000(1 + [sin y/(s)]*)
. 2
_ 51[smy2'(s)] e . 17¢ sin(D",(s))
9000(1 + [siny,(s)]") 3000
34[arctan y,(s)] e
6000 + 6000[arctan y,(s)]* 15000
2 DO.S 2
22 ygu(:f)] N > sinh ™ y4(s)
20000(1 + [D™?y,(s)]") ~ 5000
16s[sin y!(s)]*
10000 4 10000]sin y(s)]*

5 16
D) =1on

1000 5>+ 0.016ssinh ™" y/, (s)

sinh 'y, (s) +

D'7y,(5)

-1

sinh™ y; (s)

D'Py,(s) = 0.0016sarctan y,(s) +
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with boundary conditions

wherep = 1.75,q = 0.3, p, =, p, = sfand uy = . Let Z,, Z,, Z,: [0,1] x R x R x
R x R — Rare continuous functions given by

48[z,
= sinhflz1 + —[ZQ] S 5
1000 3000 + 3000z,

Z,(s, Zl,Z2,Z3,Z4)

64s[sin z,)”
4000(1 + [sinz,]*)’

4 0.016ssinh ™'z, +

B 5le‘fsinz,]’ 17¢
9000(1 + [sinz,]*) = 3000

Z,(8,2,,2y,25,2,) sinz,
34[arctan z,)’e* 85¢°

+ sinh~'z,,
6000 + 6000[arctan z,> 15000 !

32s[z,]°

Z.(s,2,,2,,2,,2,) = 0.0016sarctanz, + ————
3( 1742743 -1) 1 20000(1 + [22]2)

N 8s inh~'2, + 16]sin z4]25. .
10000 + 10000[sin z,]

si
5000

foralls € [0,1], z,,2,,2;,2, € R,whereas Z,, Z;,..., Z, : [0,]] x RXxR xR x R — Rare
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zero functions. For each s € [0, 1], 7}, 25, 25, 25, 2,, 2, 23, 2, € R, we have

|2,(s,2},25,25,2;) — Z,(5, 21,2, 23,2,)|

16s o o ;] [z,]°
< —— | |sinh' z¥ —sinh 'z, | + 2 S o
1000 (' ! !l 1+ [z 1+[z)
a - [sin 23] [sinz,]”
+|sinh ™ z; — sinh™ z,| + - — —
1+ [sinz;]” 1+ [sinz,]
16 2 K Kk
< 1000(|Z1 Zl|+‘22_Z2|+‘23_Z3|+|Z4_Z4|)7
|24(s,21, 25,235, 2;) — Z5(5, 21,25, 23, 24)|
< 17¢ [sin 2] [sinz,]* +|sinz; — sinz|
— sinz} — sin
= 3000 \ |1+ [sinz:]® 1+ [sinz,]’ ’ ’
2 2
tan z; t .
[arctan 23 — [arctan z,] | Jsinh ! 22 — sinh 'z,
1+ [arctanzi]” 1+ [arctanz,]
17 ? * * *
< 3000(|Z1 z| +12 — 2| + |25 — 25| + |2 — z4),
|Z4(s,21, 23,235, 2;) — Z5(5, 21,25, 23, 24|
8s [2)° 2]’
< —— | |arctanz’ — arctanz, | + 2 S o
5000 (' ! !l 1+ [z 1+[z)
4 4 [sin 23] [sinz,]’
+|sinh ™ z; — sinh™ z,| + —— — —
1+ [sinz;]” 1+ [sinz,]
8s . .
< qul zl|+\22—z2|+\zd—zj|+|z4 Z4|)

Here, K (s) = 285, K,(s) = 255, Ky () = 25, and K, (5) = K(s) = ... = Ki(s) = 0,
where | K, [|= 25, | K, 1= 225,11 K, l|= 5. and | K, (=11 K, = ... =I| Ky |I= 0. Let

01,0, ...,04 : [0,00) — R be identity functions. Then we obtain

16s (., [2,]” i [sinz,)”
Z.(8,2,,25,25,2 < sinh” ' z,|+ | —=—— | + |sinh” z,| + | —————
12,652,202 2) 1000(| TR R R P e
16s
< szl +lal + el + Jz).
Also,
17¢ [sinz,]’ [arctan z,]° )
Z,(5,2,,2y,25,2,)] < L + |sinz,| + | ——3— | + |sinh 'z,
2o mzmznz)] < 3000<1+[Sin21]2 sinz| | e |+ sinh 7z
17e
< 3OOO(|Zl| + |2,| + |2z5] + |24])
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R, (s)

and
8s [2,)° L [sinz,]’
Z.(s,2,,2,,2:,2,)] < —— | |arctanz, |+ 2 + |sinh 'z, | + | ———
| 3( 1242943 -1>| 5000 <| 1| 1 + [ZQ]Q | 3| 1 + [sinz4]2
8s
< m(‘ZJ + |Zz| + |Zs‘ + |Z~1|)7
foralls € [0, 1], z,, 2,,2,, 2, € R.
Furthermore, the continuous functions R, R,, ..., Ry : [0, 1] — R are defined by
16s 17e 8s
=——1 R,(5)=—+ 5(8) = —— d R,(s) =Ry(s) = R =0
o Ry =z Ry(s) =i, and Ry(5) = Ryls) a(9)
Also,
L£,~1.803, L£;~0.819 and £, ~0.745,
and so
L,+ L+ L ~3.367.
Hence

Me=(Ly + Ly 4 L) Ky [ [+ 1 ) = 0.077 < 1.

It can be seen that all the conditions of Theorem 3.2 are fulfilled, hence, the boundary value
problem (4.1)-(4.2) has a solution.

5 Conclusion and open problems

Chemical graph theory is a branch of mathematics in which graphs represent the molecular
structures of chemical compounds, and specific mathematical challenges are studied using the-
oretical and analytical methodologies. In recent decades, the fast growth of this subject has
resulted in the development of various ground-breaking and novel ideas and techniques for
conducting such research. Several researchers have used the structure of star graphs to investi-
gate the solutions of fractional differential equations. They used star graphs because their
approach requires a center node with interconnections to nearby vertices but no node-to-node
connections. Since, in general, the graphs can have several junction nodes, therefore in this
article, we introduced the idea of an octane graph. We have analyzed a graph with vertices
labeled by 0 or 1, which is inspired by a graph representation of the octane compound, and for-
mulated fractional differential equations on each of its edges. The existence of solutions results
to the suggested fractional differential equation have been investigated by utilizing the Krasno-
selskii and Schaefer fixed point theorems. In the end, we presented two examples to demon-
strate the importance of our findings.

Here, we give the following open problems for the interested readers.

Problem 1: Can we extend this idea to the circular ring type graphs?

Problem 2: Can we use another method that can guarantee the conclusion of the proposed
results?

We also pose the stability of the proposed fractional differential equation (1.1) as an open
problem.

PLOS ONE | https://doi.org/10.1371/journal.pone.0270148  August 12, 2022 21/24


https://doi.org/10.1371/journal.pone.0270148

PLOS ONE

Fixed point approach to study the existence of solutions. ...

Acknowledgments
This study was supported by Thammasat Postdoctoral Fellowship.

Author Contributions

Conceptualization: Wutiphol Sintunavarat, Ali Turab.
Data curation: Wutiphol Sintunavarat, Ali Turab.
Formal analysis: Wutiphol Sintunavarat, Ali Turab.
Investigation: Wutiphol Sintunavarat, Ali Turab.
Methodology: Ali Turab.

Project administration: Ali Turab.

Resources: Ali Turab.

Software: Wutiphol Sintunavarat, Ali Turab.
Supervision: Wutiphol Sintunavarat.

Validation: Wutiphol Sintunavarat, Ali Turab.
Visualization: Wutiphol Sintunavarat, Ali Turab.
Writing - original draft: Wutiphol Sintunavarat, Ali Turab.

Writing - review & editing: Wutiphol Sintunavarat.

References
1. Biggs NL. Algebraic Graph Theory. Cambridge: University Press; 1974.

2. Cartwright D, Harary F. Structural balance: a generalization of Heider’s theory. Psychological Review.
1958; 63(5): 277-293. https://doi.org/10.1037/h0046049

3. Mattuck RD. A Guide to Feynman Diagrams in the Many-Body Problem. New York: McGrawHill; 1967.

4. Avondo-Bodino G. Economic Applications of the Theory of Graphs. New York: Gordon & Breach;
1962.

5. Harary F. Graph Theory and Theoretical Physics. New York: Academic Press; 1967. https://doi.org/
10.1063/1.3035700

6. Lane R. Elemente der Graphentheorie und ihre Anwendung in den biologischen Wissenschaften. Leip-
zig: Akademischer Verlag; 1970.

7. Culik K. Application of Graph Theory to Mathematical Logic and Linguistics. Prague: Czechoslovak
Academy of Sciences; 1964.

8. Korach M, Hasko L. Acta Chem. Acad. Sci. Hung, 1972; 72, 77.
9. Hage P, Harary F. Structural Models in Anthropology. London: Cambridge University Press; 1983.

10. Flament C. Applications of Graph Theory to Group Structure. New Jersey: Prentice-Hall, Englewood
Cliffs; 1963.

11. Lissowski A. Theoretical consideration on movement of the myxomycete plasmoida. Dislocation and
geometry of plasmoidal network on cylinders and cones. Acta Protozoologica. 1972; 11: 131-136.

12. Roberts F. Applications of Combinatorics and Graph Theory to the Biological and Social Sciences.
New York: Springer-Verlag; 1989.

13. Johnson DE, Johnson JR. Graph Theory with Engineering Applications. New York: Ronald Press;
1972.

14. Even S. Graph Algorithms. London: Pitman; 1979.

15. Cliff A, Haggett P, Ord K. Graph Theory and Geography. In: Wilson RJ, Beineke LW, editors. Applica-
tions of Graph Theory. London: Academic Press; 1979. Ch. 10.[196, 2.3, 362].

16. Rouvray DH. Graph theory in chemistry. Royal Institute of Chemistry Reviews. 1971; 4: 173-195.
https://doi.org/10.1039/rr9710400173

PLOS ONE | https://doi.org/10.1371/journal.pone.0270148  August 12, 2022 22/24


https://doi.org/10.1037/h0046049
https://doi.org/10.1063/1.3035700
https://doi.org/10.1063/1.3035700
https://doi.org/10.1039/rr9710400173
https://doi.org/10.1371/journal.pone.0270148

PLOS ONE

Fixed point approach to study the existence of solutions. ...

17.
18.
19.

20.

21.

22,
23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Gutman |, Trinajstic N. Graph Theory and Molecular Orbitals. Topics Curr. Chem. 1973; 42: 49-93.
Balaban AT. Chemical Applications of Graph Theory. London: Academic Press; 1976.

Slanina Z. An interplay between the phenomenon of chemical isomerism and symmetry requirements:
A perennial source of stimuli for molecular-structure concepts, as well as for algebraic and computa-
tional chemistry. Computers & Mathematics with Applications. 1986; 12: 585-616. https://doi.org/10.
1016/0898-1221(86)90413-X

King RB, Rouvray DH. Chemical applications of topology and group theory. Theoret. Chim. Acta. 1986;
69: 1-10. https://doi.org/10.1007/BF00526287

King RB. Chemical Applications of Topology and Graph Theory. USA: Elsevier Science Publishers;
1983.

Prelog V. Nobel Lecture. December 12, 1975. Reprinted in: Science. 1976; 193. 17.

Lynch MJ, Harrison JM, Town VG, Ash JE. Computer Handling of Chemical Structure Information. Lon-
don: Macdonald and Co; 1971.

Carthart RE, Smith DH, Brown H, Djerassi C. Applications of artificial intelligence for chemical inference.
XVII. Approach to computer-assisted elucidation of molecular structure. Journal of the American Chem-
ical Society. 1975; 97(20): 5755-5762. https://doi.org/10.1021/ja00853a021

Trinajstic N, Nikolic S, Knop JV, Muller WR, Szymanski K. Computational Chemical Graph Theory:
Characterization, Enumeration and Generation of Chemical Structures by Computer Methods. Chich-
ester: Ellis Horwood Ltd; 1991.

Corey EJ. Centenary lecture. Computer-assisted analysis of complex synthetic problems. Quarterly
Reviews. Chemical Society. 1971; 25(4): 455-482. https://doi.org/10.1039/QR9712500455

Hendrickson JB, Grier DL, Toczko AG. A logic-based program for synthesis design. J. Am. Chem. Soc.
1985; 107(18): 5228-5238. https://doi.org/10.1021/ja00304a033

Lumer G. Connecting of local operators and evolution equations on a network. Lect. Notes Math. 1985;
787:219-234. https://doi.org/10.1007/BFb0086338

Gordeziani DG, Kupreishvli M, Meladze HV, Davitashvili TD. On the solution of boundary value problem
for differential equations given in graphs. Appl. Math. Lett. 2008; 13: 80-91.

Zavgorodnii MG, Pokornyi YV. On the spectrum of second-order boundary value problems on spatial
networks. Usp. Mat. Nauk. 1989; 44:220-221.

Graef JR, Kong LJ, Wang M. Existence and uniqueness of solutions for a fractional boundary value
problem on a graph. Fract. Calc. Appl. Anal. 2014; 17: 499-510. https://doi.org/10.2478/s13540-014-
0182-4

Mehandiratta V, Mehra M, Leugering G. Existence and uniqueness results for a nonlinear Caputo frac-
tional boundary value problem on a star graph. J. Math. Anal. Appl. 2019; 477(2): 1243—1264. https://
doi.org/10.1016/j.jmaa.2019.05.011

Turab A, Sintunavarat W. The novel existence results of solutions for a nonlinear fractional boundary
value problem on the ethane graph. Alex. Eng. J. 2021; 60(6): 5365-5374. https://doi.org/10.1016/j.aej.
2021.04.020

Turab A, Mitrovi¢ ZD, Savi¢ A. Existence of solutions for a class of nonlinear boundary value problems
on the hexasilinane graph. Adv Differ Equ. 2021; 494: 2021. https://doi.org/10.1186/s13662-021-
03653-w

Ali W, Turab A, Nieto JJ. On the novel existence results of solutions for a class of fractional boundary
value problems on the cyclohexane graph. J Inequal Appl. 2022; 5: 2022.

Etemad S, Rezapour S. On the existence of solutions for fractional boundary value problems on the eth-
ane graph. Adv Differ Equ. 2020; 276: 2020. https://doi.org/10.1186/s13662-020-02736-4

Rezapour S, Deressa CT, Hussain A, Etemad S, George R, Ahmad B. A theoretical analysis of a frac-
tional multi-dimensional system of boundary value problems on the methylpropane graph via fixed point
technique. Mathematics 2022; 10(4): 568. https://doi.org/10.3390/math10040568

Baleanu D, Etemad S, Mohammadi H, Rezapour S. A novel modeling of boundary value problems on
the glucose graph. Communications in Nonlinear Science and Numerical Simulation 2021; 100: 1007—
5704. https://doi.org/10.1016/j.cnsns.2021.105844

Shah K, Khan RA. Existence and Uniqueness Results to a Coupled System of Fractional Order Bound-
ary Value Problems by Topological Degree Theory. Numerical Functional Analysis and Optimization
2016; 37(7): 887-899. https://doi.org/10.1080/01630563.2016.1177547

Shah K, Ali A, Khan RA. Degree theory and existence of positive solutions to coupled systems of multi-
point boundary value problems. Bound Value Probl. 2016; 43: 2016. https://doi.org/10.1186/s13661-
016-0553-3

PLOS ONE | https://doi.org/10.1371/journal.pone.0270148  August 12, 2022 23/24


https://doi.org/10.1016/0898-1221(86)90413-X
https://doi.org/10.1016/0898-1221(86)90413-X
https://doi.org/10.1007/BF00526287
https://doi.org/10.1021/ja00853a021
https://doi.org/10.1039/QR9712500455
https://doi.org/10.1021/ja00304a033
https://doi.org/10.1007/BFb0086338
https://doi.org/10.2478/s13540-014-0182-4
https://doi.org/10.2478/s13540-014-0182-4
https://doi.org/10.1016/j.jmaa.2019.05.011
https://doi.org/10.1016/j.jmaa.2019.05.011
https://doi.org/10.1016/j.aej.2021.04.020
https://doi.org/10.1016/j.aej.2021.04.020
https://doi.org/10.1186/s13662-021-03653-w
https://doi.org/10.1186/s13662-021-03653-w
https://doi.org/10.1186/s13662-020-02736-4
https://doi.org/10.3390/math10040568
https://doi.org/10.1016/j.cnsns.2021.105844
https://doi.org/10.1080/01630563.2016.1177547
https://doi.org/10.1186/s13661-016-0553-3
https://doi.org/10.1186/s13661-016-0553-3
https://doi.org/10.1371/journal.pone.0270148

PLOS ONE

Fixed point approach to study the existence of solutions. ...

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Wang J, Shah K, Ali A. Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched
coupled evolution equations. Math Meth Appl Sci. 2018; 41: 2392—2402.

Turab A, Sintunavarat W. A unique solution of the iterative boundary value problem for a second-order
differential equation approached by fixed point results. Alex. Eng. J. 2021; 60(6): 5797-5802. https://
doi.org/10.1016/j.a€j.2021.04.031

Baleanu D, Etemad S, Rezapour S. On a fractional hybrid integro-differential equation with mixed hybrid
integral boundary value conditions by using three operators. Alexandria Engineering Journal 2020; 59
(5): 3019-3027. https://doi.org/10.1016/j.aej.2020.04.053

Baleanu D, Etemad S, Rezapour S. A hybrid Caputo fractional modeling for thermostat with hybrid
boundary value conditions. Bound Value Probl. 2020; 2020: 64. https://doi.org/10.1186/s13661-020-
01361-0

Thabet ST, Etemad S, Rezapour S. On a coupled Caputo conformable system of pantograph problems.
Turk. J. Math. 2021; 45(1): 496-519. https://doi.org/10.3906/mat-2010-70

Mohammadi H, Kumar S, Rezapour S, Etemad S. A theoretical study of the Caputo—Fabrizio fractional
modeling for hearing loss due to Mumps virus with optimal control. Chaos, Solitons & Fractals 2021;
144. https://doi.org/10.1016/j.chaos.2021.110668

Matar MM, Abbas MI, Alzabut J, Kaabar MKA, Etemad S, Rezapour S. Investigation of the p-Laplacian
nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv Differ
Equ. 2021; 68:2021. https://doi.org/10.1186/s13662-021-03228-9

Alizadeh S, Baleanu D, Rezapour S. Analyzing transient response of the parallel RCL circuit by using
the Caputo—Fabrizio fractional derivative. Adv Differ Equ. 2020; 55: 2020. https://doi.org/10.1186/
$13662-020-2527-0

Baleanu D, Rezapour S, Saberpour Z. On fractional integro-differential inclusions via the extended frac-
tional Caputo—Fabrizio derivation. Bound Value Probl. 2019; 79: 2019 https://doi.org/10.1186/s13661-
019-1194-0

Baleanu D, Etemad S, Pourrazi S, Rezapour S. On the new fractional hybrid boundary value problems
with three-point integral hybrid conditions. Adv Differ Equ. 2019; 473: 2019. https://doi.org/10.1186/
s13662-019-2407-7

Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Frac-
tional Differentiation and Applications. 2015; 1(2): 1-13.

Losada J, Nieto JJ. Properties of a new fractional derivative without singular kernel. Progress in Frac-
tional Differentiation and Applications. 2015; 1(2): 87-92. https://doi.org/10.12785/pfda/010202

Sintunavarat W, Turab A. Mathematical analysis of an extended SEIR model of COVID-19 using the
ABC-fractional operator. Mathematics and Computers in Simulation 2022; 198: 65—84. https://doi.org/
10.1016/j.matcom.2022.02.009 PMID: 35194306

Aydogan MS, Baleanu D, Mousalou A, Rezapour S. On high order fractional integro-differential equa-
tions including the Caputo—Fabrizio derivative. Bound Value Probl. 2018; 90: 2018. https://doi.org/10.
1186/s13661-018-1008-9

Baleanu D, Mohammadi H, Rezapour S. Analysis of the model of HIV-1 infection of CD4+ T-cell with a
new approach of fractional derivative. Adv Differ Equ. 2020; 71: 2020. https://doi.org/10.1186/s13662-
020-02544-w

Smart DR. Fixed Point Theorems. Cambridge University Press; 1990.

PLOS ONE | https://doi.org/10.1371/journal.pone.0270148  August 12, 2022 24/24


https://doi.org/10.1016/j.aej.2021.04.031
https://doi.org/10.1016/j.aej.2021.04.031
https://doi.org/10.1016/j.aej.2020.04.053
https://doi.org/10.1186/s13661-020-01361-0
https://doi.org/10.1186/s13661-020-01361-0
https://doi.org/10.3906/mat-2010-70
https://doi.org/10.1016/j.chaos.2021.110668
https://doi.org/10.1186/s13662-021-03228-9
https://doi.org/10.1186/s13662-020-2527-0
https://doi.org/10.1186/s13662-020-2527-0
https://doi.org/10.1186/s13661-019-1194-0
https://doi.org/10.1186/s13661-019-1194-0
https://doi.org/10.1186/s13662-019-2407-7
https://doi.org/10.1186/s13662-019-2407-7
https://doi.org/10.12785/pfda/010202
https://doi.org/10.1016/j.matcom.2022.02.009
https://doi.org/10.1016/j.matcom.2022.02.009
http://www.ncbi.nlm.nih.gov/pubmed/35194306
https://doi.org/10.1186/s13661-018-1008-9
https://doi.org/10.1186/s13661-018-1008-9
https://doi.org/10.1186/s13662-020-02544-w
https://doi.org/10.1186/s13662-020-02544-w
https://doi.org/10.1371/journal.pone.0270148

