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The complete understanding of the mammalian brain requires exact knowledge of the

function of each neuron subpopulation composing its parts. To achieve this goal, an

exhaustive, precise, reproducible, and robust neuronal taxonomy should be defined.

In this paper, a new circular taxonomy based on transcriptomic features and novel

electrophysiological features is proposed. The approach is validated by analysing

more than 1850 electrophysiological signals of different mouse visual cortex neurons

proceeding from the Allen Cell Types database. The study is conducted on two different

levels: neurons and their cell-type aggregation into Cre lines. At the neuronal level,

electrophysiological features have been extracted with a promising model that has

already proved its worth in neuronal dynamics. At the Cre line level, electrophysiological

and transcriptomic features are joined on cell types with available genetic information.

A taxonomy with a circular order is revealed by a simple transformation of the first two

principal components that allow the characterization of the different Cre lines. Moreover,

the proposed methodology locates other Cre lines in the taxonomy that do not have

transcriptomic features available. Finally, the taxonomy is validated by Machine Learning

methods which are able to discriminate the different neuron types with the proposed

electrophysiological features.

Keywords: neuronal taxonomy, statistical model, cell-type classification, allen cell types database, machine

learning, frequency modulated Möbius model, FMM

1. INTRODUCTION

Understanding the nervous system’s mechanisms and capabilities, such as the conscience and
cognition, remain one of the most challenging and interesting unresolved problems in biology.
It requires a precise description of the structure and function of each brain region, including
the study of the neuronal circuits and neurons composing them. Furthermore, one fundamental
prerequisite in this subsequent structural division study is the creation of a solid neuronal
cell-type classification or taxonomy. As Zeng and Sanes (2017) explain, cells in the nervous system
should be hierarchically classified into different levels, mainly into classes, subclasses and types.
This property makes the taxonomy define relationships between cell types, as well as making
it easier to update in the light of new information. At class level, cells are classified into non-
neuronal cells and neurons, which in turn can be classified into excitatory and inhibitory neurons,
local and projection (Melzer and Monyer, 2020 and references therein). Excitatory neurons are
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habitually morphologically spiny, have a long apical dendrite,
and exhibit less variability in their electrophysiological features.
Inhibitory neurons are broadly aspiny, have a more compact
dendritic structure and tend to spike faster. Also, at class level,
neurons can be classified based on their neurotransmitter into
GABAergic and glutamatergic. The latter are mostly excitatory
and brain-area specific, while the former are broadly inhibitory
and not-area specific. Neuron subclasses can be defined with
different methods. In particular, Cre recombinase-dependent
reporter transgenic mouse lines are used here. Moreover,
many authors consider GABAergic neurons to belong to four
classes based on the expression of certain principal markers:
Pvalb (parvalbumin) positive, Vip (vasoactive intestinal peptide)
positive, Sst (somatostatin) positive, and cells that express Htr3a
(5-hydroxytryptamine receptor 3A) but are Vip negative. These
groups are suitable for classification because they account for
nearly the totality of neurons in certain brain regions as well as
being largely expressed in a non-overlapping manner revealing
neuron types with different properties (Tremblay et al., 2016).
On the other hand, glutamatergic neurons can also be grouped
based on gene markers, such as Cux2 (Cut like homeobox 2),
Rorb (RAR related orphan receptor B), or Ctgf (Connective
tissue growth factor), or alternatively based on their laminar
locations and the locations to which they project their axons.
Aside from these previous statements, the different studies
unearth discrepancies in terms of number of neuronal types,
their characteristics, and the existing order between them as is
reviewed in the next paragraph.

The definition of a solid neuronal taxonomy is a challenging
task. Heterogeneity between cells arises due to different
electrophysiological, morphological, and/or genetic features, but
also due to differences in cell age, environmental conditions,
and other sources of noise. Another concerning issue is the
reproducibility of the approach. The open challenge of creating
a neuronal taxonomy has recently generated many studies,
mainly due to the increase in data availability as well as
the rise in data computational methods. A recent overview
of the matter can be found in Zeng and Sanes (2017). In
particular, the taxonomy of the mouse visual cortex cells has
been the focus of recent research. In Tasic et al. (2016, 2018),
taxonomies based on transcriptomic characteristics obtained

Abbreviations: ACTD, Allen cell types database; AP, action potential curve;
AvNNet, model averaged neural network; CPCA, circular principal components
analysis; FMM, frequency modulated Möbius; GBDT, gradient boosting decision
trees; L2-6, layers 2 to 6; LDA, linear discriminant analysis; MLE, maximum
likelihood estimator; PCA, principal components analysis; RF, random forest;
RNA, ribonucleic acid; SDK, software development kit; SVM, support vector
machine; Chat, choline o-acetyltransferase; Chrna2, cholinergic receptor nicotinic
alpha 2; Ctgf, connective tissue growth factor; Cux2, cut like homeobox 2; Esr2,
estrogen receptor 2; Gad2, glutamate decarboxylase 2; Glt25d2, glycosyltransferase
25 domain containing 2; Htr3a, 5-hydroxytryptamine receptor 3A; Ndnf, neuron
derived neurotrophic factor; Nkx2.1, NK2 homeobox 1; Nos1, nitric oxide synthase
1; Nr5a1, nuclear receptor subfamily 5 group A member 1; Ntsr1, neurotensin
receptor 1; Oxtr, oxytocin receptor; Pvalb, parvalbumin; Rbp4, retinol-binding
protein 4; Rorb, RAR related orphan receptor B; Scnn1a, sodium channel epithelial
1 alpha subunit; Sim1, single-minded homolog 1; Slc32a1, solute carrier family
32 member 1; Sst, somatostatin; Tlx3, T-cell leukemia homeobox protein 3; Vip,
vasoactive intestinal peptide.

from single RNA sequencing are presented. Electrophysiological
taxonomies are predominantly based on patch-clamp recordings
of neuron membrane potential signals that contain action
potential curves (APs), as is done in Ghaderi et al. (2018) and
Teeter et al. (2018). Furthermore, Gouwens et al. (2019) presents
a taxonomy based on the combination of electrophysiological
and morphological features, while part of this taxonomy is
expanded with transcriptomic features in Gouwens et al. (2020).

It should be noted that electrophysiological features are easier
tomeasure than other types of features and can be simultaneously
recorded on hundreds of cells using scalable techniques such
as optical imaging of electrical activity (Zeng and Sanes, 2017).
Furthermore, taxonomies based on this type of features are easier
to reproduce. However, the features traditionally used in this
type of taxonomy lack interpretability as they are not directly
related to the observed potential difference signal. Most of these
studies extract the features with dimensional reducing techniques
(as is the case of Ghaderi et al., 2018 or Gouwens et al., 2019
among others) or the features are model parameters such as
the leaky integrate and fire models (as in Teeter et al., 2018). A
brief overview of the latter models can be found in Lynch and
Houghton (2015).

The aim of this paper is to derive an electrophysiological-
transcriptomic circular taxonomy of visual cortex Cre lines,
using data from Mus Musculus of the Allen Cell Types database
(ACTD; http://celltypes.brain-map.org). This database is freely
available and has been the reference data for many authors,
such as Teeter et al. (2018) and references therein. On the one
hand, the electrophysiological features at Cre line level are the
median of those generated at the cell level from fitting a frequency
modulated Möbius (FMM) model to the observed cell signals.
The FMMmodel is a flexible model defined by 13 parameters that
accurately describes the AP shape. The monocomponent FMM
model is presented in Rueda et al. (2019) andmodel extensions to
analyse neuronal dynamics are shown in Rueda et al. (2021) and
Rodríguez-Collado and Rueda (2021). Some relevant and robust
theoretical properties of the model are shown in the former
paper while, in the latter, an FMM representation of the famed
Hodgkin-Huxley model is proposed.

On the other hand, the number of core cells by genetic
cluster and Cre line from Tasic et al. (2016) has been used as
transcriptomic features. Finally, the morphological features have
not been used as they are sparsely available compared to other
kinds of measurements and they seem to be not as discriminant
for Cre lines as the other kinds of features, as seen in Gouwens
et al. (2020).

The formulation of a circular taxonomy is one of the most
original aspects of this work. Many studies devoted to generate
taxonomies provide visualizations based on circular tree in
which any two nodes in the tree can be connected by lines to
combine different quantitative information. The circular tree is
just an alternative display of the habitual linear layout. Different
computational tools have been developed to provide such a
visualizations, in particular to represent genomic data (Moore
et al., 2020 is among the most recent ones). Besides, principal
component analysis (PCA) combinedwith hierarchical clustering
has been considered in different disciplines and taxonomies are
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visualized in the plot of the two first principal components
(Argüelles et al., 2014; Žurauskienė and Yau, 2016; Gautier et al.,
2019 among others).

Our proposal can be seen as a combination of a visualization
tool, as it uses a circular tree, and as a combined clustering
approach that uses the circular order defined with the two first
principal components. The dissimilarity measure is a circular
distance instead of a Euclidean distance and the location of
clusters in the circle is derived from the location of the clusters in
the two dimensional plane of the two first principal components.
Thus, this is not just a visualization tool, but a genuine
circular taxonomy.

Finally, the proposed taxonomy is validated by showing
that signals from different neuronal cell types are accurately
discriminated by the FMMmodel parameters.

2. MATERIALS AND METHODS

2.1. Statistical Methods
Let X(ti) denote the potential difference in the neuron’s
membrane at each of the observed time points ti, i = 1, ..., n.
The latter are assumed to be in [0, 2π]. Otherwise, consider
t′ ∈ [t0,T + t0] with t0 as the initial time value and T as the
period. Transform the time points by t = (t′−t0)2π

T .
In this section, the statistical methods used in the manuscript
are described. These include the FMM model, circular
principal components analysis (CPCA) and, Machine Learning
supervised methods.

2.1.1. FMM Model
The proposed model to analyse AP data is a three-component
FMMmodel, as defined in Rueda et al. (2021) which implies that
each AP is modeled using three waves, labeled A,B, and C. The
physiological meaning of these waves is given below, after the
mathematical presentation.

Mathematically, the waves are defined as follows:

WJ(t) = W(t,υJ) =

= AJ cos

(

βJ + 2 arctan

(

ωJ tan

(

t − αJ

2

)))

,

J ∈ {A,B,C} (1)

where υJ = (AJ ,αJ ,βJ ,ωJ)′ is a four-dimensional parameter
describing the shape of the wave. The A parameter represents
the wave amplitude whereas α is a location parameter. The
parameters β and ω determine the skewness and kurtosis of the
wave. More details about the interpretation of the parameters can
be found in Rueda et al. (2019).

Moreover, the FMM model is defined as a signal plus error
model, as follows:

X(ti) = µ(ti, θ)+ e(ti) =

M +
∑

J∈{A,B,C}

W(ti,υJ)+ e(ti), i = 1, ..., n (2)

where,

• θ = (M,υA,υB,υC) verifying:

1. M ∈ ℜ; υJ ∈ ℜ+ × [0, 2π]× [0, 2π]× [0, 1]; J ∈ {A,B,C}
2. αA ≤ αB ≤ αC

• (e(t1), ..., e(tn))′ ∼ Nn(0, σ 2I).

The restrictions on the αs guarantee identifiability.
Other important parameters of practical use are peak and

trough times, denoted by tUJ and tLJ , respectively, and the
distances between the model waves, denoted by dJK . All of them
are defined as follows:

tUJ = αJ + 2 arctan

(

1

ωJ
tan

(

−βJ

2

))

;

tLJ = αJ + 2 arctan

(

1

ωJ
tan

(

π − βJ

2

))

J ∈ {A,B,C} (3)

dJK = 1− cos(αJ − αK) J,K ∈ {A,B,C}, J 6= K (4)

The papers Rueda et al. (2021) and Rodríguez-Collado and Rueda
(2021) provide model properties as well as detail the algorithm
used to fit the models. In particular, the second paper presents
a restricted FMM model for AP trains, while in the first one
data from ACTD is concisely analyzed. Also, the associated
phase space of the model is studied and relevant properties
are provided.

In Figure 1, the fitted FMM model prediction and wave
decomposition of postsynaptic APs from a GABAergic neuron
(Figure 1A) and a glutamatergic neuron (Figure 1B) are shown.
WA represents the repolarization and, partly, the depolarization
while WB describes the end of the depolarization, and the
hyperpolarization. Glutamatergic cells tend to have wider APs
with a bigger amplitude (values of βA smaller than π and
higher values of ωA and AA) than GABAergic cells. Furthermore
interesting differences can be observed between the two types in
terms of the parameters of WB, particularly in βB and ωB. The
third wave, WC, is heteromorphous: in some cases, this wave
completes the AP shape (as is typical in GABAergic neurons),
while in other cases it accounts for potential differences before
and after the spike (as happens in most of the glutamatergic
neurons). Also, WA, WB, and WC seem to be related to the
potassium, sodium, and calcium conductances that appear in
Gouwens et al. (2018).

2.1.2. Circular Principal Components Analysis (CPCA)
The CPCA is a procedure that generates a circular variable which
gathers the maximum variability. A basic reference is Scholz
(2007). Briefly, given a data base in matrix form, let e1 and e2
be the first two eigenvectors extracted with principal component
analysis (Hastie et al., 2009). Consider the transformation
in which the eigenvectors are projected onto the unit circle
as follows:

(e1,i, e2,i) =





e1,i
√

e21,i + e22,i

,
e2,i

√

e21,i + e22,i



 ∀i ∈ 1, ..., n (5)
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FIGURE 1 | FMM analysis of postsynaptic APs from GABAergic and glutamatergic neurons. First row: FMM prediction (solid line) and observed signal (dashed line) of

postsynaptic APs from a GABAergic neuron (A) and a glutamatergic neuron (B). Rows 2− 4: Models’ corresponding wave decomposition (WA in red, WB in blue and

WC in green) along with their parameters.

A circular order can be defined with θi = arctan
(

e1,i
e2,i

)

,∀i ∈

1, ..., n, which is called the first circular principal component.

2.1.3. Machine Learning Supervised Methods
Various Machine Learning supervised methods have been
considered in the paper. The simple linear discriminant analysis

(LDA) method serves as benchmark for the results while,
at the other extreme, the complex and “black box” methods
support vector machines of polynomial kernel (SVM) and
model averaged neural network (AvNNet) methods have been
considered. The former habitually achieves outstanding results
in neuronal dynamics, as seen in Teeter et al. (2018) among

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 684950

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rodríguez-Collado and Rueda Circular Taxonomy of Cortical Neurons

others. In between these two extremes, interpretable ensembles
of decision tree methods have been used, particularly random
forest (RF), which has been proved to attain great results
without requiring precise hyperparameter tuning (as explained in
Fernandez-Delgado et al., 2014) and gradient boosting decision
trees (GBDT), also capable of achieving outstanding results while
not being as popular (Zhang et al., 2017). Brief descriptions
of these methods are provided in the Supplementary Material

based on Hastie et al. (2009) and Izenman (2008).

2.2. Dataset
The ACTD includes electrophysiological data of high temporal
resolution of membrane potential from individual mouse
recordings. A signal from each mouse neuron in the ACTD
has been analyzed; particularly the signal generated by the short
square stimulus with the lowest stimulus amplitude that elicited
a single AP. A small set of neurons that elicited two APs with
the selected stimulus were initially discarded for the analysis. See
Allen Brain Institute (2015) to learn about the stimulus types
applied in the database. Each signal has been preprocessed and
analyzed according to the algorithm described shortly after.

A total of 1,892 experiments, from mouse cells of 24 different
Cre lines, have been analyzed. Beforehand, experiments from
three Cre lines were discarded as they did not have a sufficient
sample size (<10 observations). The distribution of signals
according to Cre line is given in Table 1, whereas their full
names are described on the abbreviations section. Illustrated
colors correspond to the different Cre lines in all figures. To
facilitate the reading, the appearance order of the Cre lines in
the table goes in accordance with the order proposed later in
the paper. Throughout the manuscript, the characteristics of
each Cre line have been illustrated in two different ways: using
median values and using representative neurons, selected from
among the neurons in the Cre line with the highest goodness
of fit that had all the extracted features between the 5th and
95th percentiles.

2.2.1. Transcriptomic Features
In order to incorporate genetic information in the study, the
number of core cells by genetic cluster and Cre line have been
grouped into eight genetic markers: Ndnf, Vip, Sst, Pvalb, L2-
L4 (layers 2-4), L5 (layer 5), L6 (layer 6), and non-neuronal.
Some Cre lines present in the current study were not present
in the aforementioned paper. These Cre lines without available
transcriptomic features have been marked with an asterisk (*)
throughout the paper.

2.3. Programming Languages
The experimentation has been developed combining Python
and R. Python has been used for data acquisition and
transformation using the functions provided by Allen SDK
(Allen Institute, 2015), while R fits the FMM models with
the corresponding package available at the Comprehensive R
Archive Network (https://cran.r-project.org/package=FMM) and
analyses the results.

The R packages (Venables and Ripley, 2002; Karatzoglou
et al., 2004; Chen and Guestrin, 2016; Breiman et al., 2018;

TABLE 1 | Number of cells of each Cre line by neuronal class.

Cre line Total Exc. Inh.

Pvalb 214 0 214

Slc32a1∗ 27 0 27

Nkx2.1 48 0 48

Ndnf 92 23 69

Gad2∗ 19 0 19

Htr3a 159 10 149

Sst 120 2 118

Nos1 67 6 61

Oxtr∗ 46 19 27

Chrna2 70 25 45

Chat 67 0 67

Vip 122 19 103

Cre line Total Exc. Inh.

Ctgf 59 55 4

Tlx3∗ 40 40 0

Sim1∗ 30 30 0

Glt25d2∗ 10 10 0

Ntsr1 67 62 5

Esr2∗ 30 29 1

Rbp4 87 86 1

Scnn1a-Tg2 53 48 5

Rorb 173 150 23

Scnn1a-Tg3 89 86 3

Cux2 79 78 1

Nr5a1 84 83 1

Cre lines without available transcriptomic features are marked with *.

Ripley, 2020) and the auxiliary package for learning procedures
caret (Kuhn, 2018) have been used to implement the Machine
Learning procedures.

Moreover, the libraries Shiny (Chang et al., 2020),
Shinydashboard (Chang and Borges Ribeiro, 2018), and
ggplot2 (Wickham, 2016) have been considered to develop a
Shiny dashboard app.

2.4. Implemented Algorithm
A flowchart of the preprocessing procedure and the estimation
algorithm is depicted in Figure 2. First of all, in the preprocessing
stage, the APs in the signal are extracted. Each AP segment is
defined as [tS−2d, tS+3d], with tS denoting the time of the spike’s
peak and d the time needed by the neuron to spike following the
application of the stimulus. In real cases where the application
time of the stimulus is unknown, a similar procedure can be
applied preserving the uneven cut proposed, such as [tS−2k, tS+
3k], being k a particular amount of time normally inmilliseconds.
It is assumed that the segments to be analyzed represent complete
APs, in particular, X(t1) ≃ X(tn).

In a second stage, the parameters are estimated with the
backfitting algorithm implemented in the package FMM of the
programming language R, first presented in Fernández et al.
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FIGURE 2 | Flowchart of the implemented algorithm to analyse the AP signals with the FMM model, which includes four stages: AP extraction, FMM parameters

estimation, wave assignation, and outlier detection.
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(2021). Three iterations of the backfitting algorithm are executed
to extract the three waves. In each iteration, a single FMM wave
is fitted to the residue of the previous iterations. The backfitting
algorithm is repeated until the goodness of fit increase between
two successive iterations is not significant. From a theoretical
point of view, the backfitting algorithm is a standard procedure
to find the maximum likelihood estimator (MLE) in additive
semiparametric and non-parametric models (to learnmore about
the algorithm, see Hastie and Tibshirani, 1986). Besides, the
experience in simulated and real data shows that the failure in
convergence to the MLE does not likely happen (Rueda et al.,
2021). From a computational point of view, the backfitting
algorithm is efficient.

In the next stage the wave assignation is done. The proposed
procedure is firstly presented in this paper and is specific to this
study. Let the subscripts i = {1, 2, 3} denote the three estimated
waves initially given by the backfitting algorithm. The labels A,B,
and C are assigned as follows:

1. WA = Wj/j = argmaxi=1,2,3 Ai.
2. Assuming the WA = W1, WB = Wj/j = argmini=2,3 dAi,

except in cases where |dA2 − dA3| < 0.05 and
min(d(β2, 2π), d(β3, 2π)) < 0.3, with d(βi, 2π) being
the distance between the β parameter and 2π . In these cases
WB = Wj/j = argmini=2,3 d(βi, 2π).

3. Finally,WC is the remaining wave.

The model is validated with the R2 statistic, which is the
proportion of the variance explained by a model out of the total
variance, as follows:

R2 = 1−

∑n
i=1(X(ti)− µ̂(ti, θ))2
∑n

i=1(X(ti)− X)2
(6)

where X is the neuron’s mean potential difference and µ̂(ti)
represents the fitted value at ti, i = 1, ..., n. Finally, signals with
multiple outlier values in significant parameters of the model
related to the Cre line distribution have been discarded.

3. RESULTS

3.1. FMM Features for Cell Type
Characterization
The FMM model gives an accurate fit of the observed signals,
the R2 global mean ± standard deviation being equal to
0.9868 ± 0.0066. GABAergic neurons are slightly better fitted as
their mean R2 is 0.9903±0.0054, while for glutamatergic neurons
it is 0.9823±0.0053. A Shiny app has been developed to illustrate
the differences in the typical APs of the various GABAergic
and glutamatergic Cre lines. It can be accessed through
https://alexarc26.shinyapps.io/median_ap_profile_by_cre_line/.
The interface of the app, which is shown in Figure 3, consists
basically of two parts: in the top half the median APs, along with
their wave decomposition by Cre line, are depicted, while the
controls of the main figure are in the bottom half. These include
the possibility of selecting the different Cre lines of the database
(up to nine different can be selected simultaneously), selecting

just inhibitory or excitatory neurons, and selecting whether the
wave sum or the parameters of the model should be plotted.

A total of 40 cells have been discarded due to having multiple
outlier values.

The boxplots for the main parameters of the model by Cre
line are plotted in Supplementary Figures 1–5. In these figures,
the parameter values of the representative neurons from each
Cre line have been highlighted as stars. These plots illustrate
the potential of various parameters to discriminate between
the different Cre lines such as βA, ωB, and sin(βC). The plots
also show that the GABAergic neurons exhibit more variability
in their electrophysiological features, as Gouwens et al. (2019)
points out.

Furthermore, the differences between Cre lines are apparent
not only in the time domain, but in the associated phase space.
In Figure 4, the fitted FMM models and associated phase space
of representative examples of GABAergic Cre lines (Figure 4A)
and glutamatergic Cre lines (Figure 4B) are shown. The APs
from GABAergic neurons exhibit mainly spiky patterns with a
pronounced depolarization before the spike threshold, whereas
the APs of glutamatergic neurons are wider and have a more
prolonged hyperpolarization. The phase space representations
reveal differences between classes and Cre lines, specifically in
terms of the perimeter, area, and shape of the “nose.”

3.2. Circular Taxonomy
The taxonomy is defined at Cre line level. For this purpose,
the median values of the electrophysiological features by Cre
line have been used (note that the stimulus amplitude has not
been considered to derive the circular taxonomy), along with
the transcriptomic marker features. Due to notable distribution
differences between the two feature sets, separate PCAs have
been conducted.

Firstly, the electrophysiological features PCA is conducted
and two components are extracted (explained variance: 82.40 %).
The correlation of the variables with the extracted components
and the Cre lines’ PCA projections and CPCA transformations
are depicted in Supplementary Figures 6, 8. The different Cre
lines are distinguished in the circular disposition and it is
possible to tell apart most of the glutamatergic from GABAergic.
This order is used later to place Cre lines without having
any transcriptomic feature available in the taxonomy. The
blank space between the Pvalb and Nr5a1 Cre lines observed
in Supplementary Figure 8 corresponds to non-neuronal cells,
unavailable in the studied data.

Secondly, six components are extracted from the
transcriptomic features as their explained variance was
medium to low (93.47%). The correlation of the variables
with the extracted components and the Cre lines’ PCA
projections and CPCA transformations are depicted in
Supplementary Figures 7, 9. It is particularly relevant to
note that the transcriptomic CPCA only distinguishes three
groups of Cre lines.

One final ensemble PCA is conducted with the extracted
electrophysiological and transcriptomic components. The
corresponding CPCA is shown in Figure 5, which is one of the
main results of this study. The figure shows the order between
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FIGURE 3 | App interface. (Top) Cre lines’ median APs (dashed lines) along with the wave decomposition (solid lines). (Bottom) Interface controls for the selection of

the Cre lines and the displayed elements.

Cre lines and the circular distance between two consecutive Cre
lines, represented by the arc amplitudes. The main novelty of the
defined taxonomy is its circular topology, unlike the previous
linear proposals. Moreover, for the first time to our knowledge,
some Cre lines have been located in a taxonomy. Nevertheless, a
relevant difference with respect to other proposals, such as those
of Gouwens et al. (2019) and Tasic et al. (2016), is that the Ndnf
and Htr3a Cre lines turn out to be similar to other GABAergic
neurons, and not to non-neuronal cells. Further details of the
final PCA results can be found in Supplementary Figure 10.

The taxonomy is in agreement with others derived recently
for mouse visual cortex neurons in several aspects. First, Cre
lines that have similar characteristics are kept together (Vip and
Chat, Htr3a and Ndnf, Pvalb and Nkx2.1 among others) as in
Zeng and Sanes (2017) and Tasic et al. (2016). Second, the non-
neuronal cell position between the GABAergic Pvalb Cre line and
the glutamatergic Nr5a1 and Cux2 Cre lines -present in the upper
layers of the visual cortex- coincides with the taxonomy of Tasic
et al. (2018). Within the glutamatergic neurons, the Ctgf and
Ntsr1 Cre lines -common in deeper layers- are the most similar
in characteristics to the GABAergic neurons. In particular, this
disposition is like those in Gouwens et al. (2019) and Tasic et al.
(2016), after rearranging the results of the latter study, as can be
seen in Supplementary Figure 11.

In order to validate the taxonomy, five transcriptomic-
electrophysiological subclasses have been defined using Figure 5.
These include four major GABAergic subclasses and one
glutamatergic subclass specified in Table 2. In the next
subsection, Machine Learning methods are used to discriminate
these subclasses at neuronal level.

3.3. Cell-Type Classification
This classification problem, which is conducted at the cell
level, has been addressed by other authors in many different
ways, varying features and other factors such as the number,
composition, and definition of the subclasses or the selection of
cells to be classified.

In this study, the FMM derived features have been considered.
Specifically, 37 features have been used, including the basic
parameters, peak and trough times -and their model values-,
the explained variance of each wave and the distance between
waves. Also, the cell’s reporter status and the origin layer
have been considered as predictors. Several Machine Learning
methods were tested. Note that some classifiers assume that the
predictors are Euclidean, but α and β are circular parameters.
The former and βA can be considered Euclidean as they take
values concentrated in a small arc. However, sine and cosine
transformations are applied to both βB and βC.

All the classifiers except LDA had their hyperparameters tuned
in a prior training-validation step. Afterwards, a 10-fold cross
validation was performed on the tuned classifier to estimate its
discrimination capacity. The dataset was divided into 10 equally
sized splits. In 10 iterations, nine of the subsets were used to
train the model, while the tenth serves as test. The discrimination
capacity was evaluated in terms of the accuracy, percentage of
observations correctly classified, and the kappa statistic, which
measures the improvement over a random classification. A
general overview of these matters can be found on Hastie et al.
(2009).

The classification problem was tackled in three different
stages. The results can be seen in Table 3. In the first stage (A),
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FIGURE 4 | AP shape and phase space for the representative neurons of each Cre line. (Top) FMM predictions (solid lines) and observed AP signals (dashed lines) of

representative neurons of GABAergic Cre lines (A) and glutamatergic Cre lines (B). Bottom: corresponding trajectories in the phase space. Cre lines without available

transcriptomic features are marked with *.
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FIGURE 5 | Proposed circular mouse cortical cell taxonomy. Cre lines without available transcriptomic features are marked with *.

TABLE 2 | Defined subclasses and Cre lines composing them.

1. Pvalb+ 2. Htr3a+ 3. Sst+ 4. Vip+

Pvalb Slc32a1∗ Nkx2.1 Ndnf Gad2∗ Htr3a Sst Nos1 Oxtr∗ Chrna2 Chat Vip

5. Glutamatergic

Ctgf Tlx3 ∗ Sim1 ∗ Glt25d2∗ Ntsr1 Esr2 ∗ Rbp4 Scnn1a-Tg2 Rorb Scnn1a-Tg3 Cux2 Nr5a1

Cre lines without available transcriptomic features are marked with *.
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TABLE 3 | Cross-validated accuracy and kappa statistic of the different Machine Learning methods in the discrimination of the subclasses (left, best performer classifiers

are marked in bold) and cross-validated confusion matrix of the best performer classifier -AvNNet in all cases- (right) in each of the defined stages.

(A) Raw 5 subclass classification

Accuracy (%) Kappa True class

Pvalb+ (%) Htr3a+ (%) Sst+ (%) Vip+ (%) Glut. (%)

LDA 66.1 0.519

P
re
d
ic
ti
o
n

Pvalb+ 86.9 10.7 12.2 3.7 0.7

RF 73.8 0.628 Htr3a+ 7.9 48.2 6.6 10.0 1.1

GBDT 73.4 0.622 Sst+ 4.5 18.9 60.7 6.3 1.2

SVM 74.1 0.632 Vip+ 0.7 5.9 2.6 35.4 2.0

AvNNet 75.2 0.648 Glut. 0.0 16.3 17.8 44.4 94.9

(B) Clean 5 subclass classification

Accuracy Kappa True class

Pvalb+ (%) Htr3a+ (%) Sst+ (%) Vip+ (%) Glut. (%)

LDA 72.0 0.608

P
re
d
ic
ti
o
n

Pvalb+ 86.9 12.6 13.1 4.1 0.0

RF 77.9 0.688 Htr3a+ 6.6 54.9 8.8 10.0 0.4

GBDT 77.8 0.688 Sst+ 5.5 18.6 72.5 4.7 0.8

SVM 79.1 0.703 Vip+ 0.7 7.6 2.8 46.5 2.9

AvNNet 80.3 0.723 Glut. 0.4 6.3 2.8 34.3 95.9

(C) 4 subclass classification

Accuracy (%) Kappa True class

Pvalb+ (%) Sst+ (%) Vip+ (%) Glut. (%)

LDA 80.1 0.690

P
re
d
ic
ti
o
n Pvalb+ 93.1 14.7 4.7 0.2

RF 84.7 0.769 Sst+ 6.5 79.9 6.5 0.6

GBDT 85.2 0.773 Vip+ 0.4 3.6 58.8 3.9

SVM 86.0 0.786 Glut. 0.0 1.8 30.0 96.9

AvNNet 87.5 0.810

(C+) 4 subclass classification, including the stimulus amplitude feature

Accuracy (%) Kappa True class

LDA 80.9 0.706 Pvalb+ (%) Sst+ (%) Vip+ (%) Glut. (%)

RF 89.4 0.841

P
re
d
ic
ti
o
n Pvalb+ 93.1 14.3 5.3 0.2

GBDT 89.1 0.837 Sst+ 6.5 79.5 4.1 1.2

SVM 91.2 0.867 Vip+ 0.0 3.1 82.4 1.7

AvNNet 91.3 0.868 Glut. 0.3 3.1 8.2 96.9

the proposed classifiers were studied in the raw dataset, without
discarding any observation or Cre lines. More than 75% of the
cells could be correctly classified in their corresponding subclass
by the AvNNet method; similar results were attained by SVM
and RF. Observing the corresponding confusion matrix, it can
be seen how the glutamatergic and Pvalb+ subclasses are most
clearly discriminated, while more than half of the observations of
the Htr3a+ and Vip+ subclasses are misclassified.

In the second stage (B), the GABAergic neurons that were not
inhibitory and glutamatergic neurons that were not excitatory
were discarded, leaving a total of 1,704 observations. The
accuracy is excellent for a five-class problem, with more than
80% of the neurons being correctly discriminated by the AvNNet
classifier. The second best result corresponds to SVM, followed
closely by RF and GBDT, while LDA may be too simple for the
task at hand. It is relevant to note that, in most of the cases,
the misclassifications occurred between consecutive subclasses

in the proposed circular taxonomy (i.e., Htr3a+ cells are mostly
confused with Pvalb+ and Sst+, while Glutamatergic cells are
misclassified with Vip+ cells). It seems that, at this stage, Sst+ cells
are guessed correctly much better than in (A); the prediction of
Htr3a+ and Vip+ subclasses have improved, but still, only 50%
of the instances are correctly classified.

In the third stage (C), the classification problem has been
solved with 1,304 observations, after discarding the observations
from the Htr3a+ subclass as well as the observations from Cre
lines without transcriptomic features (marked with *). The results
are outstanding, as more than 87% of the observations are
correctly discriminated in the proposed four classes. The best
results are attained by the AvNNet and SVM classifiers. The
Pvalb+ and Glutamatergic subclasses are well-identified in more
than 93% of the cases, while Sst+ and Vip+ approximately in
80 and 60% of the cases, respectively. Finally, if the stimulus
amplitude is added to the predictors feature set (stage C+), the
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AvNNet classifier discriminates correctly more than 91% of the
instances, being the accuracy increase particularly notable in the
Vip+ subclass.

The results of LDA clearly show evidence that the subclasses
cannot be linearly discriminated. The RF and GBDT classifiers
may have attained worse results than the “black box” methods
in all the stages, but they offer interpretability in exchange,
as feature relevance in the classification can be measured. In
all the stages, the same features are highlighted as relevant.
Particularly, βA seems to be the most relevant feature, being
at least 1.5 the relevance of the second most important feature
in all cases. Other discriminant features are ωA, dAB, dAC,
tLC, tUA , and αC. The shape of the APs’ repolarization and
depolarization phases captured by WA seem to characterize the
different subclasses.

4. DISCUSSION

In this paper, the FMM approach for electrophysiological feature
extraction has been presented and used to describe a circular
taxonomy in mouse cortical cells.

Relevant AP characteristics such as its width, amplitude,
kurtosis, and skewness, among others, are represented by the
FMM parameters. Furthermore, additional features standardly
used in other studies can easily be defined in terms of the basic
parameters, as has been done with the peak time and other
features. Even more, the same set of parameters characterizes
the phase space. As such, it is not necessary to resort to
additional feature sets, as is the case in Gouwens et al.
(2020).

A novel property to highlight of the proposed taxonomy
is that it is circular. The latter addresses the need for
neuronal types to be considered a continuum, discussed by
many authors such as Gouwens et al. (2020) and Tasic et al.
(2018). Previous proposals, being linear, consider cell types
situated at the extremes to be opposite in terms of their
characteristics. However, this does not reflect reality: cell types
situated at the extremes habitually have a higher degree of
similarity than the existing similarity between them and other
types situated in the taxonomy’s center. The taxonomy also
follows the levels proposed by Zeng and Sanes (2017): at
class levels, cells are either glutamatergic, GABAergic, or non-
neuron while, at subclass level, GABAergic neurons can be
either Pvalb positive, Vip positive, Sst positive, or Htr3a positive-
Vip negative. Furthermore, at type level, the cells are classified
according to the expressed Cre line. In fact, some Cre lines
have been included in a taxonomy for the first time to
our knowledge.

Despite some minor differences, the taxonomy’s Cre line
disposition proposal is in agreement with the literature
about mouse visual cortex neuron types. Furthermore,
the Cre lines can be characterized using different FMM
elements, such as its waves or parameters, that represent AP
differences. In fact, the potential of the FMM parameters
to discriminate glutamatergic neurons and the four major

types of GABAergic neurons has been proved. Among
GABAergic neurons, Pvalb+ have the APs with the highest
skewness and the lowest kurtosis, while in APs of Vip+
occurs the opposite. The APs from both Sst+ and Htr3a+
exhibit intermediate characteristics, being the latter subclass
particularly heterogeneous.

In short, the proposed taxonomy is hierarchical, continuous,
easily reproducible, and based on robust, interpretable, and
discriminant features, essential feature properties to successfully
solve a classification problem, as many experts on Feature
Engineering state (Duboue, 2020; Heaton, 2020 among recent
works on the matter). It is relevant to note that many alternative
electrophysiological feature proposals lack at least one of these
properties. To the best of our knowledge, this is the first study
in which the circular order from the principal components is
considered. A very simple idea that we hypothesize that can help
in the challenges of inferring cellular relationships. However, the
aim of this study is not to develop new theories but to present
the new approach and the resulting circular taxonomy for mouse
Cre lines. Further studies are necessary to contrast the circular
taxonomy and the biological evidences.

A limitation of the presented study is that features have only
been extracted from a single signal with a single AP generated
from a short square stimulus. On the one hand, it remains to be
seen if the application of the FMM approach on multiple signals
of the same neuron could generate useful features. However, this
question is up in the air as the independence of the AP shape
from the applied stimulus is assumed by some authors, such as
Raghavan et al. (2019), whereas others like de Polavieja et al.
(2005) state that the AP shape is affected by the recent history
of applied stimuli. On the other hand, the use of the proposed
method in multi-AP signals could be profitable, extracting other
interesting features such as the interspike distance or the neuron’s
firing rate.

As future work, the proposed taxonomy could be refined
by using transcriptomic features at cell level, not only at Cre
line level. Also, the taxonomy should be validated further in
other databases. The classifier methods presented in this work
would profit from an increased sample size of each neuronal
type and could probably discriminate better the different
classes. In particular, the Htr3a+ subclass has turned out to
particularly problematic to distinguish. However, other authors
such as Gouwens et al. (2018) have already remarked that
electrophysiological features do not discriminate this neuron
type particularly well.
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