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DNA Methylation is an epigenetic phenomenon in which methyl groups are added to the cytosines, thereby al-
tering the physio-chemical properties of the DNA region and influencing gene expression. Aberrant DNA meth-
ylation in a set of genes or across the genome results in many epigenetic diseases including cancer. In this paper,
we use entropy to analyze the extent and distribution of DNA methylation in Tumor Suppressor Genes (TSG's)

and Oncogenes related to a specific type of cancer (viz.) KIRC (Kidney-renal-clear-cell-carcinoma). We apply var-
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ious mathematical transformations to enhance the different regions in DNA methylation distribution and com-
pare the resultant entropies for healthy and tumor samples. We also obtain the sensitivity and specificity of
classification for the different mathematical transformations. Our findings show that it is not just the measure
of methylation, but the distribution of the methylation levels in the genes that are significant in cancer.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Epigenetics is the study of heritable physio-chemical changes in the
DNA that influence gene expression without changes to the genetic se-
quence [1]. DNA methylation, histone modifications and microRNA's are
some of the significant epigenetic mechanisms. Epigenetic phenomena
are known to play a significant role in several metabolic processes of
the organism. These biological changes are influenced by external phys-
ical factors like environment, stress, diet and light [2].

DNA methylation is an epigenetic mechanism that involves the co-
valent addition of a methyl group at the 5-carbon of the cytosine ring
to result in 5-methyl cytosine (5-mC). In human somatic cells, 5mC oc-
curs in CpG sites and islands. A CpG site is a location within a DNA se-
quence in which a cytosine and guanine appear consecutively. A CpG
island is a long stretch of CpG sites in DNA. When a CpG island in the
promoter region of a gene is methylated, the gene expression is turned
off. It is also established that DNA methylation affects some physical
properties of the DNA like curvature, rigidity and flexibility which may
in-turn be related to its transcription inhibition [3].

Abnormal DNA methylation (hypo and hyper methylation) has been
associated with many human diseases. In this paper, we focus on cancer,
which is considered to be caused by multiple epigenetic events, biome-
chanical transformations and molecular pattern alterations. Of particu-
lar significance are DNA methylation aberrations in the promoter
regions of the tumor suppressor genes and oncogenes associated with
the specific tumor type [4,5]. Tumor suppressor genes are normally
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active in the genome, however the epigenetic silencing of these genes
by hypermethylation of DNA in the promoter regions causes these
genes to be silenced. Oncogenes, that are silent in the non-cancerous ge-
nomes, are found to be “turned on” in cancer, primarily due to hypome-
thylation of the DNA in the promoter regions [5,6]. In this paper, we use
entropy to analyze the DNA methylation abnormalities in the tumor
suppressor genes and oncogenes associated with a specific type of can-
cer - Kidney Renal Clear Cell Carcinoma (KIRC).

The significance of entropy in the thermodynamic sense in evolution
and stability of cells has been established in contemporary research in
the field of Constructal law of Physics [7]. Cancer can be regarded as a
special case of thermodynamic state transitions [8] with DNA methyla-
tion being one of the parameters controlling it. Since Information theo-
retic entropy is known to model its thermodynamic equivalent in a
“subjective statistical mechanics” approach as proposed by Jaynes [9],
we seek to analyze the Information theoretic entropy in DNA methyla-
tion of specific genes that are biologically significant in cancer.

Several biological and computational techniques have been
employed in the past to analyze the associated factors and types of can-
cer using entropy. In [10], the author uses entropy from statistical ther-
modynamics to characterize the normal and cancer states for AML
(Acute Myeloid Leukemia). He uses maximum entropy distribution on
a weighted set of cancer markers to predict AML based on the observed
macroscopic properties of its cell populations. In [11], the authors use
structural entropy minimization techniques to predict the cancer
types based on their gene-maps. For constructing the gene maps, the
authors use bio-physical factors such as survival times and other surviv-
al scores. Entropy based techniques were used to select the critical
genes associated with different cancer types in [12]. The authors use
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entropy to maximize the relevance and minimize the redundancy in the
selection of the genes. In [13], the authors study splice variants specific
to cancer genes using entropy. They show that splice disorders are par-
ticularly common in cancer tissues using entropy ratios.

There have also been several papers exploring DNA methylation and
its effect on cancer using physical and mathematical approaches. The
authors introduce a quantitative measure for methylation in differen-
tially methylated regions (DMR's) in [14]. In the same paper, the au-
thors define entropy based on methylation level in a region of a
sample relative to the total value in all samples for that region. However
the authors do not study the methylation levels of specific genes like
Tumor Suppressor Genes or Oncogenes. In a related research [15], the
authors define ‘Methylation Entropy’ based on methylation patterns in
contiguous CpG nucleotides and make genome wide assessments for
both normal and cancer cells. The authors do not focus on methylation
level intensities or in the prediction of cancer based on specific genes
but make genome wide observations.

There has also been research on the biological and mathematical
analyses of a specific kind of cancer. In [16], the authors study the
genes and the pathways associated with Kidney Renal Clear Cell Carci-
noma (KIRC). They use Support Vector Machines (SVM's) to predict
the state of unknown samples and ROC curves to rate the effectiveness
of classification. It has to be noted that the authors use the TCGA data-
base (The Cancer Genomic Atlas) database [17] to extract the KIRC
data and provide a comprehensive list of genes (including TSG's and on-
cogenes) associated with KIRC. However they do not specifically ex-
plore the entropy of DNA methylation of TSG's or oncogenes in their
work. In [18], the authors discuss various classification models and
their performances as applied to the KIRC RNA data obtained from the
TCGA database. However, they do not focus on the DNA methylation
data or TSG's and oncogenes in KIRC.

In this paper, we propose to provide a mathematical and bio-physi-
cal perspective of how DNA methylation in specific sets of genes (Tumor
Suppressor Genes and Oncogenes) can help in the prediction of cancer
in accordance with the literature in cancer epigenesis [5,6]. We define
entropy in the context of the probabilistic randomness of DNA methyl-
ation for a set of genes and use the measure to compare the significance
of the intensities of methylation in cancer prediction. Since DNA Meth-
ylation changes are linked with the physical properties of the DNA, the
entropy measure would estimate the bio-physical implications in the
cancer analysis. We also use mathematical transformations on the
methylation level probabilities to enhance different ranges and com-
pare the prediction sensitivities. We show that the distribution of meth-
ylation levels in the set of genes is more significant than just the
intensity of methylation levels in the occurrence of cancer. In this
paper, we focus on KIRC, a fatal cancer type of the renal and associated
tissues [16].

2. Methods
2.1. Specific entropy for DNA methylation

As in the case of [ 10], we begin with the definition of Shannon entro-
py:

N
HX) = —i:Z]P(Xi) In p(x;) )

In Eq. (1), X is a discrete random variable with possible values in the
alphabet {x;, x5, ..., Xy} and p(x;) represents the probability of x;. When
the base of the logarithm is 2, H(X) is measured in bits.

We now consider the methylation levels as obtained from the Level
3 [llumina27K chip of the TCGA database. For this data, we define the

alphabet for methylation entropy computation {G;} as follows:

§=1{Cy,C3,C5,C4,C5,C,C7,Cs,Co, Cro} (2)

In Eq. (2), C;-Cyo represent the symbols corresponding to the
discretized methylation intensities of a CpG site as elaborated in Table
1. It has to be noted that the no. of bins for discretization was chosen
as 10 (corresponding to the 10 symbols in the alphabet in Eq. (2)) as
an optimum measure with values for the data under consideration,
but this can be regarded as a design parameter subject to change
based on the a different dataset (chip or the different levels of methyla-
tion). The methylation levels are defined as the intensities of the probes
in the [llumina27K chips. Bio-physically, the levels can be interpreted as
a measure of methylation (either in both or single strands of DNA) for
the specific genes across the genome. In our experiments, we consider
only those CpG sites which correspond to the known TSG's or Onco-
genes for that specific kind of cancer. To analyze global methylation
changes, this pre-processing step can be skipped and all the CpG sites
available for the sample can be considered.

As the next step, the methylation probabilities (P) in a given meth-
ylated sample are computed as

pi = Ni/N 3)

where p; represents the probability of occurrence of symbol C; enlisted
in Eq. (2), N; is the frequency of occurrence of the symbol C; in the sam-
ple. N is the number of CpG sites considered in the sample. We use Eq.
(1) on the probabilities (p;) to compute the specific entropy of methyl-
ation (Hp,) for the given set of genes in a sample. This quantity repre-
sents the measure of randomness of DNA methylation levels across a
specific set of genes for a sample. This definition of entropy differs
from the previously defined quantity in literature [14,15] in that it fo-
cuses on methylation levels and can be applied on specific set of genes
to analyze their impact on cancer.

2.2. Mathematical transformations

In order to analyze the significance of distribution of methylation
levels, we propose a novel approach where the probabilities of the
methylation levels are transformed using suitable mathematical func-
tions to enhance or suppress certain regions of methylation levels. The
resultant values are normalized to yield the modified methylation prob-
abilities (Q). It has to be noted that this technique applies to individual
samples and is not dependent on the a priori knowledge about the na-
ture of the sample. This transformation process is represented mathe-
matically in Eq. (4). Using (Q), the modified specific methylation
entropies are calculated and compared for different mathematical func-
tions. The first row in Fig. 1 shows how the transformations help to en-
hance the different ranges of probabilities. As an example, the logarithm
transformation enhances the lower order probabilities while the

Table 1
Mapping of methylation intensity levels and the corresponding symbols for the Level 3
[lumina27K TCGA data.

Methylation levels - beta value in the samples Symbol
0<i<10 G
10 <i<20 G
20<i<30 Cs
30<i<40 Cy
40 <i <50 Cs
50 <i<60 Co
60 <i<70 C;
70 <i<80 Cg
80 <i<90 Co
90 <i <100 Cio
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Fig. 1. Plots of the (a) transformations and the (b) corresponding modified methylation entropies corresponding to the tumor suppressor genes for the healthy and tumor samples
obtained from the TCGA database. We can observe that for the gamma transformation (Q = P°%") that enhances the lower order probabilities; the overlap of the healthy and tumor

PDF curves is less.

exponential enhances the higher order probabilities.

Q=T(P) (4)

We then train a classifier (Naive Bayes) to predict samples from the
test data based on their entropies for different transformations. We cal-
culate the true positives (tp), false negatives (fnn), true negatives (tn) and
false positives (fp) after the classification process. The definitions for
these parameters are provided in Table 2. The performance of the clas-
sifier is computed using the sensitivity and specificity defined using
Egs. (5) and (6). Sensitivity can be understood as a measure of how ac-
curately the proposed method of classification can identify a valid case
of tumor while specificity is a measure of how reliably the method can
ignore the case of false positives.

. tp

Sensitivity = CEN) (5)
e tn

Specificity = @+m (6)

For processing the data and running the algorithms, Matlab program
functions were used. The data was converted to the required format
(MS Excel) and the necessary values were read using the programs.
The histogram computations were also based on Matlab software. The
Naive Bayes classifier was chosen with the standard Gaussian filter
(the default parameter to the Matlab NaiveBayes routine). The data
for test and training samples were chosen randomly and the results
were averaged over 5 trials.

Table 2
Definition of parameters in the calculation of sensitivity and specificity.

Decoded as healthy Decoded as tumor

Healthy phenotype
Tumor phenotype

True negative (tn)
False negative( fin)

False positive ( fp)
True positive (tp)

3. Results
3.1. Data Extraction and processing

We extracted the relevant data from the TCGA database [17] with
the following filter settings in the Data matrix: Disease: KIRC (Kidney
renal clear cell carcinoma), Data type - DNA Methylation, Data Level -
Level 3, Tumor/Normal checkbox — Tumor Matched or Normal Matched
for Tumor/Healthy Samples, the other parameters were the default set-
tings. Only the Illumina27K DNA Methylation samples were taken for
our experiments. We obtained about 200 healthy and 219 tumor sam-
ples. Each sample consisted of CpG sites with their corresponding
gene symbols and beta values (methylation intensities). We used
Matlab software in processing the samples. Matlab routines were
coded to convert the data files into the appropriate format for process-
ing. The sequences with beta values listed as ‘NA’ were ignored in our
computations.

Only those CpG sites that corresponded to the Tumor Suppressor
Genes or Oncogenes identified for KIRC were considered for further
analysis. This shortlisting of the required CpG sites was also achieved
using Matlab software programs. As mentioned in the Methods section,
this step can be skipped if the global analysis is to be performed. The
lists of Tumor Suppressor Genes and Oncogenes for KIRC that were ob-
tained from [16] are provided in the Supplementary information.

3.2. Tumor suppressor genes

First, we consider the results and observations for the data processed
for the tumor suppressor genes. The data was split into training data
(70%) and test data (30%) randomly and all the results were averaged
across 5 trials. The mean of methylation intensities was computed for
all the healthy and tumor samples. The mean value across the healthy
samples was 0.2706 and across tumor samples, it was computed to be
0.2670. From these values, we understand that the healthy and tumor
methylation intensities are not widely separated and statistical means
might not be efficient in separating them. To corroborate this inference,
we trained a Naive Bayes classifier for the data based on statistical
means. We obtained a sensitivity of 0.5976 and specificity of 0.7500.
These cannot be considered to be very high.

The Matlab functions NaiveBayes.fit and predict were used for train-
ing and prediction of the classifier. The default Gaussian distribution
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was used in parameterizing the NaiveBayes functions. These functions
and parameters of the classifier were employed in the case of the onco-
genes and the global data set as well.

Next we computed the entropies of the methylation intensities of
the training healthy and tumor samples using Eq. (1) without any math-
ematical transformations on the probabilities (Q = P). The mean of the
entropies of the healthy samples is computed to be 1.6569 bits while the
mean of the entropies of the tumor samples is computed to be 1.9054
bits. The higher values of specific entropy of methylation (in TSG's) of
tumor samples indicates that there is a higher degree of randomness
in the methylation intensity distribution across the tumor suppressor
genes in case of tumor than in healthy samples. The Naive Bayes classi-
fier (with Gaussian distribution) trained based on this data yielded a
sensitivity of 0.7231 and a specificity of 0.8113 which are much higher
than those obtained with the statistical means listed above. These
values can be observed from the first row of Table 3 which corresponds
to the no transform case (Q = P).

To analyze the methylation intensity distributions further, we apply
mathematical transformations on the probabilities of the methylation
intensities for the tumor suppressor genes. Table 3 lists the sensitivity
and specificity values of the classifier for the different transformations.
We observe that when the lower order and higher order methylation in-
tensities are enhanced as in the case of log, exponential and p®°! trans-
formations, the classification measures are much higher. The highest
sensitivity is obtained for the (Q = P%°!) transformation (0.8740)
followed by the log transformation (0.7708). The highest specificity
was obtained for the exponential transformation (0.8824). These values
can be inferred from Table 3.

3.3. Oncogenes

Next, we consider the results for the oncogenes corresponding to
KIRC tumor. Similar to the tumor suppressor genes approach, the data
was split into 70% training and 30% test data. A Naive Bayes classifier
trained with the means of the methylation intensities of the healthy
and tumor samples yielded a sensitivity of 0.6373 and a specificity of
0.5392, which are not very high indicating that the methylation distri-
butions for oncogenes cannot be statistically segregated for the healthy
and tumor samples.

The specific entropy of methylation for oncogenes for the healthy
training data was computed as 0.3159 bits while the corresponding to
the tumor training data was computed as 1.3265 bits. On applying the
transformations to the methylation probabilities, we observed that
most of the methylation intensities were spread in the lower order
probabilities and when these were enhanced, better sensitivity results
were obtained. The highest sensitivity results were obtained (0.9837)
for the Q = log(P®°?) transformation. These can be observed in Table
4, These high values of sensitivity and specificity provide clues to how
specific transformations of probabilities of methylation distribution
help to segregate the healthy and tumor samples more efficiently.

Table 3

Tabulated results of sensitivity and specificity of classification for the KIRC DNA methyla-
tion data of Tumor Suppressor Genes for healthy and tumor samples obtained from TCGA
database.

Transform Sensitivity Specificity
Q=P 0.7231 0.8113
Q = log(P) 0.7708 0.7308
Q = exp(P) 0.7105 0.8824
Q=" 0.6104 0.7400
Q = p°0! 0.8740 0.7024
Q = exp(P*01) 0.7391 0.8305

Table 4
Tabulated results of sensitivity and specificity of classification for the KIRC DNA methyla-
tion data of Oncogenes for healthy and tumor samples obtained from TCGA database.

Transform Sensitivity Specificity
Q=P 0.4219 0.4835
Q = log(P) 0.7833 0.5345
Q = log(P*%") 0.9837 0.8537
Q = exp(P) 0.5143 0.5376
Q=" 0.5 0.7682
Q = p*oot 0.8833 0.7345

4. Discussion

From these results, one can observe that there are the key methyla-
tion intensities distributed in the specific ranges and when these are en-
hanced with suitable transformations like logarithm, exponential or
gamma, the minor differences in the patterns of the entropy variations
between the healthy and tumor samples are highlighted, leading to bet-
ter classification. Bio-physically, this can be interpreted as a higher de-
gree of randomness in the lower order methylation levels of the
cancer-significant genes. This also leads to an inference that it is not
just the measure of methylation in the genes but the distribution of
methylation that is important in cancer.

It has to be noted that this approach and the resultant comparison
values are based on DNA methylation data from the TCGA database as
opposed to the RNA sequencing data in the previous approaches [16,
18]. The computational complexity is also quite less in this approach -
the average time taken to compute the entropy using the above tech-
nique for a given sample was 0.380 s while the average time for pre-pro-
cessing (narrowing down the CpG sites corresponding to specific genes)
is about 10.025 s for a single global methylation sample file. As noted
previously if the global DNA methylation entropies are to be analyzed,
the pre-processing step can be skipped.

Fig. 1 shows the (a) various transformations applied to the methyla-
tion probabilities and the (b) corresponding PDF's of the resultant mod-
ified specific entropies of methylation for the tumor suppressor genes
for both the healthy and tumor samples. We can observe from the figure
that for the P°°! transformation, the PDF curves are less overlapped
which can be correlated with the higher sensitivity values for this trans-
formation from Table 3. Fig. 2 shows the (a) various transformations ap-
plied to the methylation probabilities and the (b) corresponding PDF's
of the resultant modified specific entropies of methylation for the onco-
genes for both the healthy and tumor samples. We can observe from the
figure that for the log(p®®") transformation, the PDF curves are least o-
verlapped which can be correlated with the higher sensitivity values for
this transformation from Table 4.

5. Conclusion

To conclude, we have analyzed the entropy of DNA methylation data
of specific sets of genes that are significant in cancer. We have proposed
techniques based on this entropy to classify healthy and tumor samples
based on the DNA Methylation data for KIRC cancer with samples ob-
tained from the TCGA database for specific TSG's and Oncogenes. We
have applied different transformations to the methylation probabilities
to study different ranges of entropies with the corresponding PDF's and
obtained the classification results. It has to be noted that the range of
mathematical transformations are not limited to the ones tested in our
case and can be varied for different sets of genes for other cancer
types to enhance significant regions of entropy. Nonetheless, with our
observations on the given dataset and the chosen genes, we infer that
the distinctive regions of methylation lie in the lower order of methyla-
tion intensities leading to significant entropy differences for healthy and
tumor samples. We believe that this can be used as a valuable tool in the
early prediction of cancer using the DNA methylation data and the can-
cer-significant genes associated with the specific cancer type.
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