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Abstract: A robust and efficient object tracking algorithm is required in a variety of computer vision
applications. Although various modern trackers have impressive performance, some challenges
such as occlusion and target scale variation are still intractable, especially in the complex scenarios.
This paper proposes a robust scale adaptive tracking algorithm to predict target scale by a sequential
Monte Carlo method and determine the target location by the correlation filter simultaneously.
By analyzing the response map of the target region, the completeness of the target can be measured
by the peak-to-sidelobe rate (PSR), i.e., the lower the PSR, the more likely the target is being occluded.
A strict template update strategy is designed to accommodate the appearance change and avoid
template corruption. If the occlusion occurs, a retained scheme is allowed and the tracker refrains
from drifting away. Additionally, the feature integration is incorporated to guarantee the robustness
of the proposed approach. The experimental results show that our method outperforms other
state-of-the-art trackers in terms of both the distance precision and overlap precision on the publicly
available TB-50 dataset.

Keywords: target tracking; sequential Monte Carlo framework; correlation filter; scale
estimation; occlusion

1. Introduction

Visual object tracking plays an important role in computer vision. It is a basic component within
a variety of applications including surveillance, human–computer interaction, action recognition and
robotics, etc. The performance of these applications depends on the accuracy of the object tracking
algorithms. Though numerous precise and steady algorithms were proposed in recent years, there still
exist challenges in object tracking, which are mainly caused by illumination changes, partial occlusion,
background clutter and nonrigid deformation in natural scenes.

To address the challenges that appeared in the tracking mission, lots of researchers developed
some sophisticated approaches [1–7]. The popular tracking algorithm can be categorized into
generative and discriminative methods. The generative method seeks to consider tracking as a
problem of finding the maximal-similarity region to the target. The target is represented as a
template [8] or parameter model in feature space [9,10]. The similarity is measured in feature space
or a low-dimensional subspace to describe the target and incrementally learn the subspace to adapt
to appearance changes during tracking. Zhong et al. represented the target as a sparse dictionary
within a particle filter framework in [2]. The discriminative method formulates the tracking problem
as a binary classification task whose goal is to discriminate the target from the background [1,3,11–13].
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Usually, this type of approach consists of three stages: (1) using the classifier to distinguish the target
from background; (2) sampling some positive and negative samples according to how much the
corresponding region includes the target object; and (3) updating the classifier using the labeled
samples. It proceeds within the above three stages iteratively upon every frame. The performance of
discriminative tracking is largely dependent on the specific binary classifier.

To improve the computational speed, a correlation filter based tracking method has been widely
researched [4,14,15]. The correlation filter has been applied in the signal processing field for several
decades. The correlation between these two signals can be seen as their similarity. The convolution
operation in the time domain can be effectively computed in the Fourier domain by element-wise
multiplication. This property can be used to reduce the computational burdens. The extension of
correlation filters to tracking achieves high frame-rates. Unfortunately, the size of the template is fixed,
which limits its applications, especially in the context of target scale variation.

The scale variation is one of the main challenges in the tracking. It influences the tracking
performance in two respects. Firstly, the target features exhibit multi-level difference when the target
scale changes. It triggers tracking inaccuracy while searching for the candidate in a fixed scale space.
Secondly, the fixed scale further contributes to model update inaccuracy (i.e., if the tracking bounding
box is bigger than the target, the background information is usually contained; on the contrary, if the
tracking bounding box is smaller than the target, it suffers from the loss of target information). Thus,
the scale variation can degrade the representational ability of the model.

Additionally, occlusion is another tough issue which also impacts the tracker’s performance.
When the occlusion occurs, the desired target region similarity degrades and cluttered background
distracts the template to match with other mistaken regions. Both of these two factors jointly result in
tracking failure. To make it worse, the template is updated with the false information, which further
brings unsatisfactory templates to the subsequent frames. Thus, occlusion is supposed to be paid
attention to while designing the accurate and robust tracking algorithms.

In this paper, we propose a robust scale adaptive tracking algorithm based on the correlation filter.
The main contributions of our work are listed below:

• We define the scale variable of the target to measure the scale variation during the tracking.
Afterwards, we design a method to estimate the scale variable using the Sequential Monte
Carlo Framework.

• We analyze the correlation response map under the circumstances of various levels of target
occlusion. Furthermore, the peak-to-sidelobe rate (PSR) is employed to measure the degree of
occlusion. It has been verified on a large number of video sequences.

• A model update strategy is designed according to the stability of the target region during tracking.
It’s remarkable that this strategy gracefully strikes the balance between the target appearance
changes and the model drifts.

The reminder of paper is organized as follows. Previous related works are reviewed briefly in
Section 2. The correlation filter in tracking is described in Section 3. The details of our work are shown
in Section 4. The experiments on several challenging sequences are preformed and analysis is given in
Section 5. Section 6 concludes the whole paper.

2. Related Work

Tracking-by-detection trackers achieve high performance in currently published literature. In this
section, we briefly review some of them that are closely related to our work. More detailed review of
this kind of work is described in these papers [16,17].

The tracking-by-detection algorithms usually employ a classifier to discriminate the target and
background. Babenko et al. [11] proposed a tracking method named MIL, which trains the classifier
online through bags of samples instead of the labeled individual instance set. The latter relies heavily
on the labeled sample precision, i.e., a slight labeling mistake can lead to severe degradation of the
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classifier. In contrast, the former one, however, can avoid this limitation, which, in turn, makes
the classifier more robust. Kalal et al. [1] proposed the TLD algorithm. This method decomposes
a long-term tracker into three components: tracking, learning, and detection. In each frame, the
tracker follows the target; the detector localizes the regions similar enough to the target and corrects
the tracking results; and the learner evaluates and updates the detector to improve its performance.
Hare et al. [3] proposed the Struck tracker using the structured output Support Vector Machine (SVM).
It utilizes the structure information to train the classifier to ensure the structure output accuracy.
Zhang et al. [13] leveraged compressive sensing theory that projects the high-dimension features
into a low-dimension space. The high-dimension features contain rich information of the target and
the random projection can preserve the structure of the image feature space. Both of these factors
guarantee feature discrimination in low-dimensional space. Then, a naive Bayes classifier is used to
discriminate the target from the background in the compressed domain.

Many algorithms are designed to handle the target scale variation in tracking. SCM [2] and
L1APG [18] used particle filter framework to estimate the target state. The target scale is one of
dimensions in that state space. CMT [5] used a set of keypoints to represent the target. The target scale
is measured by computing the geometry relationship between the pairwise keypoints.

A variety of trackers [4,6,14,15] were proposed based on correlation filter, which has been
researched for several decades in signal processing [19]. The Minimum Output Sum of Squared
Error (MOSSE) tracker [15] trains the filter coefficients by minimizing the sum of squared error
between the filter response and the desired response. By transferring the model into the Fourier
domain, the matrix algebra can be solved by element-wise operation. By means of this, MOSSE can run
at an impressive speed. The Circulant Structure tracker with Kernels (CSK) [14] extended the MOSSE
by exploiting the redundancy of the sampling subwindows. This solved the expensive computation of
dense sampling through a cyclically shifted sampling method. This study also proved that the kernel
matrix of the samples also has circulant structure. Therefore, a non-linear kernel can be introduced
into the tracker straightforwardly. The CSK is the preliminary version of the Kernelized Correlation
Filter (KCF). To remedy the drawback of CSK, which is limited to a single channel feature, KCF [4] can
deal with multiple channel features that make the tracking results more accurate.

The closest works to ours are the Discriminative Scale Space Tracker (DSST) [6] and Scale Adaptive
with Multiple Features tracker (SAMF) [20]. DSST employs the correlation filter as the basic tracking
and introduces a one-dimension filter to determine the target scale. SAMF used a fixed scaling pool to
sample the candidates at different sizes. On top of that, our work treats the target scale prediction as
estimation of a one-dimensional signal through the preview observations, which has been solved by a
probability technique. Our method can tackle the scale variance more simply and efficiently.

3. Kernelized Correlation Filter

The Convolution Theorem states that the convolution of two signals in the time domain can be
computed by element-wise multiplication in the frequency domain, which is much more efficient.
This property can be straightforwardly applied to two-dimensional images. The similarity of two image
patches can be measured by the correlation between them. In the correlation filter based tracker, image
patches are transferred into a frequency domain by discrete Fourier transformation (DFT) and the
correlation is calculated in the frequency domain. Then, the spatial correlation response map can be
obtained through inverse DFT. In this section, we briefly introduce the KCF [4], which is the basis of
our tracker.

The goal of the KCF is to learn a function f (x) = 〈w, x〉 that minimizes the squared error over
samples xi and their regression targets yi,

min
w ∑

i
( f (xi)− yi)

2 + λ‖w‖2, (1)

where λ is a regularization parameter. The closed-form solution is given by:
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w = (XTX + λI)−1XTy, (2)

where X is the data matrix that has one sample xi per row, I is an identity matrix, and y is a vector
containing the regression target yi corresponding to each sample xi.

The KCF trains this model by an image patch x of size W × H that contains the target object.
Each training sample xw,h is obtained by cyclically shifting x with w pixels horizontally and h pixels
vertically, where (w, h) ∈ {0, 1, ..., W − 1} × {0, 1, 2, ..., H − 1}. The regression target y simply follows
a 2D Gaussian function. Solving Equation (2) is very time consuming because it contains matrix
operation, especially matrix inversion. By converting it into the frequency domain, Equation (2) can be
solved more efficiently. Utilizing the property of the circulant matrix and the DFT, the solution of the
Equation (1) is given in the frequency domain as:

ŵ =
x̂∗ � ŷ

x̂∗ � x̂ + λ
, (3)

where � indicates the element-wise product, x̂ denotes the DFT of the x, and x̂∗ means the
complex-conjugate of x̂. Using the dual technique, the model parameter w can be rewritten in
dual space: w = ∑i αi ϕ(xi), where the ϕ(xi) means mapping the sample xi into a feature space.
The regression function of a image patch z can be expressed as:

f (z) = 〈w, ϕ(z)〉 =
n

∑
i=1

αi〈ϕ(z), ϕ(xi)〉. (4)

The inner product can be rewritten as: 〈ϕ(x), ϕ(x′)〉 = κ(x, x′), where κ(·, ·) is a kernel function.
The kernelized version solution can be expressed as:

α = (K + λI)−1y, (5)

where K is a kernel matrix with element Kij = κ(xi, xj). The solution is given in the frequency
domain as:

α̂ =
ŷ

k̂xx + λ
, (6)

where kxx is the first row of the kernel matrix K, and x is the target appearance model. In a new frame,
an image patch z with the same size of x is cropped out, and the response map is calculated by:

f̂(z) = k̂xz � α̂, (7)

where k̂xz = κ(z, x̂). The location of the maximal element in the spatial response map f (z) indicates
the patch that is the most similar to the target appearance.

4. Proposed Method

The drawback of the KCF is that the size of the tracking bounding box is fixed. This makes
the tracker inaccurate in the context of target scale variance. To overcome this nontrivial problem,
we intentionally design a robust tracking algorithm to remedy this limitation. We use the KCF with a
integrated feature as the basic tracker and employ the Sequential Monte Carlo Framework to predict
the scale of the target. We also utilize the peak-to-sidelobe ratio to measure the completeness of the
target, which is also considered as a measurement of the occlusion degree. Based on this measurement,
a template update strategy and a retained scheme are designed to cope with the target appearance
change and the occlusion, respectively. The details of our approach are given as follows.
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4.1. Scale Estimation with Sequential Monte Carlo

The KCF can efficiently locate the target in each frame, but the size of the model coefficient α̂ and
the target appearance x are fixed. It can not handle the scale variation of the target. When the scale
change occurs, the tracker is prone to drift. To cope with this challenge, we explore the Sequential
Monte Carlo Framework to estimate the scale of the target.

In order to deal with the scale change of target in tracking, we define a scale variable st to indicate
the size of the target in the t-th frame. As the general case, the target is represented by a bounding
box xt = [xt, yt, wt, ht] in the t-th frame. The scale variable of the target in the t-th frame is defined
as st =

√
wt ∗ ht/w1 ∗ h1. By this definition, the estimation of the target scale can be regarded as the

estimation of a one-dimensional variable by the observation set O(t) = (o1, o2, ..., ot), which means the
frames of the sequences up to the t-th frame. Given the available observations Ot−1, the distribution
of scale variable st is predicted as:

p(st|Ot−1) =
∫

p(st|st−1)p(st−1|Ot−1)dst−1, (8)

where p(st|st−1) is the transition density function and p(st−1|Ot−1) is the state density function.
When observation ot is given in the t-th frame, the posterior probability can be calculated recursively
by the Bayes rule:

p(st|Ot) =
p(ot|st)p(st|Ot−1)

p(ot|Ot)
, (9)

where p(ot|st) is the observation likelihood. The stated variable st is modeled by a Gaussian
distribution around the st−1:

p(st|st−1) = N (st; st−1, σ2). (10)

It means that the state of the target distributes around the state in the previous frame with
a variance σ. From Equation (8) to (9), it is obvious that maximizing the posterior probability is
equivalent to maximizing the observation likelihood. The KCF can calculate the response score of the
image patch with the same size of the template x efficiently and generate a response map fst(z) in the
specific scale st. To estimate the scale of the target, we should define the observation mode as:

p(ot|st) = max fst(z). (11)

When a new observation (frame) comes, image patches were captured in several scale spaces
based on the scale variable st. st is sampled by the Equation (10). After these image patches are
resized into the KCF model size, response maps of them are calculated efficiently by the correlation
filter. The maximal value of every response map is defined as the the observation likelihood of the
corresponding scale. Through the Equations (8)–(10), the target scale variable st can be predicted
recursively in every frame during the tracking.

4.2. Occlusion Measurement

Occlusion is also a challenging issue in target tracking. The preliminary step in handling occlusion
is to measure how much the target has been occluded. In this section, we analyze the shape of the
response map to determine the degree of target occlusion. Three common target states—non-occlusion,
slight occlusion, and heave occlusion—are shown in Figures 1 and 2. The subfigures in the upper row
are the original frames in the sequence; the counterparts in the lower row are the response map of
the corresponding target region, respectively. From the Figure 1, it is obvious that the more complete
the target is, the more similar it is compared with the template. Therefore, the response value of the
non-occlusion state is higher than that of the occlusion state. We can conclude that the peak value of the
response map indicates the completeness of the target. Figure 2 shows a more complex circumstance
when the target is occluded by a similar object. When a similar object occludes the target, the response



Sensors 2017, 17, 512 6 of 16

map will have multiple peaks. This means that the sidelobes have a very high response value in
addition to the main lobe. Occlusions caused by similar and dissimilar objects are both considered to
be in an unstable state in tracking. Inspired by [15], we use the peak-to-sidelobe ratio (PSR) to measure
how stable the target region is. PSR of a response map is defined as:

PSR(x) =
max(x)− µ(x)

σ(x)
, (12)

where µ(x) is the mean of the response map x, and σ(x) is the standard deviation of x.

(a) (b) (c)

Figure 1. Illustration of the occlusion caused by a dissimilar object in the faceocc1 sequence. The z-axis
range of the response map is the same, in order to compare the differences in the peak values in
different occlusion states. (a) Non-occlusion target and its response map; (b) Slight occlusion target
and its response map; (c) Heave occlusion target and its response map.

(a) (b) (c)

Figure 2. Illustration of the occlusion caused by a similar object in the girl2 sequence. The z-axis range
of the response map is different, in order to clarify the value of the sidelobes in different occlusion
states. (a) Non-occlusion target and its response map; (b) Slight occlusion target and its response map;
(c) Heave occlusion target and its response map.

According to the PSR, the occlusion degree of the target can be successfully measured in the
tracking. To verify this measurement, we plot the response map PSR in a whole sequence in Figure 3.
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The curve which is plotted in the middle of the figure shows the PSR of every frame in the faceocc1
sequence. The background color is marked depending on the PSR to indicate the degree of occlusion.
Green means that the target is normal without occlusion in these frames. Yellow means that the target is
partially occluded, and red means that the target is almost totally occluded. The frames corresponding
to these scenarios are shown above and below the curve. The target state in these frames is consistent
with the measurement of PSR.

Figure 3. PSR (peak-to-sidelobe rate) plot, where the curve plots the PSR of every frame in faceocc1
sequence. The area enclosed by the red rectangle is the target area, and the one enclosed by the green
rectangle is the whole candidate area.

A threshold Td is set to handle the occlusion. When PSR is smaller than Td, it means that the object
is heavily occluded. In this case, the tracking result is unreliable. In order to avoid tracker drifting,
we apply a retained strategy in this situation. This strategy employed a simple but valid assumption
that the target will remain in the same position until the target reappears or the occlusion is removed.
This assumption is valid based on the following fact. In most tracking videos, the occlusion can be
divided into two cases. One is that another object moves and covers the target, and the other is that
the target moves to the back of some static object in the background. In the first case, the occlusion
is caused by a moving object so it is obvious that the target will stay in the same position when the
covering moves away. In the second case, the target always reappears near the static object in the
background. Thus, we keep the search region in the same position, making it is easy for capturing the
target again, and this benefits from the search region of the correlation filter being 2.5 × 2.5 times the
size of the target. Therefore, our tracker retains the scale and the position of the target in the previous
frame as the tracking result in the current frame. Through this strategy, when the target reappears, our
tracker can quickly find out the new location of the target.

4.3. Update Strategy

The appearance of the target changes during the tracking by rotation, deformation, etc. Therefore,
the target template should be updated during the tracking to get a robust performance. If the target
template is updated too frequently, the template is prone to be corrupted by noise. On the contrary,
if the target template is updated too slowly, the template can not capture the normal appearance
change of the target. A suitable update scheme is crucial for a tracker.

Using the target state measurement described above, the lower the PSR, the more serious the
target is occluded, and we can easily design a reliable update scheme. For each frame, we firstly
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calculate the PSR of the target region response map. A threshold Tu is set to determine whether the
template needs to be updated or not. PSR(x) < Tu means that the target is partially occluded. It will
corrupt the template that updates with the tracking result in this frame. Therefore, we only update the
template in these frames where the PSR of the response map is higher than Tu.

When updating is needed, the model coefficients α and the template appearance xt is updated
following the formulas in KCF. When the new target bounding box x′ is captured by the tracker,
the coefficients of the model are updated by:

α̂t = (1− η)α̂t−1 + η
ŷ

k̂x′x′ + λ
, (13)

xt = (1− η)xt−1 + ηx′, (14)

where η is a learning rate.
The details of our proposed method are shown in Algorithm 1.

Algorithm 1 Proposed Tracking Algorithm

1: Initialize the model coefficients α̂ and the target appearance x with the bounding box B1 given in
the 1-st frame.

2: for i = 2 to end of the sequence do
3: Sampling image patches zs in different scale s ∈ S
4: for each scale in sn

i ∈ S do
5: Calculate the response map Rsn

i = F−1(k̂xz · α̂)
6: p(oi|sn

i )← max(Rsn

i )
7: p(sn

i |oi)← p(o|sn
i )×

∫
p(sn

i |si−1)p(si−1|oi−1)dsi−1
8: end for
9: s′ = arg maxsn

i
(p(sn

i ))
10: calculate the PSR(i) by Equation 12 in the most likely scale s′
11: if PSR(i) > Tu then
12: update the model coefficient α̂ and x
13: end if
14: if PSR(i) > Td then
15: target position pi = arg max(Rs′

i )
16: target scale si = s′
17: else
18: target position pi = pi−1
19: target scale si = si−1
20: end if
21: end for

5. Experiments

In this section, we firstly describe the experimental details and the value of parameters in our
proposed algorithm. Then, we offer a comprehensive evaluation of this algorithm on a large-scale
benchmark and compare some state-of-the-art trackers with ours. The results show that our algorithm
has high performance for the object tracking problem.

5.1. Implementation Details

Firstly, we list some details of our algorithm. Image feature has a significant effect on the
performance of the tracking algorithm. In order to increase the robustness of the our tracker, we use
an integration feature. We combine the Histogram of Oriented Gradient (HOG) feature and the
color names (CN) as the descriptor. The HOG feature that we choose is the compressive HOG used
in [21], which is a 31-dimensional vector, with 27 dimensions corresponding to different orientation
channels and four dimensions corresponding to overall gradient energy. The color names that we
use are mentioned in the research [22], which maps the R-G-B values into 11 linguistic color labels.
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The color name descriptor is widely used in various modern trackers [23,24] and is verified as a stable
color descriptor.

For the scale estimation method, the greater the number of samples of scale variable st, the more
accurate the estimation of st. However, as the number of samples increases, the speed of the algorithm
will decrease. In order to balance the efficiency and the accuracy, we set the sample number of st to 15.
The scale change of the target between successive frames is slight, so the wide sampling range of st is
useless. By choosing the value of the variance σ, we can restrain the major samplings of st in the range
of 0.95st−1 ∼ 1.05st−1. Setting σ = 0.025st−i ensures this.

We use the Gaussian kernel k(x, x′) = exp(− |x−x′ |2
σ2 ) to map the input feature into a non-linear

space. The value of the σ is 0.2. The learning rate η is set to 0.1.
The two thresholds Tu and Td are determined by experiments. By testing our algorithm on several

tracking videos, we can find that when the target is complete the PSR is larger than 12, the slight
occlusion makes the PSR drop to around 9, and the heavy occlusion reduces PSR down to 5. The PSR
values in these three cases are almost consistent in every sequence. Therefore, we set the value of Tu

and Td to 9 and 5, respectively, in our algorithm.
It is worth noticing that we fix all the parameters’ values in all sequences in the TB-50 dataset to

ensure the fair comparison to other algorithms. All of the experiments are implemented in MATLAB
R2015a on a PC with Intel i7-5930K CPU (3.5 GHz) with 64 GB memory.

5.2. Evaluation

In order to evaluate our algorithm, we examine our approach on the TB-50 dataset [16] and
three additional challenge sequences, Bolt2, Board and Girl2. There are a total of 52 sequences that are
recorded in various scenarios and contain different challenges such as illumination variation, scale
variation, occlusion, deformation, etc. We compare our approach with all 29 popular algorithms
mentioned in [16], which includes Struck [3], TLD [1], L1APG [18], SCM [2], ASLA [25], CT [13], etc.
In order to compare our approach more comprehensively, we add the KCF [4] and the DSST [6] as
the comparison. The former is the basis of our algorithm and the latter is the closest algorithm to
ours. Two widely used evaluation metrics—distance precision and overlap precision—are given under
two test schemes. The two different test schemes are called one-pass evaluation (OPE) and temporal
robustness evaluation (TRE). In order to analyze the trackers more completely, the attribute-based
evaluation is added.

5.2.1. Quantitative Evaluation

The quantitative comparison of all 32 trackers (our algorithm and other 31 trackers) is given by
the distance precision and the overlap precision. The distance precision is based on the center location
error, which is the Euclidean distance between the center of the tracking bounding box and the ground
truth. The distance precision shows the percentages of frames in which the center location error is less
than the given threshold. The overlap precision is based on the PASCAL VOC Overlap Rate (VOR),
which is defined by VOR =

BBoxt∩BBoxg
BBoxt∪BBoxg

, where the BBoxg and BBoxt mean the ground truth bounding
box and the tracking bounding box, respectively. ∩ and ∪ represent the intersection and union of two
regions. The overlap precision shows the percentage of the frames in which the VOR surpasses the
given threshold.

These two evaluation metrics are measured in two methods, one-pass evaluation (OPE) and the
temporal robustness evaluation (TRE). The OPE initializes the tracker with the ground truth location
in the first frame, and the tracker runs throughout the entire sequence. In the TRE method, a tracker is
evaluated 20 times in a sequence to avoid the sensitivity of the tracker initialization. Each test starts
from a particular frame and stops at the end of the sequence.

The compared results are shown in Figure 4. These figures show the success rate under a special
threshold, which is 0 to 50 pixels for distance precision and 0 to 1 for the overlap precision. We only
show the performances of the top 10 trackers among the total 32 trackers. For the distance precision,
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the trackers are ranked by the success rate at the threshold of 20 pixels. Meanwhile, for the overlap
precision, we use the Area Under Curve (AUC) score to rank different trackers.

(a) (b)

(c) (d)

Figure 4. Quantitative results of the top 10 trackers on TB-50. (a) Distance precision based on OPE;
(b) Success rate based on OPE; (c) Distance precision based on TRE; (d) Success rate based on OPE.

From Figure 4, we can see that our proposed approach achieves the best performance among
the 32 trackers. Figure 4a,b shows the distance precision and the overlap precision in OPE. In this
case, our method obtains a 0.746 success rate at a 20-pixel threshold in the distance precision and the
AUC score of 0.563 in the overlap precision, respectively. In distance precision, our method improves
the performance by 4.9% when compared with the second best tracker KCF. In overlap precision, our
method outperforms the DSST, the second-ranked tracker, by 5.4%. Figure 4c,d shows the distance
precision and the overlap precision in TRE. For the distance precision, our method just outperforms the
KCF by 2% with a success rate of 0.783. The AUC score of our method is 0.598 in the overlap precision
plot, and our method surpasses the DSST by 4.4%.

It is worth noting that the ranking results of these trackers are inconsistent under different
evaluation metrics. For example, the KCF is the second best tracker when evaluated with distance
precision, but it ranks third when evaluated with the overlap precision. It is mainly because different
metrics focus on various characteristics of the tracker. The distance precision only focuses on the center
location of the target regardless of the size of the target. In contrast to this, the overlap precision, which
considers the location and the suitability of the estimation and the ground truth at the same time,
is a strict measure, getting a more robust metric result. Nonetheless, our method achieves the best
performance for both metrics.

The speeds of different algorithms are also compared. The average frames per second (FPS),
which is evaluated for all sequences in TB-50, of the top 10 algorithms in our experiments, are listed in
Table 1. It is obvious that KCF, CSK, DSST and ours, which are based on correlation filters, have higher
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speeds than others. The speeds of our method and DSST are slower than the KCF and CSK because of
the additional target scale estimation.

Table 1. The speed comparison of different algorithms.

Ours KCF DSST Struck SCM VTD VTS CXT CSK ASLA

FPS 28.7 161 19.1 15.8 0.39 4.45 4.5 11.9 282.9 6.6

5.2.2. Qualitative Analysis

The tracking results predicted by different trackers are shown in Figures 5–7. These figures
illustrate the tracking results for several representative sequences, which include almost all of the
challenges faced in tracking problems such as illumination variation, scale variation, deformation,
occlusion, in-plane rotation, out-of-plane rotation, etc. In order to compare the results clearly and
effectively, we only show the results of our algorithm and the other five best trackers ranked by
our evaluation.

Figure 5. Screenshots of some tracking results in scale variation sequences. These frames are extracted
from sequences carscale and car4, from top to bottom.

Figure 6. Screenshots of some tracking results in occlusion sequences. These frames are extracted from
sequences girl2, jogging and walking2, from top to bottom.
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In Figure 5, we show our results in two scale variation sequences: ScaleCar and Car4. In the ScaleCar
sequence, the main challenge is the scale variation accompanied with partial occlusion. The ratio of the
maximal target size to the minimal one is more than 30 when the target vehicle approaches the camera
from far away. SCM, TLD, DSST and our method can adapt to the target scale change. It is obvious
that the four trackers above work well when the scale changes slightly. After the second hundredth
frame, SCM, TLD and DSST only can capture part of the car. In other words, they fail to handle the
target scale change. In contrast, our method can accurately track the entire car. For the Car4 sequence,
the target undergoes scale variation and illumination changes. In this sequence, our method and DSST
work well. Other trackers drift away from the ground truth.

Figure 7. Screenshots of some tracking results in deformation sequences. These frames are extracted
from sequences board and tiger2, from top to bottom.

Figure 6 shows tracking results in three sequences, in which the targets are occluded heavily or
totally. In the girl2 sequence, the girl is utterly occluded twice: one happens near the #120 frame, the
other happens near the #1300 frame. When the girl is occluded for the first time, our tracker stays in
the place where the target disappears thanks to our retained scheme. Other trackers are disturbed
by the similar object (the adult near the girl) and drift away with the similar object. Thus, when the
target reappears in the scene, our method can re-detect it. It is noticeable that the detection component
in TLD can strengthen the tracking result, but it is apt to drift when a similar object appears near
the target. This is illuminated in the #190 frame, where TLD re-initializes the tracker on an incorrect
object, i.e., the boy near the girl. In the jogging sequence, only our method and TLD can track the
target reliably under total occlusion. Other algorithms keep the tracking results on the obstruction
when the target appears again. In the walking2 sequence, the target is a walking woman who walks
away from the camera and is occluded by another walking man. Our work and DSST can work well.
In comparison, TLD tracks the wrong object—the walking man—and can not detect the target when
occlusion is over. KCF drifts away due to the target appearance change, when the occlusion occurs.

The tracking results of targets with deformation are shown in Figure 7, which contains
two challenge sequences board and tiger2. In the board sequence, the target deformation is caused
by the out-of-plane rotation accompanied with a slight scale change. Background clutter is another
challenge in this sequence. From Figure 7, the TLD gets failure near the #30 frame in which the target
is disturbed by the complicated background. The deformation can be seen by comparing the target in
the #60, #100, #330 and #467 frames. The tracking results in these frames show that our algorithm can
accurately predict both the location and the scale of the target in the case of deformation. In the tiger2
sequence, the target undergoes deformation and slight occlusion. The deformation in this sequence
is more drastic than that in the board sequence. When the deformation is intensive, only our method
and Struck can track the target well. SCM, DSST and KCF track the wrong object, while TLD reports
that the target is absent in these frames. The ability of our algorithm to deal with deformation benefits
from our template update scheme.



Sensors 2017, 17, 512 13 of 16

5.2.3. Attribute-Based Evaluation and Analysis

In the benchmark dataset [16], the sequences are annotated with 11 attributes to indicate the types
of challenges in the tracking problem. The challenges include illumination variation, scale variation,
occlusion, deformation, motion blur, fast motion, in-plane rotation, out-of-plane rotation, out-of-view,
background clutters and low resolution. Every sequence includes one or more challenges. In order to
make the analysis more complete and clear, we supply the comparison evaluation of these attributes,
respectively. In Figure 8, the overlap AUC scores of each tracker in different sequence attributes are
shown as a histogram.

(a)

(b)

Figure 8. The performance of different attributes. (a) Performance scores based on OPE;
(b) performance scores based on TRE. The meanings of the abbreviations, labeled on the horizontal axis,
are list following: IV: illumination variation, SV: scale variation, OCC: occlusion, DEF: deformation,
MB: motion blur, FM: fast motion, IPR: in-plane rotation, OPR: out-of-plane rotation, OV: out of view,
BC: background clutters and LR: low resolution.

From Figure 8, we can conclude that our method outperforms other state-of-the-art trackers
for most of the 11 attributes. More specifically, our method is good at dealing with scale variation,
occlusion, deformation, in-plane rotation and out-of-view rotation. The reason why our method can
handle the target scale variation and occlusion is that we have the scale and occlusion estimation
components in our algorithm. In the SV subset, four top-ranked trackers are our method, DSST, SCM
and ASLA. All of these trackers are scale adaptive. The SCM and ASLA use particle filters to predict
the target state, while DSST and ours contain a specialized scale estimate method in two different ways.
The scale variation is so common in tracking that a special component must be designed to handle
target scale changes. The deformation, in-plane rotation and out-of-plane rotation can be treated as the
target appearance change. Our strict update strategy insures the correctness of the template updating,
which can adapt to the target appearance change.

In more detail, scores of the performance for all of the 11 attributes are listed in Table 2. In this
table, we show the top 10 trackers’ AUC scores in a column with the same attribute. The red text
indicates the corresponding tracker having the first-highest score in the given attribute, blue means
the second-highest, and green means the third-highest.
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Table 2. The overlap scores on attribute based evaluation. (a) scores of trackers based on OPE; (b) scores
of trackers based on TRE. The texts in the red, blue and green color indicate the first, second and third
highest score respectively in every column.

(a)

IV SV OC DEF MB FM IPR OPR OV BC LR

Ours 0.524 0.539 0.551 0.603 0.567 0.560 0.517 0.514 0.543 0.496 0.519

DSST 0.572 0.528 0.535 0.520 0.467 0.462 0.455 0.563 0.494 0.507 0.514

KCF 0.506 0.489 0.425 0.498 0.486 0.483 0.476 0.500 0.565 0.533 0.384

SCM 0.473 0.468 0.517 0.480 0.420 0.328 0.321 0.463 0.390 0.433 0.333

Struck 0.421 0.432 0.445 0.407 0.378 0.475 0.505 0.463 0.486 0.450 0.444

TLD 0.405 0.403 0.412 0.391 0.346 0.387 0.421 0.429 0.405 0.318 0.335

ASLA 0.426 0.422 0.455 0.382 0.363 0.292 0.258 0.429 0.312 0.379 0.174

CXT 0.369 0.410 0.383 0.365 0.302 0.359 0.390 0.456 0.409 0.320 0.370

VTD 0.428 0.426 0.394 0.399 0.377 0.298 0.297 0.427 0.421 0.431 0.197

VTS 0.429 0.419 0.391 0.394 0.370 0.298 0.298 0.414 0.428 0.428 0.187

(b)

IV SV OC DEF MB FM IPR OPR OV BC LR

Ours 0.566 0.567 0.564 0.600 0.614 0.549 0.523 0.560 0.546 0.553 0.521

DSST 0.571 0.542 0.541 0.558 0.571 0.496 0.460 0.550 0.506 0.539 0.530

KCF 0.538 0.525 0.488 0.539 0.559 0.491 0.467 0.523 0.539 0.580 0.470

Struct 0.477 0.478 0.462 0.460 0.501 0.513 0.492 0.486 0.441 0.480 0.497

SCM 0.472 0.479 0.494 0.499 0.507 0.314 0.296 0.453 0.370 0.469 0.378

ASLA 0.466 0.468 0.486 0.446 0.475 0.320 0.292 0.448 0.352 0.452 0.301

VTD 0.470 0.464 0.422 0.442 0.465 0.322 0.331 0.443 0.406 0.449 0.283

VTS 0.466 0.460 0.419 0.444 0.457 0.316 0.323 0.442 0.415 0.439 0.296

CXT 0.409 0.435 0.427 0.401 0.374 0.381 0.387 0.460 0.400 0.373 0.365

CSK 0.430 0.431 0.395 0.419 0.451 0.349 0.337 0.424 0.358 0.445 0.420

6. Conclusions

In this paper, a robust scale adaptive tracking algorithm based on the correlation filter is proposed.
We introduce a scale estimate method via Sequence Monte Carlo Framework to cope with the scale
variation in tracking. Meanwhile, PSR of the response map is employed to indicate the target
completeness, which can handle the occlusion effectively. A strict update strategy is designed to tackle
target appearance changes and avoid template degradation. Additionally, the hybrid feature enhances
the tracker robustness. Our method evaluates the TB-50 dataset using the OPE and TRE evaluation
methods. Both the distance precision and the overlap precision are measured. The experimental results
demonstrated that our method outperforms state-of-the-art trackers.
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