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Abstract: COVID-19 is a respiratory illness that has affected a large population worldwide and
continues to have devastating consequences. It is imperative to detect COVID-19 at the earliest
opportunity to limit the span of infection. In this work, we developed a new CNN architecture
STM-RENet to interpret the radiographic patterns from X-ray images. The proposed STM-RENet
is a block-based CNN that employs the idea of split–transform–merge in a new way. In this regard,
we have proposed a new convolutional block STM that implements the region and edge-based
operations separately, as well as jointly. The systematic use of region and edge implementations
in combination with convolutional operations helps in exploring region homogeneity, intensity
inhomogeneity, and boundary-defining features. The learning capacity of STM-RENet is further
enhanced by developing a new CB-STM-RENet that exploits channel boosting and learns textural
variations to effectively screen the X-ray images of COVID-19 infection. The idea of channel boosting
is exploited by generating auxiliary channels from the two additional CNNs using Transfer Learning,
which are then concatenated to the original channels of the proposed STM-RENet. A significant
performance improvement is shown by the proposed CB-STM-RENet in comparison to the standard
CNNs on three datasets, especially on the stringent CoV-NonCoV-15k dataset. The good detection
rate (97%), accuracy (96.53%), and reasonable F-score (95%) of the proposed technique suggest that it
can be adapted to detect COVID-19 infected patients.

Keywords: coronavirus; COVID-19; SARS-CoV-2; pandemic; X-ray; channel boosting; split-transform-
merge; deep learning; CNN; transfer learning

1. Introduction

COVID-19 is a severe and continuing pandemic, which broke out in December 2019
and has now affected the whole world [1]. This new pathogenic viral infection is caused
by a new virus from the coronavirus (CoV) family named SARS-CoV-2. COVID19 is
highly transmissible from one individual to another, even before the onset of clinical
symptoms [2,3]. COVID-19 causes a respiratory illness that can be asymptomatic, or its
clinical manifestation can span fever, cough, myalgia, respiratory impairment, pneumonia,
acute respiratory distress and even death in severe cases [4,5]. These factors necessitate the
early detection of COVID-19 for proper care of patients and to control infection spread [6].
The standard virus antigen detection approach approved by the World Health Organization
is Polymerase Chain Reaction (PCR); however, it suffers from a high False-negative rate
depending upon viral load and sampling strategy (30–70% True-positive rate) [7–9].
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Radiological imaging (X-ray, CT) is used as an assisted screening tool to counter the
False-negative rate of PCR in symptomatic patients. It acts as a first-line diagnostic measure
for patients suspected of COVID-19 and suffering from a chest infection [10]. In addition to
diagnostic importance, X-ray and CT images are used for severity assessment and patients’
follow-up [11]. Chest imaging manifests radiological patterns specific to COVID-19. These
patterns commonly include two different types of opacities: ground-glass opacities (GGO)
and mixed attenuation (GGO and consolidation). The opacities can be multifocal, patchy,
or segmental in distribution, and show multi-lobar and bilateral lung involvement [12]. In
patients with severe COVID-19 pneumonia, lung opacity increases, and its characteristic
marks become incomprehensible because of consolidation [13].

Compared to CT imaging, X-ray imaging is a quick and easy method which is widely
available in hospitals at a low cost. Moreover, portable X-ray devices make it easy to
perform imaging in deprived areas, field hospitals and intensive care units [14].The visual
assessments of radiographic images from COVID-19 patients require trained radiologists.
The ongoing pandemic is pacing a considerable burden on a limited number of radiologists.
The inevitable importance of a timely diagnosis stresses the need for automated assistance
tools that can facilitate radiologists in the initial screening [15].

Deep learning (DL) models are a powerful tool for the analysis of medical images.
Several DL models have shown promising performance for detecting COVID-19 [16–18].
Various techniques have been developed for automated COVID-19 diagnosis in X-ray
images [19,20]. However, most of the researchers exploited existing CNNs designed to
classify natural images for COVID-19 detection. Natural images are often represented by
large sized well-defined objects, contrary to COVID-19 radiographic patterns, which are
normally exhibited by obscure lung markings and patches of opacity and consolidation.
The exploration of image content by considering COVID-19 radiographic patterns of
region-homogeneity, textual variation, boundaries, etc., can result in enhanced COVID-19
detection tools. Additionally, most of the work exploited a single dataset source with a
limited number of images for model training and evaluation. The evaluation of a small
dataset is likely to show over-optimized performance.

DL architectures have shown excellent performance in the medical and commercial
fields [21–25]. Therefore, DL is primarily employed in the detection of COVID-19 infection
and drug repurposing in diverse ways [26–29]. Several researchers have employed CNN to
speed up the analysis of COVID-19 infected images [30–34]. Initially, COVID-19 labelled
datasets were small in size and generally not suitable for practical implementation. There-
fore, the existing pre-trained CNN architectures such as VGG, ResNet, Inception, etc., have
been employed in the COVID-19 classification challenge. These architectures have been
fine-tuned on a problem-specific COVID dataset using TL and achieved optimal results.
However, because of the non-availability of the consolidated data repository, these models
have been evaluated on various small-sized datasets gathered from GitHub and Open-I
respiratory, etc.

In one of the early works, a ResNet-50 model using TL has been fine-tuned on small X-
ray chest data and achieved 98% accuracy [30]. Similarly, a ResNet-101 architecture has been
used to detect abnormality in X-ray images using various datasets and reported sensitivity
of 0.77 and accuracy of 71.9% [35]. Moreover, a pre-trained inception network has been
employed to predict COVID-19 and reported accuracy of 89.5%) [36]. These models have
been employed on multi-class problems such as Healthy, COVID-19 non-affected patients
and COVID-19 affected pneumonia patients. However, the aforementioned techniques
have been trained on natural images and fine-tuned on medical datasets, which affects
COVID-19 detection performance.

Similarly, 19 layers of deep CNN architecture have been developed based on the
idea of ResNet, named COVID-Net and employed on the same dataset [14]. The COVID-
Net model showed good accuracy (92%) but at a low detection rate (sensitivity) (87%).
Similarly, COVID-CAPS has been designed based on the concept of Capsule Net and
achieved accuracy of 98%, sensitivity of 0.80, and AUC of 0.97 [37]. The darknet network
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has been proposed to diagnose COVID infection accurately on the complex dataset. In this
work, darknet performed both binary (COVID-19 vs. Healthy) and multi-class (COVID-19,
NonCOVID-19, and Healthy) discrimination. Darknet achieved a detection accuracy of
98% and 87% for binary and multi-class, respectively [38].

In the most recent studies, a framework of four pre-trained existing CNN networks
has been utilized to identify the presence of COVID-19 in X-rays. These models (ResNet18,
ResNet50, Squeeze Net, and DenseNet121) are fine-tuned on the COVID-Xray-5k dataset.
On average, thy obtained a detection rate of approximately 98% [39]. A pre-trained CNN
model like ResNet-50 has also been used for deep feature extraction and ML classification
(SVM). This model is fine-tuned on a small COVID-19 dataset using TL and reported
an accuracy of 95% [40]. Similarly, a pre-trained ResNet-152 has been used for deep
feature extraction in combination with Random Forest and XGBoost classifiers, achieving
accuracy of 97.3% and 97.7%, respectively [41]. These models have been employed on
the imbalanced dataset and reported their accuracy and sensitivity results, which are not
considered appropriate for imbalanced data.

In this regard, we developed a new stringent COVID-19 chest X-ray dataset by collect-
ing samples from multiple sources to ensure the generalization of the proposed customized
CNN models and evaluated in terms of standard performance metrics. In this work, our
aim is to focus on extracting the radiological patterns from X-ray images by developing a
new convolutional block based on the idea of split–transform–merge (STM). This new block
systematic implements Region- and Edge-based (RE) operations at each transformation
branch. The proposed custom CNN is named “STM-RENet”. These radiological patterns
may be due to different opacities such as Ground Glass Opacity, Consolidation, and Reticu-
lation [13]. In STM-RENet, the region operation helps learn about the infectious regions’
characteristics by exploring regions with homogeneous properties and highlighting textural
and intensity variations. In addition, edge operation demarcates infected areas and identify
lung markings and de-markings in both healthy and COVID-19 infected X-ray images.
The representational power of the proposed STM-RENet is augmented by developing
a new channel boosted CNN “CB-STM-RENet”, where two additional CNNs generate
diverse auxiliary channels using transfer learning (TL). The significant contributions of this
research are:

1. A novel CNN block based on the Split-Transform-Merge (STM) concept is developed
that systematically exploits the idea of region and edge-based feature extraction in
each block of the proposed STM-RENet.

2. The systematic utilization of the region and edge-based implementation at each branch
of the new STM block is able to capture the diverse set of features at various levels,
especially those related to region–homogeneity, textural variations, and boundaries of
the infected region.

3. The idea of Channel Boosting exploited using TL generates diverse auxiliary channels
and thus enhances the performance of the proposed STM-RENet.

4. Three different datasets from the publicly available chest X-ray images are generated
(CoV-Healthy-6k, CoV-NonCoV-10k, and CoV-NonCoV-15k) and the performance of
the proposed techniques is validated.

The layout of the manuscript is ordered as follows. Dataset description, detail of
the proposed deep CNN techniques for COVID-19 screening, and experimental setup are
given in Section 2. Section 3 explains the results and comparative studies. While Section 4
discusses the results. Lastly, Section 5 concludes.

2. Material and Method
2.1. Dataset

COVID-19 is a new challenge, and to the best of our knowledge, up till now no consoli-
dated data has been available. Consequently, we collected radiologists’ authenticated X-ray
images from different publically accessible data repositories. The details of the datasets are
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mentioned in this section. The examples of X-ray images from the assembled dataset are
illustrated in Figure 1.
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Figure 1. Panel (A–C) illustrate COVID-19, Non-COVID-19, and Healthy X-ray images, respectively.

2.1.1. CoV-Healthy-6k Dataset

For this study, initially, a COVID-19 vs. Healthy individuals’ dataset has been built.
The COVID-19 X-ray images used in this research are collected from [42]. The Healthy
individuals’ dataset is obtained from [39] and the Kaggle repository [43]. The accessed
repositories contain radiologists’ verified X-ray images from multiple standard accessible
sources and hospitals. The new dataset consisted of 3224 images from both COVID-19
infected and Healthy individuals. The advantage of using an open-source dataset is that it
can easily be exploited by other researchers to quickly implement different DL models in
order to assess the capability of the proposed CB-STM-RENet technique.

2.1.2. CoV-NonCoV-10k Dataset

This dataset consisted of COVID-19 infected and non-COVID-19 patients’ data. The
non-COVID-19 includes both Healthy and other viral infected X-ray images. These X-ray
images are collected from [42], whereas the same set of Healthy samples are also used
as defined in the CoV-Healthy-6k Dataset. In non-COVID-19 samples, pneumonia and
other respiratory infections are caused by different viral and bacterial infections other than
COVID-19. This dataset contains a total of 9538 images, out of which both the COVID-19
and non-COVID-19 class includes 4769 images.

2.1.3. CoV-NonCoV-15k Dataset

We have also built a stringent dataset to assess the robustness of the developed
technique. For this, the CoV-NonCoV-10k dataset is augmented by including additional
samples from [39]. This new CoV NonCoV-15k dataset is imbalanced and consists of
15,127 total images, out of which 5223 and 9904 images are from COVID-19 infected and
non-COVID-19 individuals, respectively.

2.2. Experimental Setup
2.2.1. Dataset Division

A holdout cross-validation scheme was used for the training and evaluation of the
deep CNN models. The dataset was divided into train and test sets at a ratio of 8:2. From
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the training dataset, 20% was reserved for model validation and hyper-parameter selection.
The final evaluation of the model was made on the test set, which is kept separate from the
training and validation datasets.

2.2.2. Pre-Processing

DL models usually overfit on a small size dataset. Therefore, sufficient volume of data
is essential for efficient learning and for improving model generalization. Data augmen-
tation is a reasonable way of enhancing the generalization of the model by incorporating
multiple variations in the base dataset. The training samples in this study were augmented
by applying different types of transformations, including horizontal and vertical reflections,
rotation, and shear. All the images were resized to 224 × 224 × 3 before assigning to CNN
for training.

2.2.3. Model Implementation Details

Deep CNN models were implemented in an end-to-end method. SGD was employed
as an optimizer function to reduce cross-entropy loss. Softmax was employed for the
identification of class probabilities. The training was managed using a Piecewise learning
rate scheduler by setting learning rate value as 0.0001 and momentum as 0.95. Some of the
CNN Models were trained with a batch size of 16, while others were trained with a batch
size of 32 for 10 epochs. For each of the CNN models, a 95% confidence interval (CI) was
computed [44]. The training time for 1 epoch on NVIDIA GeForce GTX Titan X was ~1–2 h.
All the implemented models were trained for all three different datasets and evaluated on
their unseen test sets.

2.2.4. Working Environment

Deep CNN models were built in MATLAB 2019b, and simulations were performed
using the DL library. All the experimentations were done on a CUDA enabled NVIDIA
GeForce GTX Titan X computer, with 64 GB RAM.

2.3. Deep Channel Boosted STM-RENet for COVID-19 Detection

This study proposes two new CNN based techniques for the screening of COVID-19
in X-rays. The proposed techniques target the discrimination of COVID-19 infected from
both Non-COVID-19 and Healthy individuals. In this regard, a new CNN classifier based
on novel split-transform-merge (STM) block [45] is developed, which systematically im-
plements RE-based operations for the learning of COVID-19 specific patterns and terms,
as “STM-RENet”. This architecture is also known as “PIEAS Classification Network-4
(PC Net-4)”. The representation strength of the proposed STM-RENet is enhanced using
Channel Boosting to improve the detection rate while maintaining high precision. The
proposed Channel Boosted STM-RENet is termed “CB-STM-RENet” or “PIEAS Classifica-
tion Network-5 (PC Net-5)”. The proposed techniques’ performances are compared with
several existing CNNs by implementing them from scratch and adapting using TL. The
workflow is illustrated in Figure 2. We have shared code related to this work at https://
github.com/PRLAB21/COVID-19-Detection-System-using-Chest-X-ray-Images accessed
on 12 December 2021.

2.3.1. Proposed STM-RENet

Deep CNNs have been largely utilized in image processing applications because
of their strong pattern mining ability [46,47]. According to the target medical image
analysis, CNN exploits the image’s structural information using convolution operation
and dynamically extracts feature hierarchies. The exploitation of innovative ideas in
CNN design has increased their use in medical image classification, detection and pattern
discovery tasks [48].

https://github.com/PRLAB21/COVID-19-Detection-System-using-Chest-X-ray-Images
https://github.com/PRLAB21/COVID-19-Detection-System-using-Chest-X-ray-Images
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Figure 2. Panel (A,B) depict the brief and detailed workflow for the proposed COVID-19 detection
framework, respectively.

This work proposes a new COVID-19 pneumonia-specific CNN architecture based on the
novel split-transform-merge block (STM) and RE-based feature extraction operations [49,50].
RENet systematically implements region and edge-based operations which may capture
region homogeneity and boundary features of the COVID-19 infected region at various levels.
This new architecture is named STM based RENet (STM-RENet) and illustrated in Figure 3.

The proposed block consists of three sub-branches. The concept of RE-based feature
extraction is systematically employed at each branch using average and max-pooling in
combination with the convolutional operation to capture discriminating features at a high
level. The discriminating features may include region homogeneity, boundaries pattern,
and textural variation. The output channels or feature maps of each convolutional operation
are 64, 128 and 256, respectively.

In Equation (1), the convolution operation is utilized. Input and the resultant channel
are denoted by x. M × N and p × q is the dimension of channel and filter, respectively.
Equations (2) and (3) demonstrate the average (xavg) and max-pooling (xmax) operations,
where ‘s’ represents stride size. The STM-RENet mines the patterns from the X-ray dataset
by splitting the input into three branches. It learns the region-specific variations and their
characteristic boundaries using a RE-based operator. Finally, it merges the output from
multiple paths using a concatenation operation, which may capture textural variation. In
STM-RENet, two STM blocks with the same topology are stacked one after another to
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extract a diverse set of abstract level features. This idea helps the STM-RENet in extracting
a diverse set of variations in the input feature maps.

xm,n =
p

∑
a=1

q

∑
b=1

xm+a−1,n+b−1fa,b (1)

xavg
m,n =

1
w2

s

∑
a=1

s

∑
b=1

xm+a−1,n+b−1 (2)

xmax
m,n = maxa=1,...,s,b=1,...,sxm+a−1,n+b−1 (3)
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2.3.2. The Proposed Deep Channel Boosted STM-RENet (CB-STM-RENet)

Radiographic data exhibits large variations in images, and thus a robust CNN model
is required for good discrimination. The discrimination ability of the proposed STM-
RENet is enhanced by exploiting Channel Boosting. The idea of Channel Boosting helps
in solving complex problems by considering multiple data-representations from different
sources [51,52]. In the proposed technique, Channel Boosting is performed by generating
auxiliary feature channels from two pre-trained networks via TL to improve the perfor-
mance of STM-RENet.

Significance of Using Transfer Learning (TL)

TL is a type of machine learning that allows to leverage of the knowledge of existing
techniques for new tasks. TL can be exploited in different ways for multiple tasks, but the
most commonly employed approaches for knowledge utilization are (1) instance-based TL,
(2) feature-space based TL, (3) parameter exploitation based TL, and (4) relation-knowledge
based TL [53].

Feature space-based TL is often used for solving image classification and pattern
recognition related tasks. Pre-trained architecture is adapted to the target domain by fine-
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tuning network layers or adding additional layers according to the target domain task [54].
This is also commonly known as domain adaptation. Supervised domain adaptation-
based TL using pre-trained deep CNNs has been substantially adopted for solving medical
imaging tasks. This can help provide a useful set of feature descriptors learnt from the
source domain to be effectively applied in a target domain by adapting to the target task
via fine-tuning. This reduces the calibration efforts (hyper-parameter selection) which are
particularly difficult in deep CNNs because of the vast number of hyper-parameters and
considerable training time [46].

Significance of Using Auxiliary Channels

CNNs with varied architectural designs have different feature learning capacities.
Multiple channels learnt from different deep CNNs exhibit multi-level information. These
channels represent different patterns, which may help in precisely explaining class-specific
characteristics. A combination of diverse-level abstractions learned from multiple channels
may improve the image’s global and local representation. The concatenation of original
channels with auxiliary channels gives the idea of an intelligent feature–space-based en-
semble, whereby the single learner takes the final decision by analyzing multiple image
specific patterns [55].

Proposed Channel Boosted Architectural Design

In this work, we utilized supervised domain adaptation-based TL by exploiting
two different pre-trained deep CNNs. These deep CNNs vary in architectural design,
enabling each model to learn other feature descriptors and encapsulate diverse radiological
information from chest X-rays. These two fine-tuned deep CNNs are termed auxiliary
learner-1 and -2. The purpose of Channel Boosting is to improve the discriminative
capability of the proposed CB-STM-RENet model. The architectural details of CB-STM-
RENet are illustrated in Figure 4.

CBoosted=h(CSTM||CAux1||CAux2) (4)

In Equation (4), CSTM shows the STM-RENet original channels, whereas CAux1 and
CAux2 are the auxiliary channels generated by TL-based based fine-tuned auxiliary learner
1 and 2, respectively. h(.) concatenates the original STM-RENet channels with the auxiliary
channels to generate the Channel Boosted input CBoosted for the classifier. The boosted
channels are provided to convolutional block E, as shown in Figures 3 and 4. At the end
of convolutional block E, global-average pooling is employed to minimize the connection
intensity. Finally, the fully connected layers are employed to preserve the prominent
features, and dropout layers are used to reduce overfitting.

2.3.3. Implementation of the Existing CNNs

For a rigorous assessment of the proposed technique, several existing deep CNNs
(Alexnet, VGG-16, VGG-19, Google Net, Inceptionv3, Resnet-18, Resnet-50, Squeeze Net,
DenseNet-201, ShuffleNet, Xception) have been implemented [45,56–59]. These architec-
tures are initially trained from scratch on X-ray data for a fair comparison with the proposed
technique. The implemented deep models are computationally intensive and require a
sufficient amount of data. Therefore, TL is exploited to optimally train existing CNN
techniques and achieve substantial performance on a small amount of data. TL is a type
of machine learning in which models already pre-trained for some tasks are used for new
tasks by fine-tuning layers of the network or adding some new target-specific layers [60].
In this regard, CNN models trained on ImageNet (natural data) are fine-tuned using TL on
X-ray data for binary classification.
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3. Result

The proposed techniques’ performances are assessed using several performance mea-
sures on an unseen test set and benchmarked against well-known existing techniques.
Learning plots of the proposed CB-STM-RENet, showing accuracy and loss values for the
training and validation set, are shown in Figure 5. The learning plots suggest that the
proposed CB-STM-RENet technique quickly converges to optimal values.
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3.1. Performance Evaluation Metrics

The discrimination ability of the proposed technique is assessed using accuracy and
AUC-ROC curve for a balanced dataset. In contrast, the F-score and AUC of precision and
recall (PR) curve are used as a performance metric for an imbalanced dataset. Mathew
Correlation Coefficient (MCC) is also computed for unbiased estimation as it considers
all the examples from COVID-19 positive and negative classes, including both True (TP,
TN) and False (FN, FP) predictions. COVID-19 negative class includes both Healthy and
non-COVID-19 infected individuals. The details of the qualitative measures, such as
sensitivity, specificity, precision, TP, TN, FN, and FP are also reported. COVID-19 positive
and negative classes that are truly predicted are known as TP and TN, respectively. Similarly,
positive and negative class examples that are misclassified are referred to as FP and FN,
respectively. These performance metrics are mathematically expressed in Equations (5)–(10).
Accuracy defines the ratio of COVID-19 positive and COVID-19 negative samples that
are correctly classified. COVID-19 negative can be Healthy individuals or patients having
other viral/bacterial infections. F-score is a measure of accuracy for the imbalanced dataset.
Sensitivity and specificity refer to the ratio of COVID-19 positives and negative patients,
respectively that are correctly identified. Precision is the proportion of COVID-19 positive
predictions made which are actually correct. In Equation (11), the Standard Error (S.E.)
at 95% CI is reported for sensitivity because the primary concern is to improve the true
positive rate while reducing False-Negative for COVID19 patients’ screening [44]. Here, z
= 1.96 for S.E at 95% CI.

Acc =
True COVID− 19 positives (TP) + True COVID− 19 negatives (TN)

Total Images (TP + TN + FP + FN)
× 100 (5)

Sen =
True COVID− 19 positives (TP)

Total COVID− 19 positive Images (TP + FN)
× 100 (6)

Spe =
True COVID− 19 negatives (TN)

Total COVID− 19 negative Images (TN + FP)
× 100 (7)
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Pre =
True COVID− 19 positives (TP)

True COVID− 19 positives (TP) + False COVID− 19 positives (FP)
× 100 (8)

F− Score = 2× Pre× Sen
Pre + Sen

(9)

MCC =
(TN× TP)− (FN× FP)√

((FN + FP)(FP + TP)(FN + TN)(FP + TN))
(10)

CI = z

√
error(1− error)
Total Samples

(11)

3.2. Performance Analysis of CoV-Healthy-6k

Classification results of the proposed STM-RENet with and without Channel Boosting
on the test set of CoV-Healthy-6k are illustrated in Table 1. The discrimination ability in
terms of accuracy (STM-RENet: 97.98%, CB-STM-RENet: 98.53%), F-score (STM-RENet:
0.98, CB-STM-RENet: 0.98) and MCC (STM-RENet: 0.96, CB-STM-RENet: 0.97) show that
both models can effectively differentiate COVID-19 infected from Healthy individuals.
Finally, we perform an ablation study on CoV-Healthy-6k to explore the effectiveness of
each auxiliary learner in the proposed STM-RENet. The combined impact of these auxiliary
channels on the performance of the proposed technique is also investigated. The empirical
results are summarized in Table 2.

Table 1. Performance analysis of the proposed techniques on test dataset (CoV-Healthy-6k, CoV-
NonCoV-10k and CoV-NonCoV-15k). S.E at 95% CI is reported for sensitivity.

CoV-Healthy-6k

Techniques Accuracy % MCC F-Score Sensitivity ± S.E Precision Specificity

CB-STM-RENet 98.53 0.97 0.98 0.99 ± 0.02 0.98 0.98

STM-RENet 97.98 0.96 0.98 0.97 ± 0.04 0.99 0.99

CoV-NonCoV-10k

CB-STM-RENet 97.48 0.95 0.98 0.99 ± 0.02 0.98 0.96

STM-RENet 91.82 0.84 0.92 0.97 ± 0.04 0.88 0.86

CoV-NonCoV-15k

CB-STM-RENet 96.53 0.93 0.95 0.97 ± 0.04 0.93 0.96

STM-RENet 92.04 0.85 0.90 0.96 ± 0.05 0.84 0.90

Table 2. Ablation study for the proposed deep CNN models on CoV-Healthy-6k dataset.

Networks Accuracy % MCC F-Score Sensitivity ± S.E Precision Specificity TP FP FN TN

CB-STM-RENet 98.53 0.97 0.98 0.99 ± 0.02 0.98 0.98 638 12 7 633
CB-STM-RENet

(Auxiliary learner 2) 98.22 0.96 0.98 0.98 ± 0.03 0.99 0.99 631 9 14 636

CB-STM-RENet
(Auxiliary learner 1) 98.14 0.96 0.98 0.98 ± 0.03 0.98 0.98 634 13 11 632

STM-RENet 97.98 0.96 0.98 0.97 ± 0.04 0.99 0.99 625 6 20 639

3.3. Performance Analysis on CoV-NonCoV-10k

The proposed technique is accessed for its effectiveness in discriminating COVID-19
from Non-COVID-19 infected. Therefore, STM-RENet with and without Channel Boosting
is trained on CoV-NonCoV-10k with the same set of parameters and evaluated on the test
dataset. Table 1 illustrates the classification results. The performance analysis using various
evaluation metrics (accuracy: 97.48%, F-score: 0.98, and MCC: 0.95) clearly demonstrates
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that Channel Boosting significantly improves the discrimination ability of CNN (shown in
Table 1).

3.4. Performance Analysis on the Stringent CoV-NonCoV-15k

The proposed technique’s generalization is accessed by evaluating the performance on
the stringent CoV-NonCoV-15k dataset, as shown in Figure 6. This dataset is imbalanced
and contains a smaller number of COVD-19 positive patients than non-COVID-19 and
Healthy individuals, both in training and test sets. Table 1 shows the detection results.
F-score and AUC show good learning potential and strong discrimination ability of our
proposed CB-STM-RENet technique compared to STM-RENet.
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3.5. Comparative Analysis with the Existing CNNs

The significance of the proposed architecture and Channel Boosting is explored by
implementing existing well known deep CNN techniques. In this regard, different CNN
architectural designs, including ShuffleNet, Inception, AlexNet, DenseNet, Xception, VGG,
and ResNet, are implemented from scratch and fine-tuned using TL. The results for the
best performing existing techniques on a test set of CoV-Healthy-6k, CoV-NonCoV-10k and
CoV-NonCoV-15k are shown, in Table 3. In contrast, detailed results of all the implemented
techniques on CoV- Healthy-6k are depicted in Table 4. The evaluation metrics suggest that
TL improves the learning of discriminating patterns for COVID-19 classification.

Table 3. Performance analysis of the best performing existing CNN techniques on the test set of
CoV-Healthy-6k, CoV-NonCoV-10k and CoV-NonCoV-15k. S.E is reported for sensitivity.

CoV-Healthy-6k

Techniques Accuracy % MCC F-Score Sensitivity ± S.E Precision Specificity

Resnet18 96.59 0.93 0.96 0.98 ± 0.03 0.95 0.95

VGG-16 95.74 0.91 0.95 0.96 ± 0.05 0.95 0.95

CoV-NonCoV-10k

ResNet-18 90.36 0.81 0.90 0.90 ± 0.12 0.90 0.91

VGG-16 86.32 0.73 0.86 0.86 ± 0.16 0.86 0.87

CoV-NonCoV-15k

ResNet-18 91.20 0.84 0.88 0.95 ± 0.06 0.82 0.89

VGG-16 88.26 0.77 0.84 0.89 ± 0.13 0.80 0.88
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Table 4. Performance of existing CNN techniques on the test set of CoV-Healthy-6k. S.E is reported
for sensitivity.

Techniques
Trained from Scratch and TL-Based Fine-Tuned CNNs

Accuracy % MCC F-Score Sensitivity ± S.E Precision Specificity

ShuffleNet 84.88 0.75 0.86 0.95 ± 0.06 0.79 0.75

TL_ShuffleNet 96.59 0.93 0.96 0.96 ± 0.05 0.97 0.97

Inceptionv3 93.80 0.86 0.93 0.95 ± 0.06 0.92 0.92

TL_Inceptionv3 96.51 0.93 0.96 0.97 ± 0.04 0.96 0.96

Alexnet 94.50 0.89 0.94 0.92 ± 0.09 0.97 0.97

TL_Alexnet 95.74 0.91 0.95 0.96 ± 0.05 0.95 0.95

DenseNet201 95.50 0.91 0.95 0.95 ± 0.06 0.96 0.96

TL_DenseNet201 96.51 0.93 0.96 0.96 ± 0.05 0.97 0.97

Xception 95.74 0.91 0.95 0.94 ± 0.07 0.97 0.97

TL_Xception 96.43 0.93 0.96 0.96 ± 0.05 0.97 0.97

TL_ VGG_16 97.05 0.94 0.97 0.97 ± 0.04 0.97 0.97

Resnet50 96.28 0.92 0.96 0.95 ± 0.06 0.98 0.98

TL_Resnet50 97.05 0.94 0.97 0.97 ± 0.04 0.97 0.98

TL_Resnet18 97.13 0.94 0.97 0.97 ± 0.04 0.98 0.98

Well known CNN architectures such as ResNet, DenseNet, and SqueezeNet have
been implemented by Minaee et al. on the COVID-Xray-5k dataset [36]. The dataset
(CoV-NonCoV-15K) developed in this study also includes the COVID-Xray-5k dataset and
the different datasets mentioned in Section 3.3. Table 5 shows the performance of these
models on the CoV-NonCoV-15K dataset. The results show that SqueezeNet gives a low
detection rate.

Table 5. Performance analysis of the reported CNNs on the test set of CoV-NonCoV-15k. S.E at 95%
CI is reported for sensitivity.

CoV-NonCoV-15k

Techniques Accuracy % MCC F-Score Sensitivity ± S.E Precision Specificity

SqueezeNet 83.76 0.62 0.75 0.69 ± 0.33 0.81 0.92

ResNet-50 86.84 0.69 0.80 0.74 ± 0.28 0.86 0.94

DenseNet-201 89.58 0.77 0.85 0.84 ± 0.17 0.86 0.93

4. Discussion

The performance comparison based on accuracy, F-score and MCC suggest that the
proposed STM-RENet with and without Channel Boosting outperformed the existing
techniques, as shown in Tables 1–5. The performance gain of the proposed CB-STM-RENet
when compared to the highest performing existing CNN technique (ResNet) is illustrated in
Figure 7. The proposed CB-STM-RENet shows a significant improvement in performance
as compared to standard CNNs in terms of MCC (13–35%), sensitivity (4–30%), precision
(12–18%), F1-Score (10–23%), accuracy (7–15%), specificity (4–10%), PR-AUC (4–14%), and
ROC-AUC (2–7%), as depicted in Figure 8. These results demonstrate that the proposed
CB-STM-RENet effectively learns region homogeneity, boundaries, and textural variation,
which improve COVID-19 classification performance.

4.1. Feature Space Visualization

Feature space learnt by the proposed CB-STM-RENet technique is explored for the
radiologist’s better understanding and easy decision-making. Figure 9 shows the projection
of the first two principal components (PC) of feature space learned by CB-STM-RENet and
ResNet for the test dataset. It is evident from 2D plots that the proposed CB-STM-RENet
shows the highest discriminative capability (segregation of COVID-19 positive and Non-
COVID-19) compared with ResNet on the test datasets CoV-Healthy-6k, CoV-NonCoV-10k
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and CoV-NonCoV-15k, respectively, while Figure 10 shows the heat map generated by the
proposed CB-STM-RENet for the COVID-19 infected region.
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4.2. Detection Rate Analysis

A significant detection rate is needed for COVID-19 screening, thus limiting infection
spread and patient treatment. Therefore, the detection rate (number of correctly identi-
fied COVID-19 positive patients) is explored along with the misclassification rate for the
proposed technique on all three test sets. The detection and misclassification rate for the
proposed CB-STM-RENet and best performing existing techniques are reported in Figure 11,
whereas Tables 1 and 3 show the sensitivity and precision. The quantitative statistics exhibit
that the proposed technique with and without Channel Boosting achieved the highest
detection rate (ranging from 96–99%) with the minimum number of False positives.
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Additionally, CB-STM-RENet significantly decreases the number of False negatives
and positives, as shown in Figure 11. The significant precision (ranging from 93–98%)
suggests that our proposed technique with Channel Boosting significantly reduced the
miss-detection rate (ranging from 1–7%) and can screen the individuals precisely (Table 1,
Figure 11). High precision means very few Healthy individuals or non-COVID-19 patients
will be Falsely diagnosed with COVID-19 infection, resulting in a lessening of the burden
on radiologists.

4.3. Evaluation of Diagnostic Ability of the Proposed Technique

ROC and PR curves have a significant role in accessing the appropriate diagnostic
cutoff for the classification. These curves graphically illustrate the discrimination ability
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of the classifier at a whole range of possible values [61]. Figure 12 shows ROC curves for
the proposed and existing techniques for CoV-Healthy-6k and CoV-NonCoV-10k datasets,
whereas the PR curve, in addition to the ROC curve in Figure 13, is also reported for the
CoV-NonCoV-15k dataset because of its imbalanced nature.
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Figure 12. ROC Curve for the proposed STM-RENet, CB-STM-RENet, and existing CNN techniques.
(A) is reported for CoV-NonCOV-10k, while (B,C) for CoV-Healthy-6k. ROC in (C) is reported for
TL-based CNN architecture. AUC CI at 95% is shown in square brackets.

ROC and PR analysis evidence that the proposed Channel Boosting based CB-STM-
RENet at different cutoffs shows significant detection performance. Figures 12 and 13
show that our proposed technique with Channel Boosting achieved an AUC-ROC of
0.99 on both the datasets (CoV-Healthy-6k and CoV-NonCoV-10k) and 0.98 AUC-PR for
CoV-NonCoV15k. The high value of AUC demonstrates that the Channel Boosting based
CB-STM-RENet upholds high sensitivity and precision and performs well as a whole for
COVID19 patients’ screening.
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5. Conclusions

COVID-19 is a contagious viral infectious disease that has affected a large spectrum
of the population globally. Its high transmissibility and pathogenic nature make the early
detection of COVID-19 indispensable for infection control and stoppage. Radiographic
images exhibit COVID-19 specific patterns such as Ground Glass Opacity, Consolidation,
Reticulation, and blurring of lung markings compared to healthy individuals. This work
proposes STM-RENet, which incorporates the idea of classical image processing in convolu-
tional operators to explore region homogeneity, boundary patterns, and textural variations,
whereas the idea of Channel Boosting is incorporated to aggregate multi-level radiographic
patterns. The empirical evaluation of the proposed technique suggests that it performs
significantly well on a stringent dataset with an F-score of 0.95 and accuracy of 96.53%,
and surpasses the performance of existing techniques with a 7% improvement. This sug-
gests that the proposed technique can effectively discriminate COVID-19 chest infections
from Healthy individuals and other types of chest infections. In the future, the proposed
CB-STM-RENet will be exploited for the multi-class segregation of COVID-like MERS and
SARS-CoV, etc., and new variants of COVID-19, such as Omicron.
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