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ABSTRACT

A comprehensive, accurate functional annotation of
genes is key to systems-level approaches. As func-
tionally related genes tend to be co-expressed, one
possible approach to identify functional modules or
supplement existing gene annotations is to analyse
gene co-expression. We describe TopoFun, a ma-
chine learning method that combines topological and
functional information to improve the functional sim-
ilarity of gene co-expression modules. Using LASSO,
we selected topological descriptors that discrimi-
nated modules made of functionally related genes
and random modules. Using the selected topological
descriptors, we performed linear discriminant anal-
ysis to construct a topological score that predicted
the type of a module, random-like or functional-like.
We combined the topological score with a functional
similarity score in a fitness function that we used
in a genetic algorithm to explore the co-expression
network. To illustrate the use of TopoFun, we started
from a subset of the Gene Ontology Biological Pro-
cesses (GO-BPs) and showed that TopoFun effi-
ciently retrieved genes that we omitted, and aggre-
gated a number of novel genes to the initial GO-BP
while improving module topology and functional sim-
ilarity. Using an independent protein-protein interac-
tion database, we confirmed that the novel genes
gathered by TopoFun were functionally related to the
original gene set.

INTRODUCTION

In model organisms, geneticists produced a large amount
of functional data that attributed one or more functions to
many genes. Yet, numerous human, murine, fly, worm, ara-
bidopsis, and yeast genes still have no or sparse functional
annotations (1); the situation is obviously worse in non-

model organisms. The available information on gene func-
tion was categorized in projects such as the Gene Ontology
(GO) (2), the Kyoto Encyclopaedia of Genes and Genomes
(KEGG) (3), and the Reactome pathway database (4).
These projects are key to genome-wide approaches as
they help organize the thousands of genes harboured by
prokaryote and eukaryote genomes into functional ‘path-
ways’ or ‘biological processes’. The resulting gene classifi-
cation is widely used to infer functional knowledge from
omics data, e.g. by testing the over-representation of GO
terms/KEGG pathways/Reactome pathways among differ-
entially expressed genes in transcriptomic data. It is then
crucial that the gene functional annotations are as accurate
and comprehensive as possible.

When no or few experimental data were available, com-
puter biologists developed various methods to infer gene
function from genome scale data. One possible approach is
to analyse gene co-expression as co-expressed genes tend to
be functionally related (5–8). The first step in this process is
to define a metric that captures the similarity between gene
expression profiles for any gene pair across a series of bi-
ological samples. Euclidian distance, Pearson’s correlation,
Mutual Rank, and Bayesian metric have all been used with
some pros and cons (9). The second step is to set a threshold
value for the selected metric to classify gene pairs as ‘co-
expressed’ and ‘non-co-expressed’. The resulting data are
represented as a high-dimensional graph in which nodes de-
note genes and (weighted) edges denote co-expression. As
functionally related genes tend to be co-expressed, genes
involved in the same function tend to cluster in the co-
expression network and form a so-called functional mod-
ule. The identification of such modules is critical to systems
approaches (10).

Community detection is a longstanding question in net-
work science (11,12). Most methods, including the most
popular in biology (13), use topological information to find
groups of nodes that are densely connected relative to the
rest of the network (14). These methods are difficult to
benchmark as ground truth is impossible to know in real-
world networks and the use of node-associated metadata as
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a proxy is questionable (15,16). Other methods are aimed
at a slightly different task, i.e. the identification of ‘active
modules’. They combine network topology and molecular
profiles, e.g. transcriptomic data or disease state, to identify
connected sub-networks that show significant changes un-
der different conditions (10,17). The recent Disease Mod-
ule Identification DREAM challenge (https://synapse.org/
modulechallenge) highlighted the complexity of the task,
the limits of the available methods, and the lack of improve-
ment using multi-layered networks (18). Given these limita-
tions, some methods were developed to incorporate biolog-
ical knowledge, i.e. gene functional annotations, in different
ways. The first attempts were to use functional annotations
with gene expression data after the clustering step as in EX-
PANDER (19) or during the clustering step as in PANA
(20) and the method proposed by Leale et al. (21). Func-
tional annotations were also used in gene co-expression net-
work analysis as in EGAD (22). Recently, a machine learn-
ing approach, ‘Multi-Features Relatedness’ (23), was de-
veloped; it combined co-expression information, functional
annotations, protein-protein interactions, and textual infor-
mation. It was limited to study the multi-feature relation-
ship between pairs of genes, not multi-gene functional mod-
ules. Finally, the most classical approach was to use func-
tional annotations a posteriori to assign one or more func-
tion(s) to the different topologically defined clusters using
classical network algorithms such as WGCNA (13), CoEx-
pNets (24), ARACNE (25), GeneMania (26), etc.

In the present work, we used a different strategy and
favoured a gene set-centred approach. Starting from a seed
gene set, we aimed at exploring co-expression networks to
test whether these genes, or a subset thereof, were signif-
icantly co-expressed, and to identify novel genes signifi-
cantly co-expressed with the seed genes. When combined
with functional annotations, such a method would be of
value to contextualize sets of genes called differentially ex-
pressed in transcriptomic data or identified in a GWAS.
To perform a systematic network exploration, the primary
set of genes could be made of one specific gene and its
nth-degree neighbours. Alternatively, starting from a set
of genes known to be functionally related, such a method
would help clarify the pathways (made of co-expressed
genes) in which they operate and find novel functionally
related genes. In a previous work, we attempted to dis-
criminate random modules (RMs) from functional modules
(FMs). Random modules were made of genes randomly
sampled among the genes in the co-expression network. A
functional module was defined according to Hartwell and
colleagues (27) as ‘a group of genes or their products which
are related by one or more genetic or cellular interactions,
e.g. co-regulation, co-expression or membership of a pro-
tein complex, of a metabolic or signalling pathway or of a
cellular aggregate (e.g. chaperone, ribosome, protein trans-
port facilitator, etc.)’. We used GO Biological Processes as
prototypic FMs and computed two topological descriptors
(28). The average mutual rank was not predictive of a mod-
ule class, random or functional; in contrast, the average de-
gree largely discriminated the two classes of modules (Sup-
plementary Figure S1). In the present work, we generalized
this approach and performed a systematic study of mod-
ules topological descriptors. We used LASSO (least abso-

lute shrinkage and selection operator) (29) and LDA (linear
discriminant analysis) (30) to find a linear combination of
the relevant descriptors that optimally separated FMs and
RMs. We combined this topological score with a functional
score based on the work of Wang and colleagues (31) in a
fitness function implemented in a genetic algorithm (GA),
which we named TopoFun. To illustrate TopoFun capabil-
ities, we applied the method to a subset of GO-BPs and
showed that it was able to discover novel functionally re-
lated genes.

MATERIALS AND METHODS

Co-expression data and metrics

Mouse co-expression data were obtained from COX-
PRESdb Mmu.c3-1 (32). COXPRESdb uses Mutual Rank
(MR) to measure co-expression. The Mutual Rank (MR)
of genes gi and gj is defined as follows: the list of genes
co-expressed with gi, respectively gj, is sorted according to
the value of the Pearson’s correlation coefficient (PCC). The
rank of gj, respectively gi, is recorded. The MR is the geo-
metric mean of the two ranks; the lower the MR, the higher
the co-expression of the 2 genes. According to Obayashi
and Kinoshita, MR showed better performance than PCC
in GO prediction (33). If the MR of 2 genes is lower than
a given threshold �, they are considered as co-expressed.
Hence, the COXPRESdb network can be fully described by
the following binary adjacency matrix A:

ai j =
{

0 if MR(i j ) > μ
1 if MR(i j ) ≤ μ

(1)

We previously suggested that a reasonable value for � is
1200 (28). Here, we performed a more systematic study and
tested 12 values for � ranging from 300 to 2000 (Supplemen-
tary File, section 2). We generated FMs and RMs for each
� value and calculated all the descriptors of the resulting
modules. We used LDA, for each �, to find a linear combi-
nation of the descriptors that optimally separated FMs and
RMs. We performed cross-validation to estimate the perfor-
mance and the error of the model, and noted that the error
stabilized for � = 1200 (Supplementary Figure S2). We used
� = 1200 for the rest of the work.

Topological descriptors and topological score

Topological descriptors, also named ‘topological parame-
ters’, of a network are metrics that characterize a facet of a
network topology such as the density of edges, the length of
the shortest path (hop count) between two nodes, the den-
sity of edges between the neighbours of a given gene. . . (34–
36).

Selecting the relevant topological descriptors. To construct
the database to train the machine learning model, we gen-
erated all, i.e. 978, GO-BPs (FMs) that comprised 20–500
genes; we also generated 1000 RMs that contained 20–
500 randomly sampled genes and whose size distribution
is comparable to that of the GO-BPs (Supplementary Fig-
ure S3, Size). We computed 12 descriptors (definitions are
given in Supplementary File, section 3) from the 1978 mod-
ules and summarized the results in Supplementary Table S1.

https://synapse.org/modulechallenge


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 3

We had a set of modules D = (x1, y1), . . . , (x1,978, y1,978)
such that for every module i, the vector xi = (xi1, . . . , xi12)
comprised the 12 descriptors of module i. The vector of bi-
nary responses yi informed about the module class, ‘FM’ or
‘RM’. The logistic regression model assumed that

P ( yi = FM|xi ) = 1
1 + e−xi

′α , (2)

where α ∈ R
12 was the vector of the regression coefficients.

We used this matrix to learn a LASSO model and select the
predictor variables (relevant descriptors). The LASSO es-
timated the regression coefficients by minimizing the least
squares quadratic criterion under a constraint on the sum
of the absolute values of the coefficients or, equivalently, by
minimizing the quadratic criterion penalized by the norm
L1 of the coefficients. This technique was aimed at remov-
ing the redundant or irrelevant descriptors without much
loss of information. The LASSO method selected 6 relevant
descriptors: Shortest Path, Betweenness Centrality, Average
Degree, Inverse Centrality, Clustering Coefficient, and Size.
The distribution of each relevant descriptor for RMs and
FMs is shown in Supplementary Figure S3. As expected,
we observed that the average Betweenness Centrality, the
Average Degree and the average Clustering Coefficient were
higher in FMs than in RMs, confirming that FMs tended to
be denser and more compact than RMs.

Defining the topological score of a gene set. We then ap-
plied LDA to find a linear combination of the relevant
descriptors that optimally discriminated FMs and RMs
(37). We extracted a training set from Supplementary Ta-
ble S1 by keeping the columns for the 6 relevant descrip-
tors and the response vector. As two classes were to be pre-
dicted, only one discriminant axis could be built; we de-
noted ScoreTopo the coordinate of each module on this axis.
The coefficients of the 6 descriptors were Shortest Path, –
0.67294573; Betweenness Centrality, 32.37896628; Average
Degree, 0.04082761; Inverse Centrality, 9.15250821; Clus-
tering Coefficient, 0.19094753; Size, –0.00845438. To assess
the contribution of each descriptor to the LDA model, we
calculated the correlation between ScoreTopo and each of the
six descriptors; Shortest Path, 0.12; Betweenness Centrality,
0.54; Average Degree, 0.23; Inverse Centrality, 0.76; Clus-
tering Coefficient, 0.44; Size, 0.24.

Data in Table 1 showed that 973 out of 1000 RMs and
847 out of 978 FMs were correctly classified, correspond-
ing to an overall classification error rate of 7.99%. Interest-
ingly, 2.8% of the RMs and 13.4% of the FMs were misclas-
sified. To further illustrate the classification performance,
we show the distribution of ScoreTopo for RMs and FMs in
Figure 1. We used two-fold cross-validation to estimate the
prediction performance of the model when applied to new
data (37). Briefly, we randomly split the training set into
two equal subsets s0 and s1. We trained a LDA model on
s0 and validated the model on s1, followed by training on s1
and validation on s0. The process was repeated 1000 times
and the average classification error rate was 8.36%. The cor-
responding receiver operating characteristic (ROC) curves
and the distribution of the area under the curves (AUCs) are
shown on Figure 2. In Figure 2B, the histogram obtained
through cross-validation showed that all values were above

Figure 1. The distribution of ScoreTopo for random and functional mod-
ules. The topological score is a linear combination of the 6 descriptors of
module topology selected by the LASSO method, i.e. shortest path, be-
tweenness centrality, average degree, inverse centrality, clustering coeffi-
cient, and size. It was computed for the 978 Gene Ontology Biological
Processes consisting of 20–500 genes and for 1,000 random modules of the
same sizes. The ScoreTopo distributions for random (blue) and functional
(red) modules indicated that ScoreTopo largely differentiated both types of
modules.

Table 1. The confusion matrix for the LDA model applied to the training
set

Actual class

RM FM Total

Predicted RM 973 131 1,104
class FM 27 847 874

Total 1,000 978 1,978

We performed linear discriminant analysis of the ScoreTopo computed for
978 Gene Ontology Biological Processes (FMs, functional modules) con-
sisting of 20–500 genes and 1,000 random modules (RMs) of the same
sizes. The table displays the calls of the linear discriminant analysis, in-
dicating that 97.3% of the random modules were correctly classified, and
13.4% of the functional modules were misclassified.

0.91 and were distributed in a very narrow range demon-
strating the stability and robustness of the method through
cross-validation.

Gene functional similarity score

The correspondence between genes and GO terms was ob-
tained from the gene2go file (version 30) from the NCBI
repository (38). We used the method proposed by Wang and
colleagues (31), which encodes the semantics of a GO term
into a numerical value by summing the semantic contribu-
tions of their ancestor terms (including this specific term) in
the GO graph.

Defining the gene functional similarity score. Several meth-
ods have been developed to measure the functional simi-
larity of genes using GO annotations. Some measure gene
functional similarities based solely on the probability of
the appearance of GO terms and ignore the semantic re-
lations among these terms in the GO graph. Other methods
were proposed to measure the semantic similarity of terms
in a specific taxonomy (39–41); they were originally devel-
oped for the natural language taxonomies and it is unclear
whether they are suitable for measuring the semantic simi-
larity of GO terms. Ideally, the semantics of a GO term (bi-
ological meaning) should include the biological meanings
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Figure 2. Classification performance of ScoreTopo. (A) Receiver Operating
Characteristic (ROC) curves of the two-fold cross-validation of ScoreTopo.
The training set was split into two equal subsets. A LDA model was trained
on one subset and tested on the other, and vice-versa. The process was re-
peated 1,000 times and the 1,000 ROC curves were plotted. The average
classification error rate was 8.36%. (B) The distribution of the correspond-
ing area under the curves (AUCs).

of all its ancestor terms. The measurement of the semantic
similarity of two GO terms should then take into account
not only the common ancestors number, but also the lo-
cations of these ancestor terms related to the two specific
terms in the GO graph. Wang and colleagues (31), encoded
the semantic value of a GO term G into a numerical value
by aggregating to the semantics of G the contributions of all
terms in the directed acyclic graph that includes G. Terms
closer to G contribute more to its semantics, while terms far-
ther from G contribute less as they are more general terms.
The semantic value of each term is then used to compute the
semantic similarity of two GO terms. The semantic similar-
ity between one term go and a GO term set GO = {go1, go2,
. . . , gok}, Sim(go, GO), is then defined as the maximum se-

mantic similarity between the term go and any of the terms
in set GO. That is

Sim(go, G O) = max1≤i≤k (SGO (go, goi )) , (3)

where SGO(go, goi) is the semantic similarity of the two
terms go and goi. Given two genes gi and gj annotated by
GO term sets GOi = {goi1, goi2, . . . , goim} and GOj = {goj1,
goj2, . . . , gojn} respectively, Wang and colleagues (31) de-
fined their functional similarity as

Sim
(
gi , g j

)

=
∑

1≤k≤mSim
(
goik, G Oj

) + ∑
1≤k≤nSim

(
go jk, G Oi

)
m + n

(4)

We used the geneSim function, with measure = ‘Wang’, of
the GOSemSim package to compute the semantic similarity
of two genes. We computed β, a matrix of functional simi-
larity between all the genes in COXPRESdb, based on this
method. For any module, denoted M, composed of n genes,
we extracted the sub-matrix of β representing the similarity
between all pairs of genes in the module. This matrix was
symmetric. We defined

ScoreFun =
∑

i> j Sim
(
gi , g j

)
n (n − 1)

(5)

ScoreFun was a number between 0 and 1; the closer to 1,
the more the module was composed of functionally similar
genes.

Implementing the TopoFun genetic algorithm

Starting from a gene set, we aimed at discovering novel
genes co-expressed with members of that gene set. The num-
ber of candidate genes was far too large for a systematic
scanning. We therefore implemented the scanning process
through a genetic algorithm (GA), which involved the con-
struction of a fitness function. In the GA, M0 is the original
gene set, M1 is one of the 500 gene sets produced by Topo-
Fun at each iteration and Mf is the final, ranked #1 gene set
after TopoFun converged.

Fitness function. In order to rank modules, we designed a
fitness function that quantified the quality of these mod-
ules with respect to both co-expression and shared func-
tions. The Supplementary File, section 5, describes the dif-
ferent steps that led to the definition of the fitness function
FF. This function, to be maximized, combined topological
and functional information for any new module M1, derived
through addition and deletion of genes from a known mod-
ule M0:

F FM0 (M1) =
√

δ0 + δ1 × ScoreTopo (M1)

×ScoreFun(M1) × |M1 ∩ M0|
|M0| (6)

ScoreTopo favoured modules with FM-like topology.
ScoreFun favoured modules composed of functionally re-
lated genes. |M1∩M0| was the number of genes belonging
to M0 and M1 and |M0| the number of genes in M0. The lat-
ter term was aimed at ‘anchoring’ the novel module around
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M0; without this term, the module was likely to drift to-
wards a neighbour module, mostly independent from M0
but with better topological and functional properties.

When maximizing FF, the three terms should contribute
to the quantification of M1 quality to the same extent. How-
ever, their range were very different; the third term obvi-
ously belonged to [0,1], and so did ScoreFun. In contrast,
ScoreTopo ranged from –2.535 to +6.466 on the learning data
set (Figures 1 and3). We introduced �0 (= 0.281608) and �1
(= 0.1110948) to rescale ScoreTopo using the learning dataset
so that the RM with the lowest ScoreTopo was set to 0 and
the FM with highest ScoreTopo was set to 1.

Genetic algorithm. GA are inspired by natural selection
(42), and are useful in complex optimization problems
(43,44). Here, we used a GA to identify ‘optimized’ mod-
ules by maximizing FF. We initialized the algorithm with a
population constituted of different modules. At each iter-
ation, the population evolved according to three operators
described in the next paragraphs: crossover, mutation and
selection. Selection was crucial to keep the fittest modules.
Mutation and crossover were run independently of the se-
lection process.

Initialization. For each module to test, we used a first-
generation population of 500 modules, which each con-
tained up to 500 genes. Given M0 such that 5 ≤ |M0| ≤ 500,
the first generation-population was composed of

• 300 modules identical to M0,
• 100 modules composed of the largest clique of M0 and

80% of the genes of M0 in the complement to the largest
clique, and

• 100 modules composed of all genes in M0 and (500 – |M0|)
randomly sampled genes (not in M0).

Selection. We implemented the selection based on the fit-
ness values as in Reeves and Rowe (45). We ranked the mod-
ules according to their fitness value, the best one having
the highest rank. We then calculated a probability to keep
a module in the next generation. A module’s probability
was proportional to its rank, so that the sum of probabil-
ities over modules summed to 1, and that the best module
was twice as likely to be selected as the module with me-
dian rank. We also applied elitism to keep the best module
of each generation in the next one.

Crossover. At each generation, we produced new combi-
nations of the previously selected modules through single-
point crossover (45). We excluded from the crossover the
largest clique, which we kept in every module, and applied
crossover to 50% of the modules of a generation.

Mutation. We introduced mutations to efficiently explore
the solution space and make sure that any point of this space
can be reached within a finite number of generations. The
possible mutations included substitution, deletion, or addi-
tion of one gene. We introduced one mutation per module
and the probability of each type of mutation was 0.5 for
substitution, 0.375 for deletion and 0.125 for addition. The
genes of the largest clique were excluded from the mutation
process.

Convergence and stopping criterion. As shown by Bhan-
dari and colleagues (46), two conditions are necessary and
sufficient for a GA to converge as the number of iterations
goes to infinity:

• The best individual in the population has a fitness value
no less than the fitness values of the optimal individual
from the previous populations, which we implemented
through selection.

• Each solution has a positive probability of going to an
optimal individual within a finite number of iterations,
which we implemented through mutation.

We assumed that the GA had converged if the best mod-
ule was identical for 100 generations. We examined the con-
vergence of the GA for 193 M0 with 50–100 genes, and ob-
served that it consistently converged in <3000 generations;
we thus set the default number of iterations to 3000 and
stopped the GA when the best solution was identical for
100 generations.

RESULTS

Properties of the topological and functional scores

The present work, and the guilt-by-association approach
in general, is based on the premise that frequent gene co-
expression predicts functional similarity (47,48). ScoreTopo
describes the topology of the co-expression module and
ScoreFun is a measure of the functional similarity among a
set of genes. If the premise of our work is correct, we should
observe no correlation between the two scores for RMs
and some correlation for FMs. We plotted ScoreTopo versus
ScoreFun for the FMs and the RMs defined above (Figure
3). RMs displayed low ScoreFun values confirming they were
composed of genes that were not functionally related, as ex-
pected for randomly sampled genes. In contrast, FMs had
higher ScoreFun so that ScoreFun almost perfectly discrimi-
nated RMs and FMs. ScoreTopo did not discriminate FMs
and RMs as efficiently as ScoreFun for reasons that will be
discussed in the Discussion section. We observed no corre-
lation of ScoreTopo versus ScoreFun for RMs (PCC = 0.003),
and a correlation for FMs (PCC = 0.364), which confirmed
that ScoreTopo displayed the anticipated properties.

TopoFun gathered known functional relationships

To test the effectiveness of TopoFun, we performed a sim-
ulated experiment using GO-BPs as benchmark FMs. We
left a number of genes out of different GO-BP modules,
ran TopoFun on these ‘trimmed’ modules, and assessed
whether the omitted genes were reinstated. We focused on
the set of the 978 GO-BPs that comprised 20–500 genes. To
assess whether the topology and size of the GO-BPs affected
the effectiveness of TopoFun, we partitioned the 978 mod-
ules into 16 classes according to the quartiles of the module
size and normalized ScoreTopo values. The number of GO-
BPs in each of the 16 classes is displayed in Supplementary
Table S2. We randomly selected five GO-BPs in each of the
16 classes. From each of the 80 selected GO-BPs we gen-
erated three sub-modules by keeping 20, 40 or 60% of the
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Figure 3. Plot of ScoreTopo vs. ScoreFun for random and functional modules. No significant correlation was observed for 1,000 random modules (RM; PCC
= 0.0037, P-value < 0.9054) in contrast to 978 functional modules (FM; PCC = 0.3639, P-value < 2.2 × 10–16) with gene numbers ranging from 20 to 500.

genes in the largest clique (LC) and all the genes in the com-
plement of the largest clique (LCC). We generated three ad-
ditional sub-modules by keeping the LC and 20, 40 or 60%
of the genes in the LCC. We ran TopoFun on the resulting
480 sub-modules and calculated the percentage of omitted
genes that were reinstated by TopoFun in the final module.

Genes omitted from the LC were more efficiently rein-
stated than those from the LCC (Figure 4A). The percent-
age of reinstated genes was also more variable for the genes
of the LC than for those of the LCC (Figure 4A), suggest-
ing that genes in the LC were critical in TopoFun. The dif-
ferent behaviours of LC and LCC genes are also illustrated
in Figure 4B. The percentage of LCC genes reinstated was
highly dependent on the percentage of LCC genes kept; the
more LCC genes were kept in the sub-module, the higher the
percentage of LCC genes were reinstated (Figure 4B, lower
panel). In this case, the ScoreTopo value or the number of
genes in M0 only marginally affected the reinstating rate. In
contrast, when genes from the LC were omitted, the size
of the M0 module largely affected the reinstating rate, at
least for the 20 and 40% LC sub-modules (Figure 4B, up-
per panel). This was likely due to the fact that M0 modules
with <25 genes had a LC that often comprised as low as five
genes (Supplementary Supplementary Figure S7). Keeping
20% of these five genes resulted in just one gene, which made
TopoFun much less efficient. Surprisingly, the ScoreTopo of
the M0 module was not drastically affecting the reinstating
rate but, possibly, for the smallest modules (Figure 4B). In
short, these data indicated that TopoFun efficiently discov-
ered novel functionally related genes starting from a func-
tional co-expression module. They also showed that the size,
rather than the topology, of the original module was the
most critical parameter. One may anticipate that very small
modules, e.g. with less than 10 genes, may be less efficiently
optimized by TopoFun than larger modules.

TopoFun discovered novel functional relationships

To illustrate the performance of TopoFun, we excluded the
smallest GO-BPs for reasons mentioned above and focused
on the 193 GO-BPs with 50–100 genes (Supplementary Ta-
ble S3). Because some genes were not in COXPRESdb, the

actual gene number ranged from 46 to 99. For each GO-BP,
i.e. M0, we ran TopoFun and selected a final, ‘optimized’
module Mf. Supplementary Table S4 displays the number
of genes, the ScoreTopo, and the ScoreFun for each M0 and
Mf. We calculated the ratio of each variable for Mf to M0,
and plotted the distribution of these ratios in Figure 5. The
final modules comprised substantially more genes (Figure 5,
left panel), with improved topology (Figure 5, middle panel)
and functional similarity (Figure 5, right panel) than the
original modules. This indicated that TopoFun was able to
aggregate novel genes to existing GO-BPs while preserving,
most often improving, the functional similarity of the con-
stituting genes.

We tested whether the novel genes gathered by Topo-
Fun were functionally relevant using STRING, ‘a database
of known and predicted protein-protein interactions, in-
cluding direct (physical) and indirect (functional) associa-
tions’ (49), unrelated to COXPRESdb. For each GO-BP, we
counted the number of edges between the novel genes, i.e.
M0

C = Mf – M0, and those in the M0 module. For each M0,
we randomly sampled 10 000 sets of |M0

C| STRING IDs
and counted the number of edges between each random set
and M0. Using the empirical cumulative distribution func-
tion, we calculated the Benjamini–Hochberg-corrected (50)
P-value to observe a number of edges as high as that ob-
served for M0

C. Of the 193 GO-BPs, 182 had P-values < 1
× 10–4, four had P-values < 1 × 10–2, one had a P-value
∼0.012, and six were not significant (Figure 6A, Supple-
mentary Table S5). Figure 6B–F illustrates representative
STRING networks obtained with ‘optimized’ modules gen-
erated by TopoFun, starting from GO:000082∼G1/S tran-
sition of mitotic cell cycle (Figure 6B; edge enrichment,
10.6; P-value < 1 × 10–4), GO:0051865∼protein autoubiq-
uitination (Figure 6C; edge enrichment, 3.90; P-value <
1.10–4), GO:0043401∼steroid hormone mediated signaling
pathway (Figure 6D; edge enrichment, 1.49; P-value < 1 ×
10–4), GO:0010923∼negative regulation of phosphatase ac-
tivity (Figure 6E; edge enrichment, 0.88; P-value, ns).

Those modules with a weak edge fold enrichment still
proved to be interesting. GO:0043401∼steroid hormone
mediated signaling pathway (Figure 6D) originally con-
sisted of 53 genes, mostly nuclear receptors for various
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Figure 4. Analysis of TopoFun effectiveness at discovering functionally re-
lated genes. We partitioned the 978 GO-BPs with 20–500 genes into 16
classes according to their ScoreTopo and size ( = |M0 |)) as displayed in
Supplementary Table S2. We randomly selected five GO-BPs in each class
and generated sub-modules by keeping 20, 40 or 60% of the largest clique
(LC) and the full complement to the largest clique (LCC), or by keeping
the LC and 20, 40 or 60% of the LCC. We ran TopoFun on the 480 sub-
modules and calculated the percentage of the genes that were omitted and
reinstated by TopoFun. (A) Box plots of the distribution of the percentage
of reinstated genes for each of the six categories of sub-modules. (B) We
calculated the means of the percentage of reinstated genes for each of the
16 classes of modules and for each of the six categories of sub-modules,
and represented the data as heat maps.

hormones and metabolites such as estrogen, androgens,
retinoids, thyroid hormone, vitamin D etc. (Supplementary
Table S6). TopoFun preserved the constituting genes and
gathered 127 novel genes, which encoded nuclear proteins,
including zinc finger proteins, transcription factors, co-
activators, co-repressors, chromatin remodelling proteins,
RNA binding proteins and helicases (Supplementary Ta-
ble S6). Given the annotations associated with the genes
in GO:0043401 and with the novel genes, we hypothesized
that the genes of GO:0043401 represented the nuclear pro-

teins involved in hormone/metabolite binding and the novel
genes corresponded to the associated transcription regula-
tory machinery.

TopoFun identified disjoint co-expressed gene sets in a single
GO biological process

Another interesting, atypical case is GO:0007596∼blood
coagulation (Figure 6F). This GO-BP was the only GO-
BP that TopoFun downsized (Figure 5, left panel) and was
one of the six modules for which the number of edges be-
tween M0

C and M0 was not significantly increased (edge
enrichment, 1.00; P-value = 0.51). This GO-BP originally
comprised 71 genes in COXPRESdb; TopoFun excluded
11 genes and added two novel genes. Gene Ontology de-
fines ‘blood coagulation’ as ‘the sequential process in which
the multiple coagulation factors of the blood interact, ul-
timately resulting in the formation of an insoluble fib-
rin clot’. Most of the genes in this GO-BP were related
to the proteolytic cascade involved in clot formation and
its regulation: complement components, coagulation fac-
tors, serine proteases and inhibitors thereof, fibrinogens,
thrombomodulin, thrombin receptors. . . Most of the core
components of the coagulation cascade are produced by
the liver, and the placenta during gestation. These genes
were retained by TopoFun, confirming that they were co-
expressed. Remarkably, the 11 genes that were removed by
TopoFun, did not display the same characteristics. These
genes (Ap3b1/Hps2, Rab27a, Lyst, Bloc1s6, Hps6/Bloc2s3,
Shh, Lnpk, Dtnbp1/Bloc1s8, Ano6, Hps4/Bloc3s2, Bloc1s3)
were all annotated ‘blood coagulation’ by inference from
mutant phenotype (IMP). They were then rightfully anno-
tated ‘blood coagulation’ as they participate in this pro-
cess at the organismal level. All of them, but Shh and
Lnpk, were annotated with terms related to biogenesis of
lysosomal organelles and were ubiquitously/broadly ex-
pressed. Of note, mutations of the human orthologues of six
of them (Ap3b1→HPS2, Bloc1s6→HPS9, Hps6→HPS6,
Dtnbp1→HPS7, Hps4→HPS4, Bloc1s3→HPS8) resulted
in the Hermansky-Pudlak syndrome (HPS, hence the gene
names), a rare genetic disease characterized by decreased
pigmentation (albinism) with visual impairment, and blood
platelet dysfunction with prolonged bleeding. The human
orthologues of three other genes were also informative.
LYST is responsible for the Chediak-Higashi syndrome,
‘a rare, inherited, complex, immune disorder characterized
by reduced pigment in the skin and eyes (oculocutaneous
albinism), immune deficiency with an increased suscepti-
bility to infections, and a tendency to bruise and bleed
easily’. ANO6 is responsible for the Scott syndrome, ‘a
mild platelet-type bleeding disorder characterized by im-
paired surface exposure of procoagulant phosphatidylser-
ine on platelets and other blood cells’ and deficiency of
platelet binding of Factor X. RAB27A is responsible for
type 2 Griscelli syndrome. No bleeding defect is docu-
mented for these patients but they are characterized by low
levels of platelets and fibrinogen, the fibrin precursor, and
light skin. In short, these data suggested that nine of the
11 genes left out by TopoFun were annotated ‘blood coag-
ulation’ because they function in platelet lysosome forma-
tion. We concluded that GO:0007596 comprised (i) genes
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Figure 5. Distribution of the size ratio, ScoreTopo ratio, and ScoreFun ratio. We ran TopoFun on 193 GO-BPs comprising 50–100 genes. For each M0 (=
GO-BP) and Mf (= ‘optimized’ module), we determined the number of genes, the ScoreTopo and the ScoreFun, and plotted the distribution of the ratios of
these variables for Mf to M0.

expressed in the liver that participated in the proteolytic
cascade involved in clot formation and (ii) genes expressed
in megakaryocytes (the platelet progenitors) that partici-
pated in platelet formation and, ultimately, clotting; it is
then not surprising that the two categories of genes were not
co-expressed. Because the genes of the first category were
more numerous in GO:0007596 than those of the second,
the largest clique of this BP was composed exclusively of
genes of the first category. Because the genetic algorithm
used in TopoFun preserved the largest clique of the initial
GO-BP at each iteration, genes of the second category were
excluded. In the STRING database, the 11 genes left out
and the two genes gathered by TopoFun did not display any
interaction with the other genes in GO:0007596 or between
them (Figure 6F).

TopoFun is not biased towards a limited number of highly con-
nected modules

Because TopoFun favoured highly connected modules, we
were concerned that it may frequently converge towards a
limited number of highly connected sets of genes that be-
haved as ‘attractors’ during the genetic algorithm iterations.
We computed the overlap distance (for two sets S1 and S2,
overlap distance(S1, S2) = 1 – (|S1 ∩ S2| / min(|S1|, |S2|))
for each pair of ‘optimized’ modules generated by Topo-
Fun. We used this distance to perform hierarchical clus-
tering of the ‘optimized’ modules and displayed the results
as a heat map (Figure 7). The 193 modules were grouped
into 38 clusters, of which five included 38, 34, 27, 20 and 17
modules.

The Gene Ontology terms are organized in a hierarchical
tree where one given term is a subclass of a more general
term. The genes of a given term are then part of the genes
constituting a term of higher level in the tree. The fact that
some ‘optimized’ module have a similar gene composition
may then result from the interlinked structure of the GO
terms. If this was the case, we expected that the more func-
tionally similar the initial modules were, the more the ‘op-

timized’ modules should be. We computed the functional
similarity of each pair of M0 modules in each of the 38 clus-
ters, did the same for the Mf modules, and plotted the sim-
ilarities of the M0 and Mf pairs for each cluster (Figure 8).
We observed for each of the five most populated clusters
that the functional similarities of the Mf modules were cor-
related to that of the M0 modules; PCC values were 0.75,
0.78, 0.62, 0.78 and 0.64 for clusters # 2, 3, 6, 7, 19, respec-
tively. We concluded that the observed similarity of some Mf
modules was not an artefact and was related to their origi-
nal similarity and to the interlinked relationships of the GO
terms.

Comparison to classical network algorithms

A benchmark study comparing TopoFun to classical net-
work algorithms such as WGCNA (13) and CoExpNets
(24), ARACNE (25), GeneMania (26) etc. is highly desir-
able but practically not possible as TopoFun is gene set-
centred. TopoFun could theoretically identify modules sys-
tematically, e.g. starting from each gene and its nth-degree
neighbours. It is however not practically possible due to
the computation time of the GA (one iteration takes about
3.5 s on a laptop). As it is now, TopoFun is better suited
to ‘optimize’ modules identified by classical network algo-
rithms. Accordingly, we ran WGCNA (with minClustSize
set to its default value, 20) on COXPRESdb Mmu-c3-1
and identified 253 modules comprising 20–701 genes (me-
dian, 57; iqr, 59). For a fair comparison, we focused, as
we did previously with GO-BPs, on the 84 WGCNA mod-
ules with 50–100 genes. We ran TopoFun on these 84 M0
modules and obtained the corresponding Mf modules (Sup-
plementary Table S7). We looked at the distribution of the
module size, ScoreTopo and ScoreFun (Supplementary Figure
S8). The WGCNA modules displayed very good ScoreTopo,
(0.727 ± 0.070) compared to that of RMs (0.147 ± 0.067)
and GO-BPs (0.424 ± 0.105) of the same size. Surprisingly,
the ScoreFun of the WGCNA modules (0.246 ± 0.081) were
not very different from those of RMs (0.207 ± 0.032) and
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Figure 6. Validation using STRING, a database of known and predicted protein-protein interactions, of the genes gathered by TopoFun in COXPRESdb.
(A) 187 of the 193 GO-BPs under study displayed a significant enrichment of the number of edges in STRING between the primary genes and the novel
genes gathered by TopoFun in COXPRESdb (see Results for details). (B–F) Five examples of modules produced by TopoFun and analyzed using STRING.
The green dots correspond to the primary genes of the GO-BPs and the orange ones to the novel genes gathered by TopoFun (B) GO:000082∼G1/S
transition of mitotic cell cycle (edge enrichment, 10.6; P-value < 1 × 10–4), (C) GO:0051865∼protein autoubiquitination (edge enrichment, 3.90; P-value
< 1 × 10–4), (D) GO:0043401∼steroid hormone mediated signalling pathway (edge enrichment, 1.49; P-value < 1 × 10–4), (E) GO:0010923∼negative
regulation of phosphatase activity (edge enrichment, 0.88; P-value, ns), (F) GO:0007596∼blood coagulation (edge enrichment, 1.00; P-value, ns). The blue
dots correspond to primary genes that were part of GO:0010923 and were excluded by TopoFun (see Results for details).
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Figure 7. Similarity of the composition of the modules produced by TopoFun. We compared the gene composition of the ‘optimized’ modules produced
by TopoFun from the 193 GO-BPs comprising 50–100 genes. We computed the overlap distance of each pair of modules, performed hierarchical clustering
of the ‘optimized’ modules (top panel), and displayed the results as a heat map (bottom panel). Analysis of the clustering tree supported the existence of
38 clusters, five of which (# 2, 3, 6, 7, 19) comprised numerous modules.

only half of those of GO-BPs (0.480 ± 0.070). After run-
ning TopoFun on the WGCNA modules with 50–100 genes,
we obtained new modules that displayed a modest (1.09)
but significant (P < 0.01, paired Student’s t-test) increased
ScoreTopo (0.789 ± 0.200). The size of the modules was sub-
stantially increased from 70.2 ± 13.7 to 333 ± 32.3, and so
were the ScoreFun (0.752 ± 0.065). We concluded that the
modules produced by WGCNA had an exceptional topol-
ogy, more compact and dense than most GO-BPs of sim-
ilar size; however, the constituting genes were only weakly
functionally related as their functional similarity was not
very different from that of randomly sampled genes. Most
often, TopoFun was able to add new genes to these mod-

ules without depreciating the module’s topology and with
a concomitant increase in the functional similarity of the
constituting genes.

DISCUSSION

We report on TopoFun, a novel machine learning method
aimed at discovering genes co-expressed with and function-
ally related to a seed gene set. TopoFun required two types
of input data: a gene co-expression network (GCN) and a
gene annotation set. The choice of both potentially influ-
enced its outcome.
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Figure 8. The functional similarity of the initial modules predicted the functional similarity of the modules produced by TopoFun. For any two modules
of each cluster displayed in Figure 7, we plotted the functional similarity of the initial modules (M0) versus that of modules produced by TopoFun (Mf).
The five most populated clusters (#2, 38 modules; #3, 34 modules; #6, 27 modules; #7, 17 modules; #19, 20 modules) displayed a significant correlation,
indicating that the similarity of the Mf modules is largely dictated by the similarity of the original M0 modules.

In the present work, the GCN (COXPRESdb) was con-
structed from 31 479 Affymetrix microarray data. The cor-
responding biological samples were very diverse and did not
represent a specific cell type, tissue or experimental condi-
tion. This particular data set prevented the observation of
cell type- or tissue-specific co-expression links as all samples
were used for the calculation of a single PCC for any gene
pair. Despite this limitation, TopoFun was able to aggre-
gate novel genes with existing GO-BPs. A single PCC was
also used in GeneFriends, a GCN constructed from RNA-
seq data (51). Other co-expression databases used PCC in
a way that preserved the information about the samples
from which the expression data were obtained. For instance,
Gemma recorded the number of independent experiments
in which two genes were co-expressed, defined as PCC >0.7
for experiments with 20+ samples (52). This co-expression
metrics enables sorting experiments, e.g. those derived from
a specific tissue, before constructing the GCN; it is then pos-
sible to observe sample type-specific co-expression relation-
ships. Another possibility is to construct an ab initio GCN
from expression data of a specific tissue, cell type or biolog-
ical condition. The recent availability of single cell expres-
sion data in particular offers the opportunity to ask ques-
tions about gene co-expression in defined cell types.

TopoFun also required an annotation set, namely Gene
Ontology Biological Processes, which greatly influenced the
outcome of the method. First, the annotation data deter-

mined the construction of the database to train the machine
learning model. If some GO-BPs comprised genes that were
actually not co-expressed with their BP fellows, one may ex-
pect that the topology of some ‘functional’ modules of the
training set was not optimal to identify co-expressed genes.
Figures 1 and 3 demonstrated that this situation was not un-
common; a number of functional modules displayed aver-
age degree (Supplementary Figure S1) or topological scores
(Figures 1 and3) similar to those observed in random mod-
ules. One possibility was that some BPs were composed of
genes that were not co-regulated; the activity of signalling
cascades are often regulated by protein phosphorylation
rather than transcriptional co-regulation. The observation
of the relative values of ScoreTopo and ScoreFun will help
identify gene sets, including GO-BPs, that are transcription-
ally co-regulated vs. gene sets that are not. Alternatively,
some GO-BPs were composed of genes that contributed to
the same biological process at the organismal level, but were
expressed in different tissues/cell types and should not be
called co-expressed. The latter possibility was illustrated by
GO:0007596∼blood coagulation, as described in the Re-
sults section. This example illustrated the ability of Topo-
Fun to discriminate sets of functionally related genes based
on co-expression data, even if they were annotated by the
same GO-BP.

The above mentioned heterogeneity of some GO-BPs
suggests possible improvements of TopoFun. In the present
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work we considered the whole GO-BP as a functional mod-
ule; we could be more restrictive and consider only the
largest clique of each GO-BP to train the statistical model.
We anticipate that this approach is likely to be too restric-
tive as only genes co-expressed with every gene in the largest
clique are likely to be gathered. A reasonable compromise
might be to consider the largest clique and its nearest neigh-
bours to train the model.

The problem of using imperfect functional modules to
train the statistical model was also apparent when we
measured the classification performance of the topological
score. The overall error rate was 7.99%, which is rather high;
interestingly, 2.8% of the RMs and 13.4% of the FMs were
misclassified (Table 1). The difference in the error rate be-
tween RMs and FMs was likely the consequence of the fact
that some ‘functional’ modules consisted of genes that were
indeed not co-expressed and correctly classified as RM-like.
As a consequence, the FM misclassification rate was likely
overestimated. In addition, provided that the RM misclas-
sification rate was low enough, the genetic algorithm could
compensate the high FM misclassification rate, as it in-
volved an iterative process, the comparison of numerous
modules, and the selection of only the best one. Again,
training the model with GO-BP sub-modules rather than
the whole GO-BPs should considerably improve the predic-
tion performance of the topological score.

To illustrate TopoFun capabilities, we showed how it as-
signed novel genes to existing GO-BPs. The novel genes
were validated using STRING, an independent knowledge
database. We also showed that TopoFun was able to add
new genes to modules produced by WGCNA. While pre-
serving the module topology, TopoFun increased the func-
tional similarity of the constituting genes, which was found
to be minimal in the original modules. One may argue that,
because the aim of network algorithms is precisely to find
new modules not previously annotated by a function, Topo-
Fun was too conservative and excessively favoured func-
tionally annotated genes. Because classical network algo-
rithms should also be able to find functionally annotated
modules, one may expect that a large proportion of the
modules identified by these algorithms would be function-
ally distinguishable, which was not the case. We concluded
that the weighted combination of topological and func-
tional information provided by TopoFun allowed to opti-
mize WGCNA modules to more plausible ones.

The ‘optimized’ modules produced by TopoFun were
generally larger than the original modules they stemmed
from (Figure 5). This is a general trend with network al-
gorithms that tend to produce large modules whose biolog-
ical interpretation is difficult (12,53–55). Heuristic correc-
tions were proposed to remove the bias towards large mod-
ules (53,54,56) but resulted in limited efficacy (55). In Topo-
Fun, we payed attention to the problem when we designed
the fitness function of the GA. The function was composed
of three, equally weighted terms. The third term, |M1 ∩ M0|

|M0| ,
was neutral with respect to modules size. It favoured mod-
ules that contained the largest proportion of the seed genes;
when more genes were added, this term did not increase,
unless the added genes were in the initial set of genes (these
genes may have been removed at previous iterations). The
second term, ScoreFun, obviously disadvantaged large mod-

ules comprising many genes with no functional similarity
to the seed genes. ScoreFun allowed larger modules only
if they consisted of functionally similar genes, preserving
the modules interpretability. Finally, only the first term,√

δ0 + δ1 × ScoreTopo, could favour large modules. Yet,
the selected topological descriptors included the size of the
modules. This ensured that functional modules of all sizes
were compared to random modules of all sizes during the
machine learning process. When ScoreTopo increased follow-
ing new gene addition, this was mainly because the topo-
logical descriptors of the new module were more FM-like,
not just because the number of constituting genes increased.
TopoFun design was able to minimize the systematic statis-
tical bias uncovered by Nikolayeva and colleagues (12) and
produced some large modules that were still interpretable
as exemplified by GO:0043401∼ steroid hormone mediated
signaling pathway.

Future developments of TopoFun will include the op-
timization of the training set by incorporating additional
sets of functionally related genes. We will test TopoFun
on different types of GCNs, in particular cell type-specific
GCNs constructed from single cell RNAseq data. We will
also use TopoFun for various purposes, e.g. the identifica-
tion of the ‘best’ functional module of a fixed size including
a given gene, the ranking of functional annotations associ-
ated with multifunctional genes by including topological in-
formation, and, hopefully, the identification of totally new
functional modules.

DATA AVAILABILITY

Source code and binaries are available at https://github.
com/ljournot/TopoFun/releases. The code is provided as
a Jupyter notebook that runs in the Jupyter/Jupyterlab
IDE with an R kernel. The documentation is available
in the notebook, which also includes an application to
GO:0006413∼translational initiation.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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9. Liesecke,F., Daudu,D., Dugé de Bernonville,R., Besseau,S.,
Clastre,M., Courdavault,V., de Craene,J.-O., Crèche,J.,
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