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Background: The abnormal expression of genes is an essential factor affecting the prognosis of cancer. 
RNA modification is a way of regulating post-transcriptional levels, including m6A, m5C, m1A RNA 
methylation. Studies have found that RNA methylation regulates tumorigenesis development and stem cell 
regeneration. However, there are few studies on lung adenocarcinoma. This study aims to explore the clinical 
value of RNA methylation for lung adenocarcinoma.
Methods: We summarized thirty-one RNA methylation regulators. The training set was obtained from 
The Cancer Genome Atlas (TCGA) database, and the test set was obtained from the Gene Expression 
Omnibus (GEO) database. The Wilcoxon test was used to analyze the expression of RNA methylation 
regulators. We constructed tumor subgroup models and risk models based on the expression of those 
regulators. Principal component analysis (PCA) and the receiver operating characteristic (ROC) confirmed 
the accuracy of the models. Real-time polymerase chain reaction (PCR) validates the results in vitro.
Results: Most RNA methylation regulators had distinct expressions in tumor tissues and adjacent tissues 
(P<0.05). All the models showed high predictive performance (AUC: 0.65–0.82), and the five-year survival 
of patients in each group was statistically different (P<0.05). The patients in the high-risk group were 
more likely to have a higher stage, more lymph node metastases, and distant metastases, showing a poor 
clinical outcome. Patients with high expression of NOP2 or HNRNP were more likely to have a poorly 
differentiated in vitro experiment.
Conclusions: With our study, we found that the expressions of most RNA methylation regulators were 
significantly different in cancer and para-cancerous tissues. Different molecular phenotypes constructed by 
RNA methylation regulators can be independent risk factors for the prognosis of lung adenocarcinoma. Our 
study demonstrates the critical role of RNA methylation in lung adenocarcinoma, and it is expected to supply 
a reference for the prognostic stratification and treatment strategy development of lung adenocarcinoma.
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Introduction

Lung cancer is one of the most common malignant tumors 
in the world. It is estimated that lung cancer-related deaths 
account for 23% of the total cancer-related deaths in 2020 (1). 
Non-small cell lung cancer accounts for 75% to 80% of all 
lung cancers, including adenocarcinoma and squamous cell 
carcinoma (2). Surgery is the primary treatment of non-
small cell lung cancer. Tumor volume and lymph node 
metastasis are critical indicators to assess whether patients 
can undergo surgery and tumor staging (3). Traditional 
tumor staging is often used to predict the prognosis of lung 
cancer patients. However, patients with the same tumor 
stage sometimes have different prognoses due to individual 
differences (4). Recent studies have found that molecular 
expression is a key factor influencing lung cancer prognosis. 
For example, PD-1 expression reflects the response to 
immunotherapy (5), which suggests the vital value of 
molecular level studies in lung cancer prognosis.

RNA modification is  a way of regulating post-
transcriptional levels (6,7). More than 100 types of chemical 
RNA modifications, which are widely distributed in 
messenger RNA (mRNA), transfer RNA (tRNA), non-
coding small RNA, and long non-coding RNA (lncRNA), 
have been identified at present (6,8,9). N6-methyladenosine 
(m6A) methylation is the most common type of RNA 
modification on mRNA (10). Limited by the low sensitivity 
of early detection techniques, it was not until 2011 that 
the biological function of the first m6A methylation 
regulators on mass and obesity (FTO) was clarified (11). 
5-methylcytosine (m5C) and N1-methyladenosine (m1A) 
are new types of RNA modifications that have attracted 
full attention in recent years. Bisulfite-based transcriptome 
sequencing study finds thousands of m5C modification sites 
on mRNAs in HeLa cells, and research on RIP sequencing 
technology found that m1A is a novel transcriptome control 
with evolutionary conservation (12,13). However, the 
characteristics and functions of m5C and m1A modification 
in mRNA are not entirely apparent.

RNA methylation regulates transcriptome expression 
under the dynamic regulation of methyltransferases 
(“writers”), binding proteins (“readers”), and demethylases 
(“erasers”) (14). Through the study of RNA methylation 
related proteins, thirty-one RNA methylation regulators 
were found (Table 1) (15-17). Recent studies have 
demonstrated that RNA methylation dynamically and 
reversibly regulates critical biological functions such as 
RNA metabolism and processing, as well as directional 

differentiation of stem cells (18). In the field of cancer 
research, it has been found that RNA methylation exists 
in multiple processes of tumorigenesis, development, 
and metastasis (19). For example, a study based on The 
Cancer Genome Atlas (TCGA) database found that 
m6A methylation regulators are involved in malignant 
progression and can predict the prognosis of liver cancer 
patients (20). The m6A demethylase FTO promotes the 
growth of lung cancer cells by regulating the expression 
of USP7 mRNA, and m6A methylation, which is also 
associated with afatinib resistance in lung cancer cells 
(21,22). However, m5C and m1A methylation are rarely 
studied in lung cancer, and the overall level of the predictive 
value of m6A methylation in lung cancer is insufficient.

In this study, we systematically analyzed the expression 
of m6A, m5C, and m1A methylation regulators in lung 
adenocarcinoma, as well as the associations between 
the clinicopathological characteristics. We constructed 
different tumor subgroup models and risk models to 
show the predictive value of RNA methylation for lung 
adenocarcinoma.

Methods

Datasets acquisition

The RNA-seq transcriptome data and corresponding 
clinical information of LUAD were downloaded from 
TCGA (https://cancergenome.nih.gov/) database. RNA-
seq transcription of LUAD data included 59 cases of para-
cancerous tissues and 535 cases of tumor tissues. Two 
hundred and ninety-four clinical cases were obtained after 
removing invalid data. Clinical information included age, 
gender, stage, T, N, M, overall survival (OS) time, and 
survival status (Table 2).

Also, the test set data was downloaded from the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/) under the accession number (GSE37745). 
It is used to test the reliability of the Cox risk models 
constructed from TCGA. Sixty-seven tumor cases from 
lung adenocarcinoma and clinical information include age, 
gender, stage, OS, and survival status (Table 3).

Lung adenocarcinoma and adjacent tissues from  
11 patients (average age =48.0±13.4 years; 8 male patients 
and 3 female patients) were collected from The First 
Affiliated Hospital of China Medical University. The 
surgery and samples collection period is October 2019 to 
present. The study was conducted in accordance with the 
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Table 1 RNA methylation regulators of m6A, m5C, and m1A methylation

RNA methylation Writer Reader Eraser

m6A METTL3, METTL14, RBM1, WTAP, ZC3H13, KIAA1429 HNRNPC, YTHDC1, YTHDC2, 
YTHDF1, YTHDF2

ALKBH5, FTO

m5C NOP2, NSUN2, NSUN3, NSUN4, NSUN5, NSUN7, 
DNMT1, TRDMT1, DNMT3A, DNMT3B

ALYREF TET2

m1A TRMT6, TRMT10C, BMT2, RRP8 ALKBH1, ALKBH3

Table 2 Clinicopathological features of patients included in TCGA 
database

Variable Number Percentage

Total cases 294 100.00

Age

<65 124 42.18

≥65 170 57.82

Gender

Male 145 49.32

Female 149 50.68

Stage

Stage I 152 51.70

Stage II 71 24.15

Stage III 51 17.35

Stage IV 20 6.80

T

T1 88 29.94

T2 156 53.06

T3 25 8.50

T4 25 8.50

N

N0 186 63.27

N1 64 21.77

N2 44 14.96

M

M0 274 93.20

M1 20 6.80

TCGA, The Cancer Genome Atlas.

Declaration of Helsinki. The study was approved by ethics 
board of The First Affiliated Hospital of China Medical 
University (No. YB M-05-02) and informed consent was 
taken from all the patients.

Bioinformatic analysis

After correcting for transcriptome expression on the 
training and test sets, we separately extracted expression 
data of the thirteen m6A RNA methylation regulators, 
twelve m5C RNA methylation regulators, six m1A RNA 
methylation regulators, and all the regulators. According 
to the classification of tumor tissues and adjacent tissues, 

Table 3 Clinicopathological features of patients included in GEO 
database

Variable Number Percentage

Total cases 67 100.00%

Age

<65 38 56.72%

≥65 29 43.28%

Gender

Male 27 40.30%

Female 40 59.70%

Stage

Stage i 46 68.66%

Stage ii 13 19.40%

Stage iii 5 7.46%

Stage iv 3 4.48%

GEO, Gene Expression Omnibus.
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we analyze the expression of those RNA methylation 
regulators. Violin maps and heatmaps were drawn to 
observe the expression distribution of RNA methylation 
regulators.

To investigate the role of different RNA methylation 
regulators in lung adenocarcinoma, we removed adjacent 
samples and grouped tumor samples using the “Consensus 
Cluster Plus” package. Principal component analysis (PCA) 
analysis was used to test the clustering effects. Combined 
clinical information, we draw survival curves to analyze 
the survival differences of different subgroups and draw 
heatmaps to explore the correlation between subgroups and 
clinical characteristics.

To clarify the prognosis risk of the RNA methylation 
regulators, we use the “survival” package to constructed 
Cox models to screen out risk molecules and divide patients 
into the high-risk group or low-risk group. We calculated 
the risk score using the following formula, where Coefi 
is the coefficient, and xi is the expression value of each 
selected molecule. Receiver operating characteristic (ROC) 
curve was used to test model effectiveness. Multivariate Cox 
regression was used to analyze the independent prognostic 
role of the risk model.

1
 *

n

i i
i

Risks core Coef x
=

=∑
Lastly, gene set enrichment analysis (GSEA) is used to 

find the possible mechanism of RNA methylation affecting 
the prognosis of lung adenocarcinoma. The whole gene 
expression data of patients in the various risk groups were 
uploaded to the GSEA v4.0.3 (www.gsea.com) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
software for analysis, which was performed with 1,000 
iterations. The pathways that may be enriched in the 
different risk groups are scored. Screen the KEGG pathway 
based on the enrichment score.

In vitro experiment

Real-time polymerase chain reaction (PCR) was validated 
in vitro after screening RNA methylation regulators 
associated with clinical pathology by bioinformatic analysis. 
RNA extraction from lung adenocarcinoma and adjacent 
tissues was performed using TRIzol reagent (TIANGEN 
Biotech Company, China). RNA was reverse-transcribed 
into cDNA with the FastKing RT Kit (TIANGEN Biotech 
Company, China). Real-time PCR was on TL988 Real-
Time PCR Detection System (TIANLONG, China), 

and the levels were normalized to the level of β - actin. 
The primers were as follows: HNRNPC: forward: 
5'-TCCTCCTCCTATTGCTCGGG-3' and reverse: 
5 '-GTGTTTCCTGATACACGCTGA-3' .  NOP2: 
forward: 5'-AAGGGTGCCGAGACAGAACT-3' and 
reverse: 5'-GAGCACGACTAGACAGCCTC-3'. β-actin: 
forward: 5'-ATAGCACAGCCTGGATAGCAACGTAC-3' 
and reverse: 5'-CACCTTCTACAATGAGCTGCGTG
TG-3'.

Statistical analysis

Statistical analysis of all RNA-seq transcriptome data was 
conducted using R v3.4.1 (https://www.r-project.org/). 
Wilcoxon test was used to compare the differences in the 
expression of RNA methylation regulators between different 
tumor stage or between tumor tissues and adjacent tissues. 
OS is defined as the interval from the date of diagnosis to 
the date of death. The Kaplan-Meier method was used to 
compare the OS of the patients in distinct groups. A chi-
square test was used to analyze the correlation between 
the separate groups and clinical characteristics. P<0.05 was 
considered statistically significant.

Results

Expression of different RNA methylation regulators in 
lung adenocarcinoma

According to the classification of cancer tissues and adjacent 
tissues, we respectively analyzed the expression levels of 
the distinct types of RNA methylation regulators. The 
expressions of five m1A molecules, nine m5A molecules, 
and six m6A molecules were higher in tumor tissues than 
that in the adjacent tissues. One m5C molecule and four 
m6A molecules were lower in cancer tissues than in the 
adjacent tissues (P<0.05) (Figure 1A,B,C,D,E,F). Overall, 
the expression of most RNA methylation regulators in 
lung adenocarcinoma tissues is specific (P<0.05), which are 
shown in Figure 1G,H. These results suggest that RNA 
methylation may play an essential role in the malignant 
progression of lung adenocarcinoma.

Consensus clustering of RNA methylation regulators 
identified cluster subgroups of lung adenocarcinoma with 
different clinical features

After removed adjacent samples, we grouped cancer samples 
using the “Consensus Cluster Plus” package. Considering 
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the clustering stability and the number of each group, we 
divided the patients into two subgroups clustered by k=2. 
In the cluster models of lung adenocarcinoma, we can see 
that the distribution of the two subgroups of the m1A model 
overlaps (Figure 2A,B,C), while the other models show good 
dispersion by PCA (Figure 2D,E,F,G,H,I,J,K,L). These 
results show that our classification by RNA methylation 
regulators are correct.

To better understand the correlation between clustering 
results and clinicopathological features, we performed a 
survival analysis with the OS. The model constructed by 
m1A methylation regulators does not show differences in 
survival or correlation with clinicopathological features 
(P>0.05) (Figure 3A,B). However, there are significant 
differences in survival between tumor subgroups of m5C 
and m6A models, which is also related to the clinical 
characteristics of stage, T, N, and M classification (P<0.05) 
(Figure 3C,D,E,F). The analysis results for all methylation 
regulators model are consistent (Figure 3G,H). Overall, 
these results suggest are consistent. Further analysis of the 
models suggests that cluster 2 patients had a lower five-year 
survival rate and this population is more likely to have a 
higher stage, lymph node metastases, and distant metastasis, 
indicating a poor clinical prognosis.

Prognostic value of RNA methylation regulators, and risk 
models built using selected RNA methylation regulators

To better understand the prognostic role of RNA 
methylation regulators in lung adenocarcinoma, we 
constructed Cox models combining with the expression 
of RNA methylation regulators and OS from the TCGA 
database. Based on the risk score, patients were divided into 
high-risk and low-risk groups. The risk score coefficients of 
different risk models are shown in Table 4. The survival rate 
of the high-risk group in m1A prognostic signature is lower 
than that of the low-risk group (P<0.05), and the prediction 
effect is high (AUC=0.73) (Figure 4A,B). The prognostic 
signatures of m5C and m6A also show significant differences 
in survival (P<0.05), of which m5C signature has a higher 
predictive effect (AUC: 0.77) and m6A signature has the 
lowest predictive effect (AUC: 0.71) (Figure 4C,D,E,F). The 
prognostic signature constructed by all RNA methylation 
regulators has the highest predictive effect (AUC=0.82) 
(Figure 4G,H).

We further used univariate and multivariate Cox 
regression to explore the predictive value of the signatures, 
as well as the associations between the clinicopathological 

characteristics. The analysis results of all prognostic 
signatures are consistent. Risk score in those signatures can 
be independent risk factors affecting the prognosis of lung 
adenocarcinoma (HR>1, P<0.05), and the high-risk patients 
are more likely to have a higher stage, more lymph node 
metastases, and distant metastases, indicating a poor clinical 
prognosis (Figure 5).

Verify the reliability of the risk model constructed by the 
TCGA database through the GEO database

To test the reliability of the risk models based on TCGA 
data, we use the GSE37745 dataset from the GEO for 
validation. By calculating the patient’s risk score, all the 
patients are divided into a high-risk group or low-risk 
group. The survival rate of the high-risk group in m1A 
prognostic signature is lower than that of the low-risk group 
(P<0.05), which is consistent with the training set, but the 
prediction effect is general (AUC =0.65) (Figure 6A,B). The 
prognostic signatures of m5C and m6A also show significant 
differences in survival (P<0.05), with higher predictive 
effects (AUC: 0.75–0.76) (Figure 6C,D,E,F). The prognostic 
signature constructed by all RNA methylation regulators 
has the highest predictive effect (AUC =0.79) (Figure 6G,H).

The test set only followed the patient’s gender, age, and 
stages, and we also performed univariate and multivariate 
Cox regression analysis. These results are a bit different. 
The risk score of the m1A signature can be a risk factor 
that affects the prognosis of lung adenocarcinoma (HR >1,  
P<0.05), but it has no correlation with clinical features 
(Figure 7A,B,C). The analysis of the m5C signature is not 
statistically significant (P>0.05) (Figure 7D,E,F). The risk 
score of other signatures also can be independent risk 
factors for the prognosis of lung adenocarcinoma (HR >1,  
P<0.05) (Figure 7G,H,I,J,K,L). Generally, the test set 
successfully verifies the results of the training set, which 
suggests that RNA methylation is a valid marker for 
predicting patients with lung adenocarcinoma.

Gene set enrichment analysis

We also performed KEGG analysis of gene expression 
in patients in the different risk groups. The results of 
different risk models were consistent. Overall, cell cycle, 
RNA degradation, P53 signaling pathway, homologous 
recombination, and mismatch repair were significantly 
enriched in the high-risk group. Fatty acid metabolism, 
histidine metabolism, and primary bile acid biosynthesis 
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Figure 2 Identification of consensus clusters by RNA methylation regulators in lung adenocarcinoma. (A,B,C) Cluster model and PCA 
based on m1A RNA methylation regulators. (D,E,F) Cluster model and PCA based on m5C RNA methylation regulators. (G,H,I) Cluster 
model and PCA based on m6A RNA methylation regulators. (J,K,L) Cluster model and PCA based on all RNA methylation regulators. 
PCA, principal component analysis.

Consensus matrix k=2

Consensus matrix k=2

Consensus matrix k=2

Consensus matrix k=2

Consensus CDF

Consensus CDF

Consensus CDF

Consensus CDF

0.0       0.2         0.4        0.6         0.8         1.0

 0.0       0.2          0.4         0.6         0.8         1.0

 0.0       0.2        0.4        0.6        0.8        1.0

 0.0         0.2         0.4         0.6         0.8          1.0

–7.5         –0.5         –2.5           0.0           2.5

–4               0                4                8

–10               –5                0

–15          –10           –5             0              5

Consensus index

Consensus index

Consensus index

Consensus index

PCA1

PCA1

PCA1

PCA1

Group

Group

Group

Group

Cluster1
Cluster2

Cluster1
Cluster2

Cluster1
Cluster2

Cluster1
Cluster2

C
D

F
C

D
F

C
D

F

C
D

F

P
C

A
2

P
C

A
2

P
C

A
2

P
C

A
2

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

2.5

0.0

–2.5

0

–4

–8

5.0

2.5

0.0

–2.5

12

8

4

0

–4

A B C

D E F

G H I

J K L



Sun et al. RNA methylation in lung adenocarcinoma

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(12):751 | http://dx.doi.org/10.21037/atm-20-3744

Page 8 of 18

Figure 3 Correlation of different subgroups with OS and clinical characteristics in TCGA database. (A,B) Survival curve and clinical 
characteristics of the clustering model based on m1A RNA methylation regulators. (C,D) Survival curve and clinical characteristics of the 
clustering model based on m5C RNA methylation regulators. (E,F) Survival curve and clinical characteristics of the clustering model based 
on m6A RNA methylation regulators. (G,H) Survival curve and clinical characteristics of the clustering model based on all RNA methylation 
regulators. *, P<0.05; **, P<0.01. OS, overall survival; TCGA, The Cancer Genome Atlas.
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were significantly enriched in the low-risk group 
(Figure 8). These results supply a reference for further 
functions and mechanisms of RNA methylation in lung 
adenocarcinoma.

Validation of RNA methylation regulators expression and 
clinical pathological correlations in lung adenocarcinoma 
by real-time PCR

Survival analysis of each molecule identified nine RNA 
methylation regulators (RRP8, HNRNPC, NOP2, NSUN4, 
DNMT3B, RBM15, TRDMT1, DNMT1, YTHDF2) that 
were associated with patient survival (P<0.05) (Figure 9A,B). 

Among these RNA methylation regulators, patients with high 
expression of HNRNPC or NOP2 were more likely to be in 
advanced tumor stage (P<0.05) (Figure 9C,D). By performing 
real-time PCR on 11 lung adenocarcinoma patient tissues, 
we found that the expression of HNRNPC and NOP2 was 
higher in tumor tissues than that in the adjacent tissues, 
which is consistent with the results of bioinformatic analysis 
(P<0.05) (Figure 9E,F). Furthermore, patients with high 
expression of HNRNPC or NOP2 were more likely to have 
a poorly differentiated (P<0.05) (Figure 9G,H), indicating 
a poor clinical prognosis. These results suggest the impact 
of RNA methylation regulators in the clinical pathology of 
different tumors.

Table 4 Risk model constructed by m1A, m5C, m6A, or all methylation regulators

Risk model Gene Coefficient HR HR.95L HR.95H P

m1A RNA methylation regulators BMT2 −0.062 0.940 0.866 1.021 0.141

TRMT6 0.052 1.053 1.003 1.106 0.037

RRP8 −0.316 0.729 0.563 0.945 0.017

m5C RNA methylation regulators NSUN2 0.012 1.012 0.998 1.026 0.095

NSUN4 −0.319 0.727 0.598 0.883 0.001

TET2 0.164 1.178 1.039 1.335 0.010

ALYREF 0.013 1.013 1.004 1.022 0.003

m6A RNA methylation regulators METTL14 −0.255 0.775 0.590 1.018 0.067

METTL3 −0.070 0.932 0.867 1.002 0.057

ZC3H13 0.115 1.122 1.050 1.198 0.001

YTHDF1 −0.017 0.983 0.967 1.001 0.060

HNRNPC 0.018 1.018 1.005 1.032 0.006

RBM15 0.144 1.155 1.040 1.283 0.007

All RNA methylation regulators YTHDF2 0.026 1.026 0.992 1.062 0.131

BMT2 −0.086 0.918 0.840 1.002 0.055

YTHDC1 −0.071 0.931 0.846 1.024 0.141

ZC3H13 0.093 1.098 1.018 1.184 0.016

YTHDF1 −0.028 0.973 0.953 0.993 0.009

NOP2 0.034 1.035 1.006 1.065 0.020

HNRNPC 0.023 1.024 1.008 1.040 0.003

NSUN4 −0.413 0.662 0.540 0.812 <0.001

RBM15 0.219 1.245 1.101 1.407 <0.001

TRMT10C −0.039 0.962 0.921 1.004 0.074

ALYREF 0.012 1.012 1.003 1.022 0.012
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Figure 4 Survival and ROC curves for different risk models from TCGA database. (A,B) The risk model constructed by m1A methylation 
regulators. (C,D) The risk model constructed by m5C methylation regulators. (E,F) The risk model constructed by m6A methylation 
regulators. (G,H) The risk model constructed by all methylation regulators. ROC, receiver operating characteristic; TCGA, The Cancer 
Genome Atlas.
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Figure 6 Survival and ROC curves for different risk models in the test set. (A,B) Verification of the risk model constructed by m1A 
methylation regulators. (C,D) Verification of the risk model constructed by m5C methylation regulators. (E,F) Verification of the risk model 
constructed by m6A methylation regulators. (G,H) Verification of the risk model constructed by all methylation regulators. ROC, receiver 
operating characteristic.
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Figure 7 Clinical characteristics of different risk groups f in the test set. (A,B,C) Verification of the risk model constructed by m1A 
methylation regulators. (D,E,F) Verification of the risk model constructed by m5C methylation regulators. (G,H,I) Verification of the risk 
model constructed by m6A methylation regulators. (J,K,L) Verification of the risk model constructed by all methylation regulators. *, P<0.05.

Discussion

Over the past decade, people recognized that the occurrence 
and development of lung cancer is a complex process 
involving many factors, and different molecular expressions 
have variable drug responses and clinical prognosis to 
patients. Traditional tumor staging only depends on tumor 
volume and metastasis, which cannot take into account 
the patient’s gene expression level (23). The mutation 

rate of functional driver genes in lung adenocarcinoma is 
about 60%, of which KRAS, EGFR mutation, and EML4-
ALK fusion is the most common driver gene, accounting 
for about 35% to 40% (24). Kris’s study found that the 
median survival time of patients with such type of driver 
gene mutation receiving targeted therapy was prolonged by 
2–4 years compared with other patients (25). The study of 
genetic changes in lung squamous cell carcinoma was later 
than lung adenocarcinoma. TP53, KRAS, GRM are the 
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Figure 8 KEGG analysis of different risk groups in lung adenocarcinoma. (A) The risk model constructed by m1A methylation regulators. (B) 
The risk model constructed by m5C methylation regulators. (C) The risk model constructed by m6A methylation regulators. (D) The risk 
model constructed by all methylation regulators. KEGG, Kyoto Encyclopedia of Genes and Genome.

common gene mutations (26). Weiss’s research found that 
about 20% of lung squamous cell carcinomas have FGFR1 
amplification. Inhibition of FGFR1 in cell lines and mouse 
models can inhibit cell growth and induce apoptosis (27).  
These studies suggest that the new molecular typing 
research is expected to predict the clinical prognosis of 
patients more from the molecular level.

RNA modification is  a way of regulating post-
transcriptional levels. For example, m6A modification refers 
to a modification in which one hydrogen atom (-H) attached 
to the sixth nitrogen atom (N6) on the adenine molecule 
is substituted with a methyl group (-CH4) (28). The m6A 
methyltransferase promotes mRNA methylation of adenine, 
and demethylase can eliminate it, and the binding proteins 
play a recognition role in this process (28,29). m5C and 
m1A RNA methylation also regulate gene expression by 
acting at different sites. RNA methylation is a dynamic and 
reversible modification method, and the entire process is 
regulated by methyltransferases, demethylase, and binding 
proteins. FTO is the first identified m6A demethylase, 

and its m6A-mediated modification can be a novel cis-
element to regulate mRNA splicing and adipose precursor 
cell differentiation (18). Also, it was found that FTO can 
demethylate m1A, too (30). Yang discovered the distribution 
of m5C methylation, identified the main methyltransferase 
NSUN2 and the first binding protein ALYREF (17). 
David’s study found that Arabidopsis m5C modification 
regulates tissue development, and the methyltransferase is 
TRM4B (31). There is less research on m1A methylation. 
Li has developed a single-base-resolution m1A sequencing 
method and found that nuclear and mitochondrial coding 
transcripts have different types of m1A methylation (32).

RNA methylation also regulates tumorigenesis and 
development, drug response, and stem cell renewal. Zhou’s 
study found that FTO enhances the chemo-radiotherapy 
resistance both in vitro and in vivo through regulating the 
expression of β-catenin by reducing m6A levels in its mRNA 
transcripts (33). Cui’s research suggests that m6A mRNA 
modification is critical for glioblastoma stem cell self-
renewal and tumorigenesis. Knockdown of METTL3 or 
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Figure 9 Validation of RNA methylation regulators expression and clinical pathological correlations in lung adenocarcinoma by real-time 
PCR. (A,B) Correlation of HNRNPC and NOP2 expression with patient survival from TCGA. (C,D) Correlation of HNRNPC and NOP2 
expression with tumor staging of the patient from TCGA. (E,F) Expression of HNRNPC and NOP2 in lung adenocarcinoma and adjacent 
tissues by real-time PCR. (G,H) Correlation of HNRNPC and NOP2 expression with tumor differentiation of the patient from by real-
time PCR. PCR, polymerase chain reaction.
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METTL14, key components of the RNA methyltransferase 
complex, promotes human glioblastoma stem cell growth, 
self-renewal, and tumorigenesis (34). Chen’s research found 
that m5C RNA methylation promotes the pathogenesis 
of bladder cancer through stabilizing mRNAs, and high 
expression of NUSN2 predicts poor survival (35). In 
the study of TCGA, literature reported that m6A RNA 
methylation regulators contribute to malignant progression 
and have a clinical prognostic impact (15,36). These studies 
have suggested that RNA methylation not only plays a role 
in tumor progression but can also be a signature to predict 
clinical prognosis, but there are few studies on the effect 
of RNA methylation on lung cancer. We obtained a large 
number of patient cases and clinicopathological features 
by downloading lung adenocarcinoma data from the TCG 
database. We likewise mined the GEO database, but with a 
lower number of cases, which lends itself to doing studies 
that validate the TCGA results. The analysis and validation 
of these data provide the basis for a prognostic study of 
RNA methylation in lung adenocarcinoma.

Through the study of RNA methylation, we summarized 
thirty-one RNA methylation regulators. Further analysis 
showed that the expression of these regulators in tumor 
tissues differed from that in adjacent tissues, which 
suggested that RNA methylation plays a vital role in 
the development of lung adenocarcinoma. To explore 
the clinical value of RNA methylation, we constructed 
several subgroups and risk models, PCA and ROC curves 
show the excellent accuracy of the models. In different 
models, we found that the expression of RNA methylation 
regulators is related to the survival of patients, and different 
molecular phenotypes can be independent risk factors for 
the prognosis of lung adenocarcinoma. Real-time PCR 
validated the results of the bioinformatic analysis. Our study 
explains the critical role of RNA methylation in lung cancer, 
and it is expected to supply a reference for the prognostic 
stratification and treatment strategy development of lung 
adenocarcinoma.

Acknowledgments

We thank our anonymous reviewers for their valuable 
comments on this manuscript, which have led to many 
improvements to the article.
Funding: This study was supported by the Program Funded 
by Liaoning Province Education Administration (grant No. 
QN2019003).

Footnote

Data Sharing Statement: Available at http://dx.doi.
org/10.21037/atm-20-3744

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/atm-20-3744). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The study was approved by ethics board of 
The First Affiliated Hospital of China Medical University 
(No. YB M-05-02) and informed consent was taken from all 
the patients. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. 
CA Cancer J Clin 2020;70:7-30.

2.	 Kramer H, Groen HJ. Current concepts in the mediastinal 
lymph node staging of nonsmall cell lung cancer. Ann Surg 
2003;238:180-8.

3.	 Van Schil PE, Rami-Porta R, Asamura H. The 8th TNM 
edition for lung cancer: a critical analysis. Ann Transl Med 
2018;6:87.

4.	 Liu C, Li Y, Wei M, et al. Identification of a novel 
glycolysis-related gene signature that can predict the 
survival of patients with lung adenocarcinoma. Cell Cycle 
2019;18:568-79.

5.	 Velez MA, Burns TF. Is the game over for PD-1 inhibitors 
in EGFR mutant non-small cell lung cancer? Transl Lung 
Cancer Res 2019;8:S339-42.

http://dx.doi.org/10.21037/atm-20-3744
http://dx.doi.org/10.21037/atm-20-3744
http://dx.doi.org/10.21037/atm-20-3744
http://dx.doi.org/10.21037/atm-20-3744
https://creativecommons.org/licenses/by-nc-nd/4.0/


Annals of Translational Medicine, Vol 8, No 12 June 2020 Page 17 of 18

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(12):751 | http://dx.doi.org/10.21037/atm-20-3744

6.	 Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA 
Modifications in Gene Expression Regulation. Cell 
2017;169:1187-200.

7.	 Taoka M, Nobe Y, Hori M, et al. A mass spectrometry-
based method for comprehensive quantitative 
determination of post-transcriptional RNA modifications: 
the complete chemical structure of Schizosaccharomyces 
pombe ribosomal RNAs. Nucl Acids Res 2015;43:e115.

8.	 Agris PF, Narendran A, Sarachan K, et al. The Importance 
of Being Modified: The Role of RNA Modifications in 
Translational Fidelity. Enzymes 2017;41:1-50.

9.	 Keffer-Wilkes LC, Veerareddygari GR, Kothe U. RNA 
modification enzyme TruB is a tRNA chaperone. Proc Nat 
Aca Sci U S A 2016;113:14306-11.

10.	 Hastings MH. m(6)A mRNA methylation: a new circadian 
pacesetter. Cell 2013;155:740-1.

11.	 Ren W, Guo J, Jiang F, et al. CCAAT/enhancer-binding 
protein α is a crucial regulator of human fat mass and 
obesity associated gene transcription and expression. 
BioMed Res Int 2014;2014:406909.

12.	 Safra M, Sas-Chen A, Nir R, et al. The m1A landscape 
on cytosolic and mitochondrial mRNA at single-base 
resolution. Nature 2017;551:251-5.

13.	 Squires JE, Patel HR, Nousch M, et al. Widespread 
occurrence of 5-methylcytosine in human coding and non-
coding RNA. Nucl Acids Res 2012;40:5023-33.

14.	 Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic 
m6A decoration: writers, erasers, readers and functions in 
RNA metabolism. Cell Res 2018;28:616-24.

15.	 Chai RC, Wu F, Wang QX, et al. m6A RNA methylation 
regulators contribute to malignant progression and 
have clinical prognostic impact in gliomas. Aging 
2019;11:1204-25.

16.	 Liu F, Clark W, Luo G, et al. ALKBH1-Mediated tRNA 
Demethylation Regulates Translation. Cell 2016;167:1897.

17.	 Yang X, Yang Y, Sun BF, et al. 5-methylcytosine promotes 
mRNA export - NSUN2 as the methyltransferase and 
ALYREF as an m5C reader. Cell Res 2017;27:606-25.

18.	 Zhao X, Yang Y, Sun BF, et al. FTO-dependent 
demethylation of N6-methyladenosine regulates mRNA 
splicing and is required for adipogenesis. Cell Res 
2014;24:1403-19.

19.	 Dixit D, Xie Q, Rich JN, et al. Messenger RNA 
Methylation Regulates Glioblastoma Tumorigenesis. 
Cancer Cell 2017;31:474-5.

20.	 Li Z, Li F, Peng Y, et al. Identification of three m6A-

related mRNAs signature and risk score for the 
prognostication of hepatocellular carcinoma. Cancer Med 
2020;9:1877-89.

21.	 Li J, Han Y, Zhang H, et al. The m6A demethylase FTO 
promotes the growth of lung cancer cells by regulating 
the m6A level of USP7 mRNA. Biochem Biophys Res 
Commun 2019;512:479-85.

22.	 Meng Q, Wang S, Zhou S, et al. Dissecting the m6A 
methylation affection on afatinib resistance in non-small 
cell lung cancer. Pharmacogenomics J 2020;20:227-34.

23.	 Tian Z, Wen S, Zhang Y, et al. Identification of 
dysregulated long non-coding RNAs/microRNAs/mRNAs 
in TNM I stage lung adenocarcinoma. Oncotarget 
2017;8:51703-18.

24.	 Pikor LA, Ramnarine VR, Lam S, et al. Genetic alterations 
defining NSCLC subtypes and their therapeutic 
implications. Lung Cancer 2013;82:179-89.

25.	 Kris MG, Johnson BE, Berry LD, et al. Using multiplexed 
assays of oncogenic drivers in lung cancers to select 
targeted drugs. JAMA 2014;311:1998-2006.

26.	 Kan Z, Jaiswal BS, Stinson J, et al. Diverse somatic 
mutation patterns and pathway alterations in human 
cancers. Nature 2010;466:869-73.

27.	 Weiss J, Sos ML, Seidel D, et al. Frequent and focal 
FGFR1 amplification associates with therapeutically 
tractable FGFR1 dependency in squamous cell lung 
cancer. Sci Transl Med 2010;2:62ra93.

28.	 Fu Y, Dominissini D, Rechavi G, et al. Gene expression 
regulation mediated through reversible m6A RNA 
methylation. Nat Rev Genet 2014;15:293-306.

29.	 Wang CX, Cui GS, Liu X, et al. METTL3-mediated m6A 
modification is required for cerebellar development. PLoS 
Biol 2018;16:e2004880.

30.	 Wei J, Liu F, Lu Z, et al. Differential m6A, m6Am, 
and m1A Demethylation Mediated by FTO in the Cell 
Nucleus and Cytoplasm. Mol Cell 2018;71:973-85.e5.

31.	 David R, Burgess A, Parker B, et al. Transcriptome-
Wide Mapping of RNA 5-Methylcytosine in Arabidopsis 
mRNAs and Noncoding RNAs. Plant cell 2017;29:445-60.

32.	 Li X, Xiong X, Zhang M, et al. Base-Resolution 
Mapping Reveals Distinct m1A Methylome in Nuclear- 
and Mitochondrial-Encoded Transcripts. Mol Cell 
2017;68:993-1005.e9.

33.	 Zhou S, Bai ZL, Xia D, et al. FTO regulates the chemo-
radiotherapy resistance of cervical squamous cell 
carcinoma (CSCC) by targeting β-catenin through mRNA 



Sun et al. RNA methylation in lung adenocarcinoma

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(12):751 | http://dx.doi.org/10.21037/atm-20-3744

Page 18 of 18

demethylation. Mol Carcinog 2018;57:590-7.
34.	 Cui Q, Shi H, Ye P, et al. m6A RNA Methylation 

Regulates the Self-Renewal and Tumorigenesis of 
Glioblastoma Stem Cells. Cell Rep 2017;18:2622-34.

35.	 Chen X, Li A, Sun BF, et al. 5-methylcytosine promotes 
pathogenesis of bladder cancer through stabilizing 

mRNAs. Nat Cell Biol 2019;21:978-90.
36.	 Su Y, Huang J, Hu J. m6A RNA Methylation Regulators 

Contribute to Malignant Progression and Have Clinical 
Prognostic Impact in Gastric Cancer. Front Oncol 
2019;9:1038.

Cite this article as: Sun L, Liu WK, Du XW, Liu XL, Li G, 
Yao Y, Han T, Li WY, Gu J. Large-scale transcriptome analysis 
identified RNA methylation regulators as novel prognostic 
signatures for lung adenocarcinoma. Ann Transl Med 
2020;8(12):751. doi: 10.21037/atm-20-3744


