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Abstract

Objectives The objectives of this study were to investigate

the population pharmacokinetics of posaconazole in

immunocompromised children, evaluate the influence of

patient characteristics on posaconazole exposure and per-

form simulations to recommend optimal starting doses.

Methods Posaconazole plasma concentrations from pae-

diatric patients undergoing therapeutic drug monitoring

were extracted from a tertiary paediatric hospital database.

These were merged with covariates collected from elec-

tronic sources and case-note reviews. An allometrically

scaled population-pharmacokinetic model was developed

to investigate the effect of tablet and suspension relative

bioavailability, nonlinear bioavailability of suspension,

followed by a step-wise covariate model building exercise

to identify other important sources of variability.

Results A total of 338 posaconazole plasma concentrations

samples were taken from 117 children aged 5 months to

18 years. A one-compartment model was used, with tablet

apparent clearance standardised to a 70-kg individual of

15 L/h. Suspension was found to have decreasing

bioavailability with increasing dose; the estimated sus-

pension dose to yield half the tablet bioavailability was

99 mg/m2. Diarrhoea and proton pump inhibitors were also

associated with reduced suspension bioavailability.

Conclusions In the largest population-pharmacokinetic

study to date in children, we have found similar covariate

effects to those seen in adults, but low bioavailability of

suspension in patients with diarrhoea or those taking con-

current proton pump inhibitors, which may in particular

limit the use of posaconazole in these patients.

Key Points

Posaconazole is unlicensed for children under 13

years of age and its pharmacokinetics have not

widely been reported in this population group; our

study provides a large cohort in this age group

receiving both tablets and an oral suspension

A population-pharmacokinetic model has revealed

saturable suspension bioavailability, and reduced

bioavailability in patients taking proton pump

inhibitors and those with diarrhoea

Based on simulations from our model, dosing and

therapeutic drug monitoring guidelines are provided

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s40262-018-0658-1) contains supple-
mentary material, which is available to authorized users.

& Joseph F. Standing

j.standing@ucl.ac.uk

1 Infection, Inflammation, Immunity Section, Room 661, UCL

Great Ormond Street Institute of Child Health, University

College London, 30 Guilford Street, London WC1N 1EH,

UK

2 Ramathibodi Hospital, Mahidol University, Bangkok,

Thailand

3 Great Ormond Street Hospital for Children, London, UK

4 Institute of Global Health, University College London,

London, UK

5 University of Queensland Centre for Clinical Research,

Brisbane, QLD, Australia

6 Paediatric Infectious Diseases Research Group, St. George’s,

University of London, London, UK

Clin Pharmacokinet (2019) 58:53–61

https://doi.org/10.1007/s40262-018-0658-1

http://orcid.org/0000-0002-4561-7173
http://dx.doi.org/10.1007/s40262-018-0658-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s40262-018-0658-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40262-018-0658-1&amp;domain=pdf
https://doi.org/10.1007/s40262-018-0658-1


1 Introduction

Invasive fungal disease (IFD) remains an important cause

of morbidity and mortality in immunocompromised chil-

dren [1, 2]. Despite the development of new diagnostic

methods and the availability of new antifungal agents, the

incidence and mortality from IFD remains unacceptably

high. Posaconazole is a second-generation, broad-spec-

trum, fluorinate triazole that inhibits ergosterol synthesis in

the fungal cell wall. It is active against most pathogenic

yeasts and moulds, including Aspergillus spp., Candida

spp., Cryptococcus spp., filamentous fungi, dimorphic

fungi and endemic mycoses [3–6].

Despite currently being unlicensed for use in the pae-

diatric population, posaconazole has successfully been

used for the prevention and treatment of IFD in this group

[7], and is recommended for prophylaxis against invasive

Aspergillus and Candida infections after allogeneic

haematopoietic stem cell transplantation in adolescents [7].

Additionally, posaconazole has been used as a salvage

treatment for IFD with favourable outcomes [8, 9].

Two oral formulations of posaconazole are currently

available, a gastro-resistant tablet and an oral suspension.

Posaconazole pharmacokinetics are variable, particularly

during absorption and with the suspension formulation, and

very limited paediatric data have been published to date

[10]. Pharmacokinetic models to inform optimal dosing in

infants and young children, in particular, are therefore

lacking.

Therapeutic drug monitoring (TDM) for most triazoles

is recommended owing to high inter-individual variability

and the potential for drug–drug interactions. According to

the British Society for Medical Mycology, a posaconazole

target trough concentration of greater than 0.7 and 1 mg/L

should be used for the prophylaxis and treatment of IFD,

respectively, and as yet no upper limit for toxicity has been

defined [11].

Our study aimed to develop a population-pharmacoki-

netic model of posaconazole in a large cohort of paediatric

patients. Focussing on children aged 12 years and under,

the resulting model was then used to identify patient groups

at risk of sub-optimal posaconazole exposure, and to sug-

gest initial dosing.

2 Patients and Methods

2.1 Patients and Data Collection

In- and out-patients at a tertiary paediatric hospital

receiving posaconazole between January 2010 and

December 2016 were studied. Patients receiving

posaconazole for prophylaxis or the treatment of IFD and

who had at least one TDM sample taken, and had full

dosing and sample timing history available were included.

The time and date of the posaconazole TDM sample, along

with the reported concentration, were extracted from

electronic TDM records. For inpatients, dosing history was

taken from electronic nursing administration history,

whereas for outpatients the time of the last dose was taken

from the TDM request. In addition, demographics, con-

comitant medications, presence of diarrhoea on the day of

sampling and purpose (prophylaxis or treatment) were

collected from electronic records. Medical notes including

clinic letters and inpatient treatment records coinciding

with each sampling occasion were read to extract infor-

mation on the indication and the presence of diarrhoea.

Because the data were collected by clinical staff retro-

spectively and were anonymised prior to analysis, ethical

review and the need for informed consent were waived by

the institute’s research and development office.

For dosing data from the electronic prescribing and

administration system, all doses from the first dose to the

first TDM sample were included. Thereafter, only the doses

in the preceding 48 h prior to a TDM sample were used,

with the first of these assumed to be at steady state. For

outpatient samples, the preceding dose was assumed to be

at steady state based on the reported dose and frequency.

During the recruitment period, posaconazole assays

were sent to the following accredited laboratories for

analysis: Department of Microbiology, Wythenshawe

Hospital, Manchester, UK; the Mycology Reference Lab-

oratory, Leeds, UK; and Mycology Reference Laboratory,

Bristol, UK. The lower limits of quantification ranged

between 0.07 and 0.2 mg/L.

2.2 Population-Pharmacokinetic Modelling

Because most samples were pre-dose troughs and

posaconazole is known to have a long elimination half-life,

a one-compartment model with first-order absorption was

used. Allometric scaling with exponents of 0.75, 1 and -

0.25 on clearance (CL), central volume and absorption rate

constant (Ka) were added a priori, and a sigmoidal matu-

ration function based on postmenstrual age was tested [12].

Because posaconazole tablets have been reported to

have higher bioavailability than the suspension [13], and

tablet pharmacokinetics are linear in the therapeutic range

[14], whereas suspension has been shown to have nonlinear

absorption [15], the following expression was used to

describe relative bioavailability between a tablet and a

suspension, and the nonlinear suspension bioavailability:

F ¼ Ftab �
D

Dþ bdose
;
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where F is the bioavailability of the suspension relative to

the tablet, Ftab is the apparent tablet bioavailability that was

fixed to 1, D is the dose in mg/m2, and bdose is the estimated

dose in mg/m2 to yield a 50% decrease in bioavailability of

the suspension relative to tablets.

A step-wise covariate model (SCM) building exercise

with a forward inclusion limit set to a p value of 0.05 and

backwards elimination limit set to a p value of 0.01 was

then undertaken to identify whether any of the following

dichotomous covariates were associated with suspension

apparent bioavailability: diarrhoea, treatment/prophylaxis,

macrolides, echinocandins, terbinafine, ciclosporin, tacro-

limus, mycophenolate, rifamycins, carbamazepine, pheny-

toin, histamine H2-receptor antagonists, proton pump

inhibitors (PPIs) or valaciclovir. The following concomi-

tant medications were also tested on CL: macrolides,

echinocandins, ciclosporin, tacrolimus, mycophenolate,

rifampicin, carbamazepine, phenytoin or valaciclovir.

Model diagnostics included plots of observations vs.

population predictions and conditional weighted residuals

vs. time and prediction. Simulation properties were tested

with a visual predictive check. Parameter stability was

investigated using a non-parametric bootstrap. Modelling

was undertaken using NONMEM Version 7.3 (ICON PLC,

Dublin, Ireland) [16] with the first-order conditional esti-

mation algorithm with interaction. A combined additive

plus proportional error model was used throughout model

building, and then removal of the additive or proportional

element considered at the final model step.

A decrease in - 2 log likelihood [the objective function

value (OFV) in NONMEM] between two nested models

asymptotically follows a v2 distribution with degrees of

freedom equal to the number of additional parameters. This

was used to guide covariate inclusion with a p value

threshold set to 0.01. Perl-speaks NONMEM (University of

Uppsala, Sweden) was used for the SCM (forward inclu-

sion p \ 0.05, backward elimination p \ 0.01), visual

predictive check and bootstrap preparation [17], and data

manipulations and plotting were performed using R Ver-

sion 3.2 (R Foundation, Vienna, Austria) [18].

A dataset of 1000 hypothetical patients for each sig-

nificant covariate in the final model and for each formu-

lation was created by re-sampling from the demographics

(weight, age) of the original dataset. Using this dataset and

the final model, simulations of steady-state trough con-

centration were produced to assess probability of target

attainment for prophylaxis (0.7 mg/L) and treatment

(1 mg/L) targets [11].

3 Results

3.1 Data Characteristics

The initial dataset contained 580 posaconazole plasma

concentrations from 128 individuals. Owing to incomplete

data entry in outpatient TDM records that could not be

reconciled from clinic letters, 242 samples were excluded,

leaving a total of 338 posaconazole plasma concentrations

from 117 children. There were 22 samples below the limit

of quantification, which were substituted with a value of

lower limit of quantification/2. Most samples were taken

following administration of a posaconazole suspension

(326). The median age was 5.7 years, which included 22

infants aged less than 2 years, 47 young children aged

2–6 years and 36 children aged 7–12 years. Demographic

details are given in Table 1, and an illustration of doses

administered by age is given in Fig. 1.

3.2 Population Pharmacokinetics

The base structural model with allometric scaling centred

on 70 kg and inter-individual variability on CL only gave

parameter estimates of 86.5 L/h, 1439.6 L and 0.09/h for

apparent clearance (CL/F), apparent volume and Ka,

respectively. The addition of a sigmoidal maturation

function gave no improvement in fit, whereas adding a

categorical covariate of a change in relative bioavailability

with suspension compared with a tablet yielded a decrease

in OFV of 10.11 (p = 0.0015). Allowing suspension

bioavailability relative to a tablet to change with dose

(bdose in the expression above) yielded a decrease in OFV

of 23 (p\ 0.001) compared with the model of suspension

having a fixed decrease in bioavailability regardless of

dose.

During model building, flip-flop kinetics became

apparent (Ka being estimated to be larger than elimination

rate constant). Thereafter, Ka was fixed to literature values

of 0.588/h for tablets [19], and 0.197/h for suspensions

[15]. The difference in OFV between this model and the

estimated Ka and V models was 7.63, indicating a very

similar fit.

In the SCM, following the backward elimination step,

diarrhoea and concurrent PPI administration both resulted

in significant improvements in fit when applied to a

decrease in suspension bioavailability (DOFV 11.06 and

35.53 corresponding to p = 0.001 and p\ 0.001, respec-

tively). Parameter estimates and bootstrap results are given

in Table 2. Figure 2 shows goodness-of fit plots for the

final model.
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3.3 Simulations of Steady-State Trough

Concentration

Simulations showed that patients aged 7–12 years taking

300 mg in a tablet form once a day (the adult treatment

dose) would have a 24% probability of achieving a trough

concentration of[1 mg/L and a 33% of achieving trough

concentrations of[0.7 mg/L for prophylaxis. Giving the

same total daily dose split three times per day would

achieve a probability of target attainment (PTA) of 44 and

59% for treatment and prophylaxis, respectively, whereas

200 mg three times per day would achieve a PTA of 72 and

80% for treatment and prophylaxis, respectively.

Suspension bioavailability affected the PTA markedly,

in particular in patients with diarrhoea and those taking

PPIs. For example, a child aged between 6 months and

2 years taking 200 mg four times per day would have a

PTA of 68 and 80% for treatment and prophylaxis,

respectively, but this falls to 29 and 44% for patients with

diarrhoea and those taking PPIs. In this case, doubling the

dose to 400 mg four times per day only improves the PTA

to 33 and 48%. Plots of simulated target attainment vs.

dose are given in Fig. 3.

4 Discussion

To the best of our knowledge, this is the first population-

pharmacokinetic analysis of posaconazole tablets and sus-

pension in immunocompromised children. We studied the

pharmacokinetics in 117 patients, including 105 aged under

13 years. This is a larger cohort than the largest published

adult clinical cohort to date by Dolton et al. [20], who

studied 102 patients. Our major finding is that as soon as

children are able to swallow whole tablets, they should be

given the tablet formulation because a poor and saturable

suspension bioavailability, particularly in patients with

diarrhoea or those taking concurrent PPI therapy, means a

Table 1 Demographics of all patients, and those included in the pharmacokinetic analysis after removing data with missing dose history or

sample timing information

Variable All patients (n = 128) PK patients (n = 117)

No. of TDM samples 580 338

No. of samples/patients, median (range) 5 (1–14) 3 (1–11)

Speciality, BMT/Haem/Imm/othera 94/7/19/8 87/6/17/7

Age, years (range) 5.9 (0.5–18.9) 5.7 (0.5–18.5)

Weight, kg (range) 17.92 (6.05–71) 17.8 (6.05–74.8)

Sex, male/female 47/81 43/74

Dose, mg (range) 200 (32–700) 200 (32–630)

Dose, mg/kg (range) 12.99 (2.58–48.95) 13.11 (2.67–48.95)

Dose, mg/m2, (range) 326 (84–921) 326 (84–921)

Concentration, mg/L (range) 0.96 (0.07–4.99) 0.8 (0.07–4.99)

Sample time after dose, h(range) 6.96 (0.02–24.78) 6.52 (0.02–24.78)

Dose frequency, doses/day (range) 3 (1–4) 3 (1–4)

% samples when patient had diarrhoea 18 20

% samples when patient also taking PPI 61 68

% samples when patient also taking H2 receptor antagonist 28 32

BMT bone marrow transplant, Haem haematology, Imm immumology, H2 histamine H2-receptor antagonist, PK pharmacokinetic, PPI proton

pump inhibitor, TDM therapeutic drug monitoring
a‘Other’ includes patients undergoing solid organ transplantation, those from gastroenterology, and surgical patients
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Fig. 1 Absolute dose (in milligrams) administered vs. age (in years).

The left-hand plot shows initial dosing prior to therapeutic drug

monitoring (TDM) sampling and the right-hand plot shows doses

administered after at least one TDM sample. Grey circles represent

suspension doses and black filled points represent tablets
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therapeutic target attainment with suspension may be as

low as 30% even on the highest feasible dose (Fig. 3).

A one-compartment model with inter-individual vari-

ability best described the pharmacokinetics of

posaconazole in this study (Fig. 2). This was consistent

with previous adult models [15, 19, 20]. Our estimated CL/

F and apparent volume related to the tablet formulation and

standardised to a 70-kg individual were 14.95 L/h and

Table 2 Parameter estimates from the final model (the NONMEM model code is given in the Electronic Supplementary Material)

Parameter Estimate (%RSE) IIV %CV (%RSE) Bootstrap median (95% CI) Bootstrap IIV %CV (95% CI)

CL/F, L/h 14.95 (34.5) 63 (23.9) 14.6 (6.3–34.1) 63 (49–79)

V/F, L 201.7 (38.8) – 213 (80.7–904.3) –

Ka suspension/h 0.197 (fixed) – – –

Ka tablet/h 0.588 (fixed) – – –

bdose, mg/m2 99 (44.4) – 97.6 (36.5–341.7 ) –

hD -0.33 (28) – -0.32 (-0.52 to -0.13) –

hP -0.42 (14.9) – -0.42 (-0.53 to -0.27) –

Proportional error, %CV 47.29 (0.2) – 46.43 (36.92–53.48) –

Additive error, mg/L 0.02 (82.7) – 0.01 (0.001–0.07) –

bdose estimated dose in mg/m2 for suspension bioavailability to drop to half that of the tablet, CI confidence interval, CL/F apparent clearance, CV

coefficient of variation, Ka absorption rate constant, hD fractional decrease in suspension bioavailability with patients with diarrhea, hP fractional

decrease in suspension bioavailability with patients taking proton pump inhibitors, RSE relative standard error, V/F apparent volume
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Fig. 2 Goodness-of-fit plots for

the final model. Top row:

population (pop.) predictions vs.

observations, individual (ind.)

predictions vs. observations.

Bottom row: conditional

weighted residuals (CWRES)

vs. pop. prediction (PRED), and

PRED-corrected visual

predictive check showing

model-simulated 95%

confidence intervals for the

simulated 2.5, 50 and 97.5th

percentiles (shaded areas)

compared with observed

percentiles (lines)
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201.68 L, respectively. In a recent study of adults, CL/F

and apparent volume were estimated to be 7.3 L/h and 420

L, respectively [19], which fall within the 95% confidence

intervals of our estimates (Table 2). Fixing the absorption

rate to that previously reported in adults had a negligible

effect on model fit, and the flat profiles, the fact our data

did not include any patients sampled after their first dose,

and the limited number of samples in the absorption phase

all account for this. The residual variability was rather high

in our study (Table 2), reflecting the fact that these were

observational TDM data on a drug with highly variable

pharmacokinetics. However, model diagnostics show a

reasonable fit (Fig. 2). We did not find a significant rela-

tionship between age and posaconazole CL/F, which could

be owing to the fact that our youngest patient was 6 months

old, whereas rapid pharmacokinetic maturation tends to

occur in the neonatal to early infant age group [12].

The gastro-resistant tablet formulation has been widely

reported to have improved bioavailability over the sus-

pension [21–24]. In addition, suspension bioavailability has

previously been reported to be saturable in adults [25–28],

although we are not aware of this relationship having

previously been modelled using the population approach.

In children, we found a dose–proportional relationship with

our estimated dose to reach a 50% relative bioavailability

reduction in tablets relative to the suspension of 99 mg/m2.

In this expression, we scaled dose by body surface area

under the assumption that gastrointestinal surface area and

body surface area would be correlated, and that gastroin-

testinal surface area is important for absorption. Validating

this assumption is not straight-forward because accurate

measurement of gastrointestinal surface area is difficult

[29], and no extensive studies appear to have been con-

ducted on how it might scale with age [30]. However, our

model did provide an adequate fit to our data and our

estimate ought to be robust because we studied a large dose

range (Table 1).

Gastrointestinal complications are common in cancer

patients and haematopoietic stem cell transplantation

recipients. In this analysis, 20% of patients had diarrhoea
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Fig. 3 Simulated probability of trough concentration being[1 mg/L

(top row) for treatment or[0.7 mg/L (bottom row) for 8- and 6-h

dosing split by age group. The solid line represents tablets, the dashed

line represents the suspension, the dotted line represents patients

taking the suspension also receiving proton pump inhibitors, the

dot/dashed line represents patients receiving the suspension who also

had diarrhoea, and the long dashed line represents patients receiving

the suspension and proton pump inhibitors and who had diarrhoea.

The grey horizontal line represents a 50% probability of target

attainment
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during treatment, and the majority were receiving con-

comitant acid suppression therapy (Table 1). Diarrhoea

results in increased gastric emptying with reduced gas-

trointestinal residence time. This disruption in gastroin-

testinal function was associated with a significant reduction

in bioavailability and therefore target attainment (Fig. 3).

The association of diarrhoea with decreased posaconazole

exposure has previously been noted in adults [20, 31], with

Dolton et al. [20] finding a 45% reduction in apparent

bioavailability. Our estimate of 33% shows a similar

relationship in children.

Concomitant use of PPIs was associated with a 42%

reduction in relative bioavailability. Concomitant PPI

therapy has been shown to be associated with decreased

bioavailability in adults [32–35], and our estimate is sim-

ilar to that obtained by Dolton et al. [20], who found a 45%

decrease. In contrast with PPIs, fewer studies have shown

the potential effect of histamine H2-receptor antagonists on

posaconazole exposure [20, 31], and we also did not find

this effect, suggesting the more potent acid suppression of

PPIs [36, 37] limits posaconazole absorption. It is unlikely

that this interaction is cytochrome P450 mediated because

posaconazole undergoes limited metabolism primarily by

UDP-glucuronosyltransferase UGT1A4 [38]. Information

on whether the dose was taken with food and whether

mucositis was present was unavailable in our study but

these may also have been significant covariates based on

adult experience [20]. Partly because of the low number of

children in our data taking tablets, and also the fact that

PPIs and histamine H2-receptor antagonists have been

shown not to affect posaconazole tablet bioavailability in

adults [39], we did not perform covariate analysis on the

tablet formulation.

Patients undergoing haematopoietic stem cell trans-

plantation usually require immunosuppressive agents for

the prevention and treatment of graft vs. host disease in

combination with antifungal prophylaxis for IFD. Con-

current use of posaconazole potentially results in increased

drug exposure of several immunosuppressive drugs

including ciclosporin, tacrolimus, sirolimus and everolimus

[40–42]. We did not find these agents to affect posacona-

zole pharmacokinetics, but future work on our data to

investigate and quantify the effect of posaconazole on

immunosuppressant levels is planned. We did not find

phase II glucuronide enzyme inducers such as rifampicin or

phenytoin to be significantly associated with either

posaconazole CL/F or bioavailability during the SCM. The

likely explanation for this is that our study contained a

small proportion of samples taken concurrently with these

drugs (5 and 1%, respectively), but it is also possible that

immaturity of drug-metabolising enzyme expression in

younger children means such interactions are less pro-

nounced. We also tested prophylaxis vs. treatment as a

covariate with the concern that the differences seen may be

owing to data inaccuracies because prophylaxis patients

were more likely to be outpatients with less reliable dosing

history than inpatients for whom we had electronic

administration data. The fact that this did not emerge as a

covariate on CL/F or bioavailability indicates no such bias

was present.

In Fig. 1, we show the dosing by age split between

initial dose and post-TDM dosing. The key features of this

plot are that a flat 200-mg dose was often used, regardless

of age, and the following TDM doses were generally

increased, particularly in younger patients. Clinical prac-

tice has evolved in our centre from weight-scaled dosing to

fixed 200-mg dosing regardless of age, based on repeated

failures to achieve therapeutic target trough concentrations.

The added insight provided by simulations from our model

(Fig. 3) indicates that absolute dose increases above

200 mg are rather futile owing to the saturable bioavail-

ability. For example, a 1-year-old individual with a body

surface area of 0.5 m2 receiving 100, 200 or 400 mg of

suspension will have a relative bioavailability of 0.33, 0.2

or 0.11, respectively. Increasing from 100 to 200 mg

decreases the bioavailability by 40%, whereas increasing

from 200 to 400 mg decreases the bioavailability by almost

half, explaining the marginal increases in trough concen-

tration with increasing doses. In common with findings for

itraconazole [43], increasing the frequency is more suc-

cessful, but dose administrations of greater than four times

per day are simply impractical.

Whilst we have modelled the largest paediatric

posaconazole pharmacokinetics dataset to date, our study

does have limitations that should be considered when

interpreting the results. First, as mentioned above, these

were retrospective TDM data collected over 7 years in a

single centre, and owing to inconsistent reporting of the

sample time and dose time in the outpatient data, we had to

exclude 242 samples. Furthermore, we are likely to have

collected more data on patients with poor target attainment

because those patients would be sampled more frequently

following dose escalation. Ideally, we would have run a

prospective study with optimally designed pharmacokinetic

sampling [44], but this would have resulted in a smaller

dataset and then potentially missing covariates of interest.

Having said this, maximum likelihood methods should not

be biased by this type of data and our prediction-corrected

visual predictive check showed good agreement with

observations. Further data pooling experience from multi-

ple centres would however be useful to confirm our find-

ings. We have also performed simulations aiming for

trough concentration targets based on adult data [11],

whereas either a different target or use of a metric such as

the area under the curve may be more appropriate in

children. Whilst we did not collect outcome data during
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this particular study, there is a clear need for such data in

this population.

5 Conclusion

Our study illustrates the challenge of achieving therapeutic

posaconazole trough concentrations, particularly in infants

and young children administered a posaconazole suspen-

sion. In a child with diarrhoea and concomitant PPI use,

therapeutic targets are unlikely to be reached in a large

proportion of patients, with a low probability of target

attainment with any feasible dose (Table 3).

Therefore, there is an urgent need first for the intra-

venous formulation to be studied for IFD treatment in this

population, and second, for therapeutic targets to be studied

in this population to ascertain whether treatment and pro-

phylactic benefits maybe retained with trough concentra-

tions below 1 or 0.7 mg/L.
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