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Immune system dysregulation is increasingly being attributed to the development of
a multitude of neurodegenerative diseases. This, in large part, is due to the delicate
relationship that exists between neurons in the central nervous system (CNS) and
peripheral nervous system (PNS), and the resident immune cells that aid in homeostasis
and immune surveillance within a tissue. Classically, the inner ear was thought to
be immune privileged due to the presence of a blood-labyrinth barrier. However, it
is now well-established that both vestibular and auditory end organs in the inner
ear contain a resident (local) population of macrophages which are the phagocytic
cells of the innate-immune system. Upon cochlear sterile injury or infection, there is
robust activation of these resident macrophages and a predominant increase in the
numbers of macrophages as well as other types of leukocytes. Despite this, the
source, nature, fate, and functions of these immune cells during cochlear physiology
and pathology remains unclear. Migration of local macrophages and infiltration of bone-
marrow-derived peripheral blood macrophages into the damaged cochlea occur through
various signaling cascades, mediated by the release of specific chemical signals from
damaged sensory and non-sensory cells of the cochlea. One such signaling pathway is
CX3CL1-CX3CR1, or fractalkine (FKN) signaling, a direct line of communication between
macrophages and sensory inner hair cells (IHCs) and spiral ganglion neurons (SGNs) of
the cochlea. Despite the known importance of this neuron-immune axis in CNS function
and pathology, until recently it was not clear whether this signaling axis played a role in
macrophage chemotaxis and SGN survival following cochlear injury. In this review, we will
explore the importance of innate immunity in neurodegenerative disease development,
specifically focusing on the regulation of the CX3CL1-CX3CR1 axis, and present evidence
for a role of FKN signaling in cochlear neuroprotection.

Keywords: sensorineural hearing loss, macrophages, fractalkine, CX3CR1, spiral ganglion neurons,
neuroprotection, ribbon synapses

INTRODUCTION

The immune system is the body’s defense mechanism against pathogens and tissue injury. The
immune system consists of an intricate network of cells and molecules that work together to
protect the body from damage. These cells include lymphoid cells, such as T-cells, B-cells, and
NK cells, and myeloid cells, such as monocytes, dendritic cells, macrophages, and granulocytes.
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Most immune cells, including T/B-cells, monocytes, and
macrophages can be found under physiological conditions
circulating in the blood. These cells have surface receptors that
act in surveillance of the body searching for chemical signals
that are released from damaged cells and tissues (Chaplin, 2010).
These ‘‘find me’’ signals work to activate immune processes and
recruit additional immune cells to the site of injury to initiate the
inflammatory response, including phagocytosis (Ravichandran,
2010; Elliott et al., 2017). Many somatic tissues throughout
the body have a resident population of macrophages that
establish in the tissue embryonically originating from the yolk
sac and fetal liver, playing a pivotal role in immune surveillance,
tissue development, homeostasis, physiology, and response to
injury (Gomez Perdiguero et al., 2015). Examples of these
resident macrophages include Langerhans cells (skin), Alveolar
macrophages (lungs), Kupffer cells (liver), and microglia [central
nervous system (CNS) and peripheral nervous system (PNS)],
among many others (Hashimoto et al., 2013; Frodermann and
Nahrendorf, 2018; Xie et al., 2019).

Classically, the study of neurodegenerative diseases has
focused on the pathological progression of the disease,
specifically targeting toxic protein aggregation leading to
neuronal dysfunction and death, rather than the underlying
disease mechanism (Aguzzi and O’Connor, 2010). Alzheimer’s
disease (AD), Parkinson’s disease (PD), Multiple sclerosis
(MS), and many other neurodegenerative disorders of the
CNS are hallmarked by disruption of memory, sensory, and
motor functions due to widespread loss of neurons and their
vital communication networks. However, over the past couple
of decades, more focus has been centered on the role of
neuroinflammation in the development and progression of
these diseases (Stephenson et al., 2018; Hammond et al.,
2019). Genetic, histological, and mechanistic studies have all
brought forth evidence that dysregulation of normal immune
pathways can lead to an increase in neurotoxic pro-inflammatory
cytokine production, untethered immune cell reactivity and
proliferation, and altered phagocytic capabilities, all of which
can contribute to the disease states associated with many of
these conditions. Furthermore, although immune dysfunction
was once thought of as secondary to the underlying primary
disease mechanism, recent evidence suggests that immune
dysfunction can play a central role in the development of
many neurodegenerative diseases (Lucin and Wyss-Coray, 2009;
Heneka et al., 2014; Ising and Heneka, 2018). Understanding the
immune processes that are shaped by cytokine, chemokine, and
growth factor production is an important aspect of therapeutic
development for many disease states. Therefore, it is vital for
researchers to investigate the roles of normal and dysfunctional
immune signaling pathways during neurodegenerative disease
to determine novel targets for altering disease development and
progression.

Of particular interest in recent studies of neurodegenerative
disease is the role of the chemokine fractalkine (CX3CL1,
FKN) and its cognate receptor (CX3CR1). FKN is a unique
transmembrane protein that is constitutively expressed by
neurons and endothelial cells (Bazan et al., 1997; Harrison et al.,
1998). FKN is unique in that it exclusively signals through its

receptor, CX3CR1, which is expressed on certain leukocytes
including monocytes, macrophages, and microglia (Julia, 2012;
White and Greaves, 2012). Functionally, FKN acts as both a
chemotactic molecule for the CX3CR1-expressing immune cells
for extravasation to areas of tissue damage, as well as promote
adhesion of circulating immune cells to the endothelium (Haskell
et al., 1999; Hermand et al., 2008). In addition to its chemokine
functions, FKN signaling has a role in dampening microglial
activation in the diseased brain (Paolicelli et al., 2014), and
also regulate neuron homeostatic functions and maintenance,
synapse plasticity, and synapse pruning during development
(Cardona et al., 2006; Paolicelli et al., 2011). Based on FKN’s
involvement in controlling the inflammatory process, its role in
disease states of tissues expressing high levels of resident immune
cells needs to be further explored.

Classically, the inner ear has been thought of as immune
privileged, due to the presence of a blood-labyrinth barrier,
analogous to the blood-brain barrier in the CNS, and lack
of lymphatic drainage (Harris, 1983, 1984; McCabe, 1989).
However, over the past couple of decades, as better animal
models and imaging techniques have been developed, studies
have shown that in response to noise trauma, ototoxic drug
administration, normal aging (Frye et al., 2017; Noble et al.,
2019), or genetic manipulation, the epithelial, neuronal, and
mesenchymal regions of the cochlea experience an augmented
immune and inflammatory response. Furthermore, under
static conditions, a population of tissue-resident macrophages,
analogous to the microglia of the CNS, reside in the cochlea that
become activated following insult (Lang et al., 2006; Okano et al.,
2008; Sato et al., 2008; Shi, 2010). In addition, following cochlear
trauma, these resident macrophages may play a critical role in
the recruitment of immune cells from the blood circulation
to provide support during the inflammatory process (Hirose
et al., 2005). Despite growing evidence, the signalingmechanisms
responsible for immune cell activation and recruitment and in
particular, the functions of immune cells in the injured cochlea
and hearing loss, remains unclear.

In this review, we aim to better understand FKN signaling and
how it relates to immune activation during neurodegenerative
disease development and progression. Importantly, we will
review the evidence of immune activation, specifically through
FKN signaling, as being oto- and neuroprotective in the injured
cochlea. This will include evaluation of the emerging role
of macrophages and FKN signaling regulation in promoting
sensory hair cell and neuron viability and spontaneous repair
of cochlear ribbon synapses following Sensorineural hearing loss
(SNHL). Finally, we will postulate further work that needs to be
conducted to determine the mechanisms by which macrophages
and FKN signaling mediate neuroprotection during cochlear
damage, to harness these protective capabilities clinically.

COCHLEAR MACROPHAGES

First discovered by Elie Metchnikoff in the late 19th century,
macrophages are the main effector cells of innate immunity that
are derived from precursor monocytes (Tauber, 2003; Cooper
and Alder, 2006; Epelman et al., 2014). The main function
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of macrophages, or ‘‘big eaters,’’ is to phagocytose or engulf
foreign material or cellular debris during injury to maintain
tissue homeostasis and promote wound repair (Mosser et al.,
2021). Macrophages also participate in antigen presentation
to adaptive immune cells such as T cells, production of
reactive species, trophic molecules, cytokines, and chemokines
to promote or resolve the inflammatory process, as well as
play vital roles in tissue development and physiology (Gordon
and Martinez-Pomares, 2017; Gordon and Pluddemann, 2017).
Despite the known protective functions of macrophages, under
certain conditions macrophages can be toxic through the
excess uncontrolled production of reactive oxygen species (ROS)
and reactive nitrogen species (RNS) and pro-inflammatory
mediators or non-selective phagocytosis of healthy cells due to
dysregulation in the resolution of macrophage inflammatory
and phagocytic response (Arango Duque and Descoteaux,
2014; Dantzer, 2018; Oved et al., 2019). This dichotomy of
macrophages having a role in protection and damage has led to
significant research about macrophage activation and function in
various disease development and progression.

Macrophages in a Developing Cochlea
Studies using mouse models have shown that in a developing
cochlea, macrophages originate from two sources, the yolk sac
and the fetal liver (Ginhoux and Guilliams, 2016; Kishimoto
et al., 2019). These two separate lineages are distinguished by
the dependence of colony stimulating factor 1 (Csf1) which is
a cytokine required for differentiation of hematopoietic stem
cells into macrophages and labels yolk sac-derived macrophages.
Alternatively, fetal liver-derived macrophages differentiate from
the cluster of differentiation molecule 11b (CD11b) expressing
progenitor monocytes. Yolk sac-derived macrophages originate
around mouse embryonic day 7.5 (E7.5) and travel to the
otocyst around mouse E10.5. Fetal liver-derived macrophages
travel to the developing cochlea around mouse E14.5 (Ginhoux
and Guilliams, 2016). Studies in Csf1- knockout (KO) mice
revealed drastically reduced density of macrophages in the spiral
ligament and spiral ganglion, suggesting that these macrophages
predominantly originate from the yolk sac (Ginhoux et al., 2010;
Hoeffel et al., 2012). Cochlear macrophages have been shown to
self-renew throughout their lifetime (Hashimoto et al., 2013) and
can also be slowly replaced by bone-marrow-derived circulating
monocyte-derived macrophages (Liu et al., 2018). However,
whether it is the yolk sac- and fetal liver-derived macrophages
that establish embryonically persist or are replaced by bone-
marrow-derived monocyte-derived macrophages in an adult
cochlea, remains to be established. During development, cochlear
macrophages expand, peak during neonatal stages, and decline
after P3 (Kishimoto et al., 2019). Nevertheless, themechanisms of
macrophage colonization, expansion, and maintenance in both
developing and adult cochlea are completely unknown.

During development, studies have found that aside from
their known function of immune surveillance and phagocytosis,
macrophages may play an important role in cochlear ribbon
synapse formation through synaptic pruning, akin to what
microglia do in the brain (Dong et al., 2018; Coate et al.,
2019). This is supported by data showing the presence of

macrophages near ribbon synapses throughout postnatal
cochlear development (Dong et al., 2018). In addition,
macrophages play a role in spiral ganglion neuron (SGN)
development, through the clearance of apoptotic neuronal
precursors during development (Echteler et al., 2005). Together,
these data suggest that macrophages may play a vital role
in cochlear development. Further understanding of the role
of macrophages during cochlear development could help to
determine therapeutic targets for SGN protection or regeneration
and cochlear ribbon synapse regeneration following trauma.

Macrophages in the Cochlea During
Steady-State and Pathology
In a mature cochlea, under steady-state, a resident population of
macrophages can be found inmultiple regions, including osseous
spiral lamina (OSL), stria vascularis (SVA), spiral ligament,
spiral limbus, basilar membrane, and spiral ganglion (Hirose
et al., 2005). These resident macrophages are thought to play
a vital role in maintaining tissue homeostasis, as well as being
the main cells responsible for initiating an immune response
following cochlear injury (Okano and Kishimoto, 2019). Notably,
under steady-state, macrophages are absent from the organ
of Corti, in which reside the sensory hair cell receptors and
non-sensory supporting cells. According to Hirose et al. (2005)
in 2005, this lack of macrophages in the organ of Corti
could be attributed to the high potassium (K+) content of
cochlear endolymph, creating an environment that is likely toxic
for macrophage survival. Under normal conditions, resident
macrophages in the cochlea display site-specific morphology.
Apical macrophages are characterized by dendritic morphology
with long and thin processes (pseudopodia). This dendritic
morphology is characteristic of macrophages in surveillance
mode (Nimmerjahn et al., 2005; Cao et al., 2015; Gordon
and Pluddemann, 2017). Macrophages in the middle turn of
the cochlea are characterized by a transitional morphology,
between dendritic and amoeboid shapes. This amoeboid shape
is characteristic of an activated macrophage (Hirayama et al.,
2017). Finally, basal region macrophages are found to have
an amoeboid morphology (Yang et al., 2015; Frye et al.,
2017). Beyond morphology, the main question surrounding
cochlear macrophages during steady-state is how they are
maintained throughout life. Data from Okano and Kishimoto
(2019) suggests that intact Csf1 signaling plays a major role
in cochlear macrophage maintenance during life. However, the
precise mechanisms of how cochlear macrophages maintain
themselves during steady-state, how macrophages interact with
other cochlear cells, and what specific function macrophages
have in the cochlea during steady-state is largely unknown and
requires further investigation.

Following cochlear sensory hair cell damage caused by
ototoxic drug toxicity or noise trauma, there is a significant
increase in the numbers of macrophages, likely due to infiltration
of macrophages from the blood vasculature (Fredelius and Rask-
Andersen, 1990; Hirose et al., 2005; Zhang et al., 2012; Fujioka
et al., 2014; Kaur et al., 2015, 2018, 2019; Tan et al., 2016;
Wood and Zuo, 2017). To address whether such an increase is
due to hair cell loss alone, Kaur et al. (2015) using the Pou4f3-
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huDTR mouse model that expresses the human diphtheria
toxin receptor (huDTR) on POU class 4 transcription factor 3
(Pou4f3) expressing inner hair cells (IHCs) and outer hair cells
(OHCs) to selectively ablate hair cells upon diphtheria toxin
(DT) administration (Golub et al., 2012; Tong et al., 2015),
found that selective hair cell ablation without additional trauma
to the sensory epithelium or spiral ganglion was sufficient to
increase macrophage numbers in the injured cochlea. Evidently,
macrophage numbers increased in the sensory epithelium at
the same time when hair cells begin to die (i.e., ∼3 days
after DT administration). Interestingly, macrophage numbers
also increased in the spiral ganglion at ∼7 days after DT
administration without any evident loss of SGNs. More recently,
it has been shown that macrophages’ density increases in the
IHC-synaptic region following moderate synaptopathic noise
trauma that does not lead to any evident hair cell death (Kaur
et al., 2019). Together, these studies suggest that there is a distinct
temporal and spatial distribution pattern of macrophages and
that macrophage response is both specific and non-specific to
hair cell death following cochlear trauma. In addition, studies
have shown that these infiltrating macrophages, in coordination
with other cells in the cochlea, may instigate the transition
to a pro-inflammatory environment, through the production
of proinflammatory mediators, such as cytokines and ROS
(Lang et al., 2016). However, the molecular signals regulating
macrophage activation, migration, and infiltration from the
blood circulation and the precise role of these macrophages in
the cochlea after damage remains elusive (He et al., 2020). For the
remainder of this review, wewill focus on research pointing to the
neuroimmune FKN signaling potentially playing a vital role in
macrophage infiltration and regulation during cochlear trauma,
as well as research that suggests a neuroprotective role for FKN
signaling in the injured cochlea.

THE CHEMOKINE FRACTALKINE AND ITS
SIGNALING

Chemokines are a family of small chemoattractant cytokines,
or signaling proteins, secreted by cells to induce migration
of leukocytes from blood into the tissue and vice versa and
in the induction of cell movement in response to chemical
gradients, a process known as chemotaxis. There are more than
50 known chemokines that play a role in inflammation or
homeostasis (Hughes andNibbs, 2018;Mollica Poeta et al., 2019).
Under pathological conditions, any stimulus that results in an
altered state of cellular homeostasis can result in the release of
chemokines promoting the recruitment of immune cells to sites
of inflammation. This recruitment occurs via receptor signaling
through complementary chemokine receptors that belong to the
vast family of G-protein coupled receptors present on innate
immune cells (Zlotnik et al., 2006). There are two main families
of known chemokine receptors: the conventional chemokine
receptors (cCKRs), which include 18 known receptors that
mainly signal through G-proteins, and atypical chemokine
receptors (ACKRs), which include four receptors that do not
use signal transduction pathways associated with cCKRs. cCKRs
are associated with cell migration and adhesion while ACKRs

are associated with regulation of inflammation, specifically
through acting as a chemokine scavenger, promoting chemokine
transcytosis, and regulating chemokine gradient formation
(Salvi et al., 2017). These chemokine receptors are heptahelical
surface molecules, containing seven transmembrane domains,
and average around 40 kDa in size (Roy et al., 2014). There are
four subclasses of chemokines, differentiated by their cysteine
structural motifs (C, CC, CXC, CX3C), with the X representing
the presence of an amino acid (Zlotnik and Yoshie, 2000).

Discovered by Bazan et al. (1997) in the late 1990s, and soon
after confirmed by Pan et al. (1997), one of the four subclasses
(CX3C) is unique in that it only contains one analog, FKN
(CX3CL1; Koch, 2005). FKN, found constitutively expressed
on neurons in the CNS and endothelial cells is unique as it
exists both as a soluble protein, which is how most chemokines
exist, and also as a cell membrane bound protein (Bazan et al.,
1997). In the cochlea, FKN is expressed on SGNs and IHCs
(Kaur et al., 2015; Liu et al., 2018). Structurally, FKN is a large
transmembrane protein (373 aa) containing an extracellular
chemokine domain (76 aa), a mucin-like stalk (241 aa), a
transmembrane domain (19 aa), and an intracellular cytoplasmic
tail (37 aa; Umehara et al., 2004; Figure 1). The soluble form
of FKN is generated by proteolytic cleavage of the mucin-like
stalk from the extracellular side of the cell membrane by
two members of the disintegrin and metalloprotease family,
a disintegrin and metalloprotease domain-17, also referred
to as Tumor Necrosis Factor, Alpha (TNF-α), Converting
Enzyme (ADAM17/TACE) and ADAM10, or Cathespin-s, a
cysteine protease (Hundhausen et al., 2003; Jones et al., 2013).
This results in a soluble product containing an N-terminal
chemokine domain attached to a mucin-like stalk (Figure 2).
ADAM17/TACE cleavage is enhanced by cell stimulation
via cytokines TNF-α and interleukin-6 (IL-6) signaling,
where ADAM10 cleavage is constitutive in unstimulated cells
(Hundhausen et al., 2003; O’Sullivan et al., 2016). Cathepsin-s
cleavage, like ADAM17/TACE, is associated with pathological
conditions, including pain (Clark and Malcangio, 2012).

FKN’s receptor, CX3CR1, belongs to the cCKR family
and is a class A rhodopsin-like 7-transmembrane G-protein
coupled receptor found on leukocytes including monocytes,
macrophages, microglia, dendritic cells, NK cells, and a subset
of T-cells (Jung et al., 2000; Hughes and Nibbs, 2018;
Lee et al., 2018). In the cochlea, CX3CR1 is expressed on
macrophages (Hirose et al., 2005; Sato et al., 2010). In mice,
CX3CR1 expression on macrophages is divided into two subsets;
chemokine receptor type 2 (CCR2) high expressing monocytes
have low levels of CX3CR1, and CCR2 low expressing monocytes
express high levels of CX3CR1 (Geissmann et al., 2003). In
humans, this differential expression of CX3CR1 is analogous
to classical human monocytes (cluster of differentiation (CD),
CD14highCD16−) which express low levels of CX3CR1, and
non-classical monocytes (CD14lowCD16+) which express high
levels of CX3CR1 (Geissmann et al., 2003; Meghraoui-Kheddar
et al., 2020). CX3CR1 exclusively binds to its ligand, FKN
(Imai et al., 1997). This is unique to the vast family of
chemokines, as of the 50 known chemokines in the body,
all except FKN have an affinity for multiple chemokine
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FIGURE 1 | Schematic depicting the structural components of fractalkine
(FKN; CX3CL1). FKN is a large (373aa) transmembrane protein found
exclusively on neurons in the central nervous system (CNS)/peripheral
nervous system (PNS), and on SGNs and inner hair cells in the cochlea.
Structural components that form FKN include the extracellular chemokine
domain (76aa), extracellular mucin stalk (241aa), the transmembrane domain
(19aa), and the intracellular cytoplasmic tail (37aa).

receptors (Kakinuma and Hwang, 2006). Expression of FKN
and CX3CR1 is enhanced during inflammatory conditions,
suggesting a role for this signaling pathway during inflammatory
diseases (Jones et al., 2010).

In the periphery, the membrane-bound form of FKN plays an
integral role in leukocyte adhesion to the vascular endothelium.
Expression of the membrane-bound form of FKN by endothelial
cells provides a high affinity adhesion target, allowing for tight
binding to leukocytes despite physiological blood flow (Kerfoot
et al., 2003; Schulz et al., 2007). This tight adhesion propagates
leukocyte extravasation through the vascular wall and into sites
of tissue damage due to the presence of a chemokine gradient.
Following proteolytic cleavage, the soluble form of FKN acts
as a chemoattractant for leukocytes, including monocytes and
macrophages, promoting the recruitment of immune cells to sites
of inflammation (Klosowska et al., 2009; Wojdasiewicz et al.,
2014). Thus, FKN is considered a ‘‘find-me signal’’ to recruit
immune cells to sites of damage (Ravichandran, 2010, 2011).

THE ROLE OF FKN SIGNALING IN
DEVELOPING AND DISEASED BRAIN

In the CNS, FKN plays an important role in neuronal function
during physiological conditions (Ransohoff, 2009). In the CNS,
FKN is exclusively expressed on neurons and signals through
its receptor, CX3CR1, expressed exclusively on microglia, the
resident macrophages of the CNS (Jung et al., 2000; Cardona
et al., 2006). The FKN signaling axis provides microglia with a
direct line of communication with the neuronal environment,
ensuring homeostatic conditions are preserved during steady-
state, and an immune response is mounted during damage or
disease. In the adult CNS, microglia play a main role of immune
surveillance, mediating the immune response and phagocytosing
cellular debris and dead neurons (Colonna and Butovsky, 2017).
However, recent studies have shown that microglia also play a
major non-immune role in the CNS both during development
and during adulthood. These functions range from neurogenesis

FIGURE 2 | Schematic depicting CX3CL1-CX3CR1 signaling. CX3CL1 of FKN (ligand) is constitutively expressed by neurons in the CNS, PNS and by SGNs and
IHCs in the mature cochlea. The CX3CR1 (receptor) is present on immune cells, including monocytes, macrophages, and microglia. In response to damage, CX3CL1
is proteolytically cleaved from the extracellular side of the neuronal cell membrane via ADAMs 17/10 or Cathespin-s. This cleavage produces the soluble form of
CX3CL1 (containing the chemokine signaling domain and mucin like stalk). Soluble CX3CL1 binds to its unique receptor CX3CR1, resulting in macrophage
chemotaxis to sites of injury. The membrane bound form of CX3CL1 plays a role in leukocyte adhesion. This signaling, when intact, induces neuroprotection during
neuroinflammation and neurodegeneration.
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to synaptic pruning and ultimately play a vital role in the shaping
of neuronal circuitry and synaptic plasticity (Schafer and Stevens,
2015). In this section, we will look at the role FKN plays in
mediating CNS development, preserving homeostasis during
steady-state, and mounting a defense during disease pathology.

Role of FKN in the Developing Brain
During early development, neurons are forming billions of
synaptic connections with each other. However, the number of
synaptic connections that are formed far exceed the amount
needed for proper brain function. The synapses that are not used
must be removed through a process called synaptic pruning,
in order to ensure the efficient functioning of the neuronal
circuit (Hua and Smith, 2004; Sheridan andMurphy, 2013). Early
research by Paolicelli et al. (2011) demonstrated that microglia
expressing CX3CR1 played a vital role in synaptic pruning
during the initial weeks of mouse CNS development, such that
disruption of FKN signaling via genetic loss of CX3CR1 resulted
in fewer microglia and excessive synaptic densities on dendritic
spines in the hippocampus during postnatal development. Other
studies have shown evidence for the role FKN signaling plays in
a multitude of vital components to CNS development, including
neuronal development and maturation (both through the death
of neurons during development, and the protection of neurons
during life; Ueno et al., 2013), development of neuronal circuits,
and synaptic maturation (Hoshiko et al., 2012; Zhan et al., 2014).
The FKN signaling mechanism allows for neuron-glia crosstalk,
providing a platform for bidirectional interaction that facilitates
communication between neurons and the immune cells that
protect them. Research has also shown that after development,
microglia can be found in the hippocampus serving in a
non-inflammatory role, potentially aiding in synaptic plasticity,
and therefore could be important in the processes of learning and
memory (Maggi et al., 2011). In addition, constitutive expression
of FKN on neurons has been shown to modulate microglial
activation, preventing excessive and uncontrolled stimulation
which can result in neurotoxicity (Cardona et al., 2006; Biber
et al., 2007). Together, these results suggest a vital role for FKN
signaling in synaptic remodeling during development.

Role of FKN in Diseased Brain and
Neurodegenerative Diseases
Recent work has suggested that intact FKN signaling plays
a critical role in regulating neuronal survival, repair, and
regeneration following neuronal injury (Kaur et al., 2015, 2018).
Due to FKN being a chemokine and playing an important
role in facilitating crosstalk between neurons and microglia, the
FKN signaling axis has emerged as an interesting target for
researchers studying immune modulation in neurodegenerative
diseases. Following the generation of a reporter mouse that
replaced endogenous CX3CR1 on all cells with green fluorescent
protein (GFP), also known as CX3CR1GFP/GFP or CX3CR1 KO
(referred to as CX3CR1 global KO for the rest of the manuscript;
Jung et al., 2000), researchers have been able to investigate the
effects of FKN signal disruption on neuronal function, including
during development, aging, and disease. The following sections

will explore different neurodegenerative diseases, and how FKN
signaling has been implicated in their disease pathology.

Glutamate-Induced Excitotoxicity and Epilepsy
Glutamate is the main excitatory neurotransmitter in the brain,
playing a pivotal role in the proper physiological function of
the CNS (Palmada and Centelles, 1998). Glutamate signals
through three types of ionotropic glutamate receptors (GluR),
including N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-
5-methylisoxazole-4-propionate (AMPA), and kainic acid (KA;
Lauro, 2015). Glutamate signaling via these GluRs results
in neuronal depolarization and subsequent action potential
firing. This process is vital in proper neuronal function,
allowing for neuron-to-neuron communication to occur.
However, excess glutamate release, leading to over-activation
of GluRs, a phenomenon termed glutamate excitotoxicity,
can be detrimental and is associated with a number of
neurodegenerative diseases, including AD, PD, and various
neurological disorders, such as epilepsy (Sheldon and Robinson,
2007; Noda et al., 2011; Lauro, 2015). Glutamate excitotoxicity
results in neuronal dysregulation, dysfunction, and death due
to increased intracellular calcium levels leading to impaired
mitochondrial function and accumulation of oxidizing free
radicals. In response to an excitotoxic environment, neurons
upregulate, cleave, and release soluble FKN (Chapman et al.,
2000). Furthermore, under neuronal injury conditions, intact
FKN signaling has been shown to prevent neuronal damage
caused by glutamate excitotoxicity (Limatola et al., 2005;
Cardona et al., 2006). In these studies, they found that intact
FKN signaling resulted in reduced NMDA- or glutamate-
mediated elevation of intracellular calcium levels (Deiva et al.,
2004; Sheridan et al., 2014) and increased glutamate removal
from synaptic clefts via glutamate transporter-1 (GLT-1) on
astrocytes (Catalano et al., 2013). Furthermore, work from
Noda et al. (2011) suggests that FKN inhibits excitotoxicity
by promoting microglia phagocytosis of damaged neurons
and through the production of the antioxidant enzyme heme
oxygenase-1 (HO-1). Together, these data suggest that intact
FKN signaling protects neurons against glutamate excitotoxicity.

Epilepsy is a neurological disorder highlighted by
uncontrolled seizures (Fisher et al., 2005). These seizures are
thought to occur due to abnormal hypersynchrony of neuronal
action potential firing, due to an imbalance of excitatory and
inhibitory neurotransmitters (Dalby and Mody, 2001; Sharma
et al., 2007). Furthermore, it has been shown that neurons
under epileptic conditions lack γ-aminobutyric acid (GABA)
inhibition efficacy, thus leading to an excitotoxic environment
(Roseti et al., 2013). Recent work has suggested a role for
neuroinflammation in the pathological progression of epilepsy,
as studies have shown neuronal hyperactivity trigger microglia
process extension and interaction with neurons (Kato et al.,
2016; Eyo et al., 2017). Because of the neuroinflammatory role,
research has started to investigate the role FKN signaling has
in mediating epilepsy, through neuron-microglia interactions.
In a 2016 study, Eyo et al. (2016) showed that deficient FKN
signaling resulted in increased seizure phenotype. This was
attributed to a reduction in microglia-neuron convergence
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following seizure. In addition, they showed that treatment
with FKN resulted in increased microglia-neuron convergence
and reduced seizure phenotype, suggesting FKN signaling can
mediate neuro-immune interaction following seizures, thus
reducing seizure severity. Furthermore, work by Roseti et al.
(2013) showed that FKN signaling led to microglia modulation
of GABA currents by reducing GABA rundown and promoting
GABA current recovery. This modulation has been theorized to
occur via FKN signaling, promoting a phosphorylation cascade
resulting in stabilized GABA receptors on neurons. In this work,
they found that FKN signaling modulation of GABA currents
counteract neuronal hyperexcitability by preserving inhibitory
GABA signaling. Together, these data suggest that FKN signaling
is protective during epilepsy, specifically by promoting neuro-
immune communication and modulating GABA inhibitory
currents to reduce hypersynchronous firing.

Alzheimer’s Disease
AD is a progressive neurodegenerative disease affecting memory
and cognitive functions. AD is hallmarked by molecular and
cellular changes in the brain resulting in neuronal death. These
include abnormal levels of extracellular amyloid beta plaque
deposition resulting in disruption of neuronal crosstalk and
intracellular hyperphosphorylation of the major microtubule
associated protein tau forming toxic neurofibrillary tangles
within neurons (Finneran et al., 2019). It has also been found
that AD patients suffer from chronic neuroinflammation due
to dysfunctional microglia. FKN expression in the hippocampus
and cortex is drastically reduced in an AD brain (Cho et al.,
2011). Paradoxically, conflicting studies have shown both
beneficial and detrimental effects of knocking out CX3CR1 in
terms of AD development and progression. In one study,
lack of CX3CR1 resulted in diminished amyloid beta plaque
formation and increased microglia phagocytosis (Liu et al.,
2010). Alternatively, in a mouse model overexpressing human
tau (hTau), disruption of FKN signaling exacerbated pathology
leading to increased neurofibrillary tangle aggregation (Lee
et al., 2014). Interestingly, recent studies have shown that
tau can potentially bind to CX3CR1, acting as an antagonist
against FKN signaling by preventing CX3CL1 from binding
to its cognate receptor (Bolos et al., 2017). Studies have
shown that FKN signaling has anti-inflammatory properties
during neurodegenerative diseases, suggesting attenuated FKN
signaling could result in diminished anti-inflammatory cytokine
production by microglia. Therefore, in this study, FKN
signaling antagonism seems to prevent neuronal-microglia
crosstalk and subsequent microglia overactivation, resulting in
a reduction of anti-inflammatory signaling, and progression of
neuroinflammation seen during AD (Finneran and Nash, 2019).
This current evidence suggests a duality in the effects of FKN
signaling during AD, with both neuroprotective and neurotoxic
outcomes at different points during pathology development.

Parkinson’s Disease
PD is a neurodegenerative disease characterized by loss
of dopaminergic neurons (DA) in the substantia nigra
pars compacts (SNpc) of the midbrain, resulting in severe
motor, balance, and coordination deficits. In PD, loss of

dopaminergic neurons is precipitated by intraneuronal
aggregation of α-synuclein, commonly referred to as Lewy
bodies (Polymeropoulos et al., 1997; Ross et al., 2008), resulting
in neuronal damage and death. Neuroinflammation has been
discovered to play an integral function in PD pathogenesis,
as microglia dysfunction has been found to exacerbate
dopaminergic neuron degeneration. In multiple models of
PD, increasing the concentration of soluble FKN has proven
to be neuroprotective by inhibiting microglial activation,
downregulating pro-inflammatory cytokine production, and
protecting DA neurons from degeneration (Cardona et al., 2006;
Pabon et al., 2011; Morganti et al., 2012). Additionally, in a study
using the CX3CR1 global KO mouse model, where CX3CR1 is
replaced by GFP on all cells expressing CX3CR1, Cardona et al.
(2006) showed that disruption in FKN signaling resulted in
an increased loss of neurons in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) model of PD. Finally, studies have
shown that in PD models overexpressing α-synuclein, FKN
diminished DA neurodegeneration (Nash et al., 2015; Thome
et al., 2015). Taken together, these results suggest FKN signaling
is neuroprotective in PD.

Multiple Sclerosis
MS is a neurodegenerative demyelinating disease resulting
from the destruction of myelin and oligodendrocytes insulating
neurons in the brain and spinal cord. Demyelination of neuronal
axons results in diminished neuronal signal firing, leading
to symptoms ranging from motor, sensory, and cognitive
dysfunction. Endpoint pathology of MS includes neuronal
degeneration resulting in paralysis (Ridderstad Wollberg et al.,
2014). While the direct cause of MS is still unknown, recent
studies have shown evidence that immune dysfunction plays a
key role in disease development (Cardona et al., 2018). However,
in MS, microglia have been found to play an integral role
in myelin destruction. This is supported by work showing
that in a model of autoimmune encephalomyelitis (EAE),
CX3CR1 deficient mice have enhanced demyelination and
subsequent neuronal damage (Garcia et al., 2013). Interestingly,
there is little to weak evidence to suggest that FKN signaling
acts as a ‘‘find me’’ signal for microglia in the brain. Rather,
data suggests that FKN signaling functions as a checkpoint,
preventing the uncontrolled activation of microglia (Cardona
et al., 2006). In these studies, when FKN signaling is disrupted,
this checkpoint is removed, and microglia pro-inflammatory
and phagocytic activity becomes dysregulated, leading to
neurotoxicity. Therefore, this evidence supports data suggesting
a neuroprotective role for microglia induced by intact FKN
signaling during MS-associated demyelination.

Retinal Neurodegeneration
Diabetic retinopathy (DR) is a common microvascular disorder
associated with diabetes and a leading cause of blindness
worldwide (Antonetti et al., 2012). In this disease there is
a breakdown of the blood-retinal barrier, leading to loss
of cells in the retina (Barber, 2003). Although the etiology
of the disease is not well understood, uncontrolled retinal
cell death will eventually lead to vision loss and blindness.
Interestingly, a number of studies have observed microglia
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activation in the early stages of DR, promoting the production
and release of proinflammatory cytokines, exacerbating the
development of retinal cell death (Liang et al., 2009; Tang
and Kern, 2011). Because of this, the FKN signaling axis
has been examined for its ability to control neuroimmune
signaling between retinal neurons and microglia, and thus
prevent over-activation of microglia. In 2015, Cardona et al.
(2015) crossed the Insulin2Akita mouse model of DR with
CX3CR1 deficient mice to determine the role FKN signaling
plays in DR pathology. In this study, they found that the
DR mouse without intact FKN signaling had microglia with
prolonged activity in the retina. This prolonged activity was
accompanied by increased retinal ganglion cell (RGC) death
and increased levels of proinflammatory interleukin 1 beta (IL-
1β). These results suggest that in a DR mouse model, intact
FKN signaling is neuroprotective towards RGCs by reducing
microglia activity and diminishing proinflammatory mediator
production. Furthermore, in a 2016 study by Mendiola et al.
(2016), they found that in the same mouse model of DR,
intact FKN signaling reduced the clustering of microglia around
retinal microvasculature, and in turn prevented vascular leakage
and edema, a hallmark of DR development. In addition, when
FKN was disrupted, they again found that there was an
increased production of proinflammatory IL-1β by microglia
and astrocytes in the retina. This supports the previously
mentioned results in a model of MS, where intact FKN signaling
acts as a checkpoint to prevent neurotoxic overactivation of
microglia, including the chronic production of pro-inflammatory
mediators.

Retinitis pigmentosa (RP) is a genetic mutation disease
characterized by the progressive degeneration of photoreceptors
and is a main cause of blindness worldwide, specifically in
children (Hartong et al., 2006). Evidence suggests that the
development and progression of RP are associated withmicroglia
activation. Peng et al. (2014) in 2014 found that in the rd10mouse
model of RP, disrupted FKN signaling resulted in increased
photoreceptor degeneration, caused by increased microglia
activation. In addition, in 2016, using the same RP mouse
model, Zabel et al. (2016) found that this increased photoreceptor
degeneration was caused by increased microglia phagocytosis
and increased production of proinflammatory cytokines by
microglia. This microglia activity was found to be controlled
by the FKN axis, where when intact, reduced photoreceptor
degeneration was observed.

Glaucoma is a progressive neurodegenerative disease of
the eye resulting in irreversible vision loss, precipitated by
RGC death (Almasieh et al., 2012; Nickells et al., 2012).
Although little is known about the molecular mechanisms
responsible for glaucoma development, growing evidence
suggests a neuroinflammatory role mediated by microglia
(Cui et al., 2009; Ebneter et al., 2010; Bosco et al., 2011).
Therefore, in 2014 Wang et al. (2014) performed a study to
determine the role FKN signaling had in modulating retinal
microglia activation during glaucoma. In this study they found
that disruption of FKN signaling enhanced the neurotoxic
behavior of retinal microglia, leading to increased RGC death.
Furthermore, they found that intact FKN signaling prevented

microglia activation in the retina, thus increasing RGC survival.
Together, these studies suggest that intact FKN signaling plays
a neuroprotective role in the diseased retina by decreasing
microglia neurotoxicity and enhancing RGC and photoreceptor
survival.

Human CX3CR1 Polymorphisms and
Neurodegeneration
Polymorphisms in CX3CR1 have been attributed to a number
of inflammatory diseases, including age-related macular
degeneration (AMD) andMS. CX3CR1 has two single nucleotide
polymorphisms (SNPs) in humans: V249I and T280M (Faure
et al., 2000; Chan et al., 2005). These polymorphisms are present
in approximately 20% of the population, and result in reduced
affinity for FKN to its receptor, leading to ineffective signaling
(McDermott et al., 2003; Cardona et al., 2018) or reduced
expression of CX3CR1 (Chan et al., 2005). Due to the resultant
defective neuronal-glia communication, these SNPs have been
studied for their effects in the development and progression of
many inflammatory diseases.

AMD is one of the most common age-related eye diseases
leading to vision loss. In this disease, there is a progressive
degeneration of the macula in the retina, leading to loss of
the center field of vision. This is either termed dry AMD,
where the retina itself deteriorates, or wet AMD where leaky
blood vessels grow under the retina. Although the etiology is
largely unknown, the development of AMD is heavily linked
with a combination of environmental and genetic factors.
One such genetic factor that confers increased susceptibility
to AMD is CX3CR1 SNPs (Tuo et al., 2004; Chan et al.,
2005; Ma et al., 2015). Possible explanations for CX3CR1 SNP
susceptibility for developing AMD could be attributed to the
significant rolemacrophage activity has been shown to play in the
pathogenesis of AMD (Ambati et al., 2003). Specifically, through
over-activity and improper immune activation, resulting in
excessive inflammation and uncontrolled phagocytosis of retinal
cells. Thus, altered neuro-immune communication, through
reduced FKN affinity or reduced CX3CR1 expression caused by
CX3CR1 SNPs, could lead to altered immune cell activation and
increased susceptibility to developing AMD.

In addition to AMD, studies have investigated the role
of CX3CR1 SNPs in the susceptibility of developing MS.
Studies have shown that there are significantly different levels
of CX3CR1 expression in MS patients compared to healthy
individuals (Infante-Duarte et al., 2005). Thus, this suggests a
role for CX3CR1 in the development of MS. In a 2011 study
by the International Multiple Sclerosis Genetics Consortium and
the Wellcome Trust Case Control Consortium (2011) using a
genome-wide association study (GWAS) of 9,772 cases, they
sought to determine any genetic risk factors associated with
MS development. Although they found numerous genetic risk
factors associated with MS, CX3CR1 SNPs were not implicated.
Furthermore, in studies of MS patients expressing single
nucleotide polymorphisms in the CX3CR1 locus (CX3CR1M280),
Stojkovic et al. (2012) found no association of CX3CR1 SNPs
withMS susceptibility. Interestingly, in this study, CX3CR1 SNPs
seemed to confer protection in MS patients, preventing the
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switch to a more progressive form of the disease. This could
potentially be due to reduced demyelination caused by the
modulation of microglia activity. However, in a mouse model of
EAE, used to emulate MS disease progression in mice, disrupted
FKN signaling through the CX3CR1M280 SNP, exacerbated EAE
progression, including microglia dysfunction, and subsequent
inflammation, demyelination, and degeneration of neurons
(Cardona et al., 2018). Thus, in a mouse model of EAE,
CX3CR1 SNPs seem to exacerbate demyelinating pathology,
suggesting FKN genetic variants indeed confer MS susceptibility.
These conflicting results can most likely be explained by the
differing models used to explore MS susceptibility, however,
more work needs to be done to determine the role CX3CR1 SNPs
signaling has in MS susceptibility, development and progression.

EMERGING ROLES OF FRACTALKINE
SIGNALING IN THE INJURED COCHLEA

SNHL occurs due to loss of the sensory hair cells, IHC-SGN
ribbon synapses, or loss of SGNs. Such loss can occur due to
sterile traumas such as loud and prolonged noise exposure and
ototoxic drug administration, infection, or normal physiological
processes such as aging. Until recently, it was not known whether
there was an inflammatory component in SNHL development
and progression. In tissues throughout the body, macrophages
play a key role in cellular development, homeostasis, and
disease development and progression. However, it is not
clear whether macrophages play a similar role in the cochlea
during physiological and pathological conditions. To determine
the role of macrophages in cochlear pathology and SNHL,
one must understand the mechanisms vital for immune cell
communication within the cochlea. In the following sections,
we will look at emerging evidence showing that FKN signaling
between IHCs and SGNs that express FKN ligand and cochlear
macrophages that express CX3CR1 receptor is chemotactic and
neuroprotective following cochlear injury.

FKN as a Macrophage “find-me” Signal in
the Injured Cochlea
FKN is a chemokine that is constitutively expressed by IHCs
and SGNs in the mature cochlea and its level increases following
cochlear trauma (Sato et al., 2010; Kaur et al., 2015; Sun et al.,
2015). Is FKN the chemotactic molecule that allows local or
blood circulating macrophages to locally migrate or infiltrate
from the circulation into the damaged cochlea? To address
this, numerous studies have used the mouse that lacks CX3CR1
(CX3CR1 global KO) on all cells as a model to disrupt FKN
signaling to understand its function in macrophage chemotaxis
in the injured cochlea (Jung et al., 2000). In 2010, Sato et al.
(2010) treated CX3CR1 global KO (disrupted FKN signaling)
and CX3CR1 heterozygous (intact FKN signaling) mice with
aminoglycoside kanamycin to induce ototoxicity. The number
of macrophages increased after kanamycin-induced hair cell
death however, the degree of increase was not significantly
different between CX3CR1 heterozygous and KO mice, and
rather was found to be higher in the spiral ligament in certain
cochlear frequency locations of the CX3CR1 global KO mice

(Tuo et al., 2004). Another study in 2008 by Sato et al.
(2008) reported similar findings following loud acoustic trauma.
Similarly, Kaur et al. (2019) in 2019 observed in a model of
mild acute acoustic trauma (90 dB SPL, 8–16 kHz, 2 h), that
absence of CX3CR1 on macrophages did not alter the density
of resident macrophages that migrated into the noise-damaged
IHC-synaptic region when compared to mice with intact FKN
signaling. On the contrary, in a 2015 study, Kaur et al. (2015)
reported that disruption of FKN signaling in CX3CR1 global
KO mice resulted in a significant reduction in the macrophage
density in both sensory epithelium and spiral ganglion after
selective hair cell ablation. Furthermore, in 2018 Kaur et al.
(2018) observed a 36% reduction in macrophage density in the
sensory epithelium following kanamycin-furosemide treatment
when FKN signaling was disrupted. Interestingly, in this study,
they observed that disruption of FKN signaling had no significant
effect on macrophage density in the spiral ganglion following
kanamycin treatment, or anywhere in the cochlea following
very loud acoustic trauma. However, at this time, the origin
of these macrophages following cochlear trauma is unclear.
In their 2015 study, Kaur et al. (2015) addressed macrophage
origin following cochlear trauma by using BrdU labeling to
determine if resident macrophages proliferate after selective hair
cell ablation. In this study, no BrdU labeled macrophages were
reported suggesting that resident macrophages do not proliferate
and that the increase in macrophage density following trauma
is a result of infiltration of macrophages from the circulation.
Therefore, the conflicting results of the aforementioned studies
suggest that perhaps FKN signaling act as a ‘‘find-me’’ signal
for the blood circulating macrophages, but not for resident
(local) macrophages in the injured cochlea and that such
FKN-mediated macrophage chemotaxis could be dependent on
the type and extent of the cochlear injury. Additionally, these
results could also suggest an important role for additional
neuroimmune signaling pathways, including CD200/CD300R
and CD47/SIRP, in macrophage activity following cochlear
trauma (Marinelli et al., 2019). Further work using fate-mapping
or lineage tracing tools that distinguishes resident and recruited
macrophages is required to determine whether FKN signaling
regulates the chemotaxis of resident or recruited macrophages
in the injured cochlea. Furthermore, work characterizing the
activity of additional neuroimmune signaling pathways needs
to be done to determine the extent of FKN signaling role in
macrophage activity within the damaged cochlea. It is important
to note that disruption of FKN signaling due to the absence of
CX3CR1 on macrophages did not affect macrophage numbers
in the normal cochlea (Sato et al., 2008, 2010; Kaur et al.,
2018, 2019), suggesting that this signaling is not critical for the
maintenance and survival of cochlear resident macrophages.

FKN Promotes the Survival of Sensory Hair
Cells in the Injured Cochlea
The most common histological evidence of SNHL is loss of
cochlear sensory hair cells or damage to their stereocilia bundles.
Loss of hair cells or hair cell function prevents the transduction
of environmental sound waves into receptor (IHC) potentials
which is necessary for the release of excitatory glutamate from
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IHC. This, in turn, inhibits action potential generation in afferent
cochlear SGN fibers, and therefore hearing is lost (Liberman,
1984). With recent evidence suggesting a neuroinflammatory
element in SNHL, understanding the mechanisms responsible
for communication between cochlear hair cells and immune
cells could be vital in determining therapeutic targets for
hair cell protection following cochlear trauma. In a model of
aminoglycoside ototoxicity, Sato et al. (2010) showed that intact
FKN signaling protected cochlear hair cells. Here, following
kanamycin treatment, disruption of FKN signaling, due to
genetic deletion of CX3CR1 (using the CX3CR1 global KO
mouse model), resulted in a significant loss of OHCs in the
5–16 kHz range of the cochlea. This loss of OHCs correlated
to elevated ABR thresholds in CX3CR1 global KO animals in
the same tonotopic cochlear regions (Sato et al., 2010). Sato
et al. (2008) also found similar results after acoustic trauma.
Similarly, in 2019, Kaur et al. (2019) showed that following
a mild synaptopathic noise trauma (90 dB SPL, 8–16 kHz,
2 h), lack of CX3CR1 resulted in damage and loss of IHCs,
specifically from the middle and basal region of the cochlea
(Kaur et al., 2019). Together, these results suggest that intact
FKN signaling is protective towards OHCs and IHCs following
cochlear trauma, including acoustic damage and aminoglycoside
drug toxicity. Further research work is needed to determine
the specific mechanisms responsible for FKN-signaling mediated
inner and outer hair cell protection following cochlear trauma,
especially when FKN is only expressed by IHCs and not OHCs
(Sato et al., 2010; Kaur et al., 2015).

FKN Promotes Survival of Spiral Ganglion
Neurons in the Injured Cochlea
Historically, many studies have demonstrated that degeneration
and loss of SGNs follow the death of sensory hair cells due
to acoustic trauma or ototoxic drugs (secondary degeneration;
Dupont et al., 1993; Gillespie and Shepherd, 2005). However,
recent studies have shown that SGNs can die without hair
cell loss (primary degeneration; Stankovic et al., 2004; Kujawa
and Liberman, 2009). Both primary and secondary SGN
degeneration are gradual processes, with peripheral axon
degeneration occurring within days and SGN somata death
occurring within weeks, with some studies even suggesting SGNs
can survive months to years post-trauma (Zilberstein et al.,
2012). Beyond our current understanding of the protective
roles played by neurotrophic factors released by supporting
and glial cells and intrinsic electrical activity of SGNs, our
understanding of the non-neuronal factors that regulate SGN
degeneration and survival in the damaged cochlea is limited.
In their 2015 work, the Kaur group (Kaur et al., 2015) showed
that in the Pou4f3huDTR mouse model of selective hair cell
ablation, disruption of FKN signaling, due to genetic lack of
CX3CR1 receptor on macrophages, resulted in an increase
in SGN death at 2 months after selective hair cell ablation
compared to animals with intact FKN signaling. Interestingly,
this increase in SGN death was observed throughout the cochlea,
and directly correlated with fewer numbers of macrophages
present in the spiral ganglia. Furthermore, in their 2018 study,
Kaur et al. (2018) examined whether genetic disruption of FKN

signaling would affect SGN survival in clinically and biologically
relevant mouse models of cochlear trauma. Here, they utilized
a model of loud acoustic trauma, where mice were exposed to
8–16 kHz octave band noise at 120 dB SPL for 2 h (Wang
et al., 2002). In this model, noise trauma results in permanent
hearing loss, resulting from widespread hair cell loss 7-days
post-noise exposure. Following acoustic trauma, they observed
approximately a 29% reduction in SGN density in animals
with disrupted FKN signaling (CX3CR1 global KO) when
compared to animals with intact FKN signaling. Additionally, in
this study, they also used a model of Kanamycin/Furosemide-
induced ototoxicity (KF; Oesterle et al., 2008; Hirose and Sato,
2011; Hirose et al., 2014). In this model, administration of KF
caused significant hearing loss resulting from widespread hair
cell death 14 days following drug administration. Following KF
treatment, disrupted FKN signaling caused by genetic deletion
of CX3CR1 resulted in a ∼31% reduction in SGN density
when compared to CX3CR1 heterozygous controls that have
intact FKN signaling. Importantly, in both biological models
of SNHL, reduction in SGN survival correlated to the reduced
density of macrophages in the spiral ganglia of the injured
CX3CR1 global KO mice. Finally, in their 2019 study, Kaur
et al. (2019) demonstrated that following mild acute acoustic
trauma that did not cause any evident hair cell loss or any
significant increase in macrophage numbers in the spiral ganglia,
the absence of CX3CR1 on macrophages still resulted in a robust
and gradual SGN death. Of note, the lack of CX3CR1 alone did
not cause loss of SGNs in any of these above-mentioned studies.
Interestingly, the precise mechanisms by which intact FKN
signaling, and macrophages promote SGN survival in the injured
cochlea remains unknown and are under investigation. However,
FKN signaling seems to play dual roles, as a chemokine, to recruit
anti-inflammatory and pro-healing circulating macrophages,
and as checkpoint molecule, to regulate the inflammatory and
phagocytic phenotype of resident and circulating macrophages.
However, more work needs to be done to determine the precise
mechanisms of FKN-mediated SGN neuroprotection.

Kaur et al. (2018) further demonstrated an increase in the
expression of pro-inflammatory cytokine IL-1β in the spiral
ganglion andmacrophages of mice lacking CX3CR1 compared to
mice with intact CX3CR1 following aminoglycoside ototoxicity
(Kaur et al., 2018). Similarly, studies in the CNS have
found that altered FKN signaling affects microglia production
of cytokines, including the enhanced expression of IL-1β
(Cardona et al., 2006, 2015). Together, these studies suggest
that macrophages serve a neuroprotective role in the injured
cochlea via FKN signaling possibly by regulating the production
of pro-inflammatory mediators from cells in the cochlea
includingmacrophages. This is in line with previouslymentioned
studies of neurodegenerative diseases, where FKN signaling
affects macrophage activity, acting as a checkpoint to prevent
microglia overactivation (Cardona et al., 2006). Furthermore,
this is in line with previously mentioned contradictory evidence
where studies have shown both beneficial and detrimental
effects of FKN signaling and macrophage/microglia activity
or phenotype during neurodegenerative disease development
and pathology, ultimately suggesting a context-dependent role
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in the cochlea. Regardless, whether these pro-inflammatory
molecules are toxic to SGNs survival after cochlear injury needs
validation.

FKN Promotes the Repair of Damaged
Ribbon Synapses
The idea of ‘‘hidden hearing loss’’ was first described by Kujawa
and Liberman (2009) in 2009, where they found that a moderate
acoustic trauma (100 dB SPL, 8–16 kHz, 2 h) induced a reversible
loss of hearing function (via auditory brainstem response
(ABR) and distortion product otoacoustic emissions (DPOAE)
thresholds) without causing sensory hair cell death. Interestingly,
despite the complete recovery of ABR and DPOAE thresholds,
they found that suprathreshold ABR Wave 1 amplitudes never
fully recovered. This was supported by histological analysis
showing permanent loss of IHC ribbon synapses, and progressive
SGN death. Clinically, the loss of IHC ribbon synapses causing
SGN death has profound effects on sound localization and
understanding speech in noisy environments (Liberman and
Kujawa, 2017). Kaur et al. (2018) reported an immediate increase
in macrophage numbers in the damaged IHC synaptic region
following synaptopathic acoustic trauma. In their 2019 work,
they further examined the effects disruption of FKN signaling has
on degeneration and repair of the synaptic connections between
IHCs and SGNs (Kaur et al., 2019). Here, they exposed mice
with intact FKN signaling and those that lacked CX3CR1 to a
moderate noise level (90 dB SPL, 8–16 kHz octave band, 2 h).
Such noise trauma resulted in a rapid degeneration of ∼50%
of IHC-ribbon synapses in the mid-basal and basal regions of
the cochlea and an increase in macrophage numbers in the
IHC synaptic region despite any evident hair cell death. The
noise-damaged synapses gradually repaired in mice with intact
FKN signaling, however the absence of CX3CR1 impaired such
spontaneous synaptic repair that correlated with reduced ABR
Wave 1 input-output function (amplitudes). Altogether, this
work suggests that FKN signaling also plays a vital role in
the spontaneous repair of damaged ribbon synapses. However,
further work needs to be done to determine the exact roles of
macrophages and FKN signaling in ribbon synapse degeneration
and repair in order to develop novel immuno-therapies for
hidden-hearing loss. In the final section, we will look at some of
the work being done examining the therapeutic benefits of FKN
overexpression on a variety of neurodegenerative diseases.

FKN AS A THERAPEUTIC TARGET FOR
NEUROPROTECTION

The previous sections outlined the multitude of studies
surrounding the role FKN signaling has in modulating
the immune response during neurodegenerative disease
development and progression. Due to the role of FKN signaling
in microglia/macrophage activation, as well as FKN’s exclusivity
for its receptor CX3CR1, this signaling axis has the potential
to be an intriguing therapeutic target for any disease involving
chronic neuroinflammation. In this section, we will investigate
some of the work being done on targeting the FKN signaling to
treat neurodegenerative diseases.

In 2013, Nash et al. (2013) investigated the role of FKN
overexpression by using recombinant adeno-associated virus
(AAV) vectors to deliver soluble FKN to reduce tau pathology
in a mouse model of tauopathy. AAV serotype 9-expressing
soluble FKN (AAV9) increased FKN levels up to two-fold over
endogenous levels in the mouse hippocampus and reduced
neurofibrillary tangles (Nash et al., 2013). Despite the increase
in FKN expression, they did not observe any significant rescue
in cognitive function as measured by radial arm water maze,
possibly attributed to the aggressive tauopathy associated with
the mouse model, or limited transduction of AAV9 vectors
in the hippocampus. However, in a 2019 study by Finneran
et al. (2019), they found that CNS-wide overexpression of
soluble FKN via AAV serotype 2 (AAV2) delivery led to a
rescue in cognitive function, as seen through novel recognition
tasks and radial arm water maze behavior, in the same mouse
model of tauopathy. This suggests exogenous FKN expression
can rescue pathology associated with tauopathy. Furthermore,
a 2011 study by Pabon et al. (2011) found that in the
6-hydroxydopamine (6-OHDA) ratmodel of PD, striatal delivery
of exogenous recombinant FKN proved to be neuroprotective
by reducing the size of the dopaminergic lesion, as well as
reduced neuronal loss. This was further supported by a 2012
study by Morganti et al. (2012), where AAV9 delivery of soluble
FKN was neuroprotective in the MPTP model of PD, treatment
with AAV overexpressing FKN resulting in reduced neurotoxic
effects. This was through preserved motor functions, reduced
neuronal loss, and reduced proinflammatory cytokine release
by activated microglia. Also, work led by the Nash group in
2014 found that the use of AAV2 to deliver soluble FKN
reduced α-synuclein-mediated neurodegeneration in the MTPT
model of PD in rats (Nash et al., 2015). Finally, using a mouse
model of RP, Wang et al. (2019) showed that AAV serotype
8 (AAV8) delivery of soluble FKN prolongs cone cell survival
and improves visual function. This neuroprotection occurred
despite FKN overexpression not reducing cytokine levels or
microglia activation in the retina. Although the mechanisms
by which FKN overexpression led to neuroprotection in a
model of RP remains unknown, these results further support
the viability of FKN as a therapeutic target and could have
implications for other neurodegenerative diseases of the eye,
including AMD, DR, and glaucoma. Together, these examples
are just a few studies that have explored the possibility
of using FKN overexpression as a therapeutic measure for
various neurodegenerative diseases. Although more work needs
to be done to determine the therapeutic viability of FKN
overexpression, these studies suggest that the use of targeted viral
vectors, therapeutic peptides, or potentially pharmacological
CX3CR1 receptor agonists, to target the FKN signaling axis
could prove to be a viable treatment option for a variety of
neurodegenerative diseases.

CONCLUSIONS AND FUTURE
DIRECTIONS

The study of immune dysfunction continues to accumulate
evidence for a primary role in the development and progression
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of neurodegenerative diseases. Specifically, interest in immune
signaling pathways has grown, due to their involvement
in tissue development, tissue homeostasis, and immune
surveillance. Dysfunction in these communication pathways
can result in neurotoxicity, resulting from unregulated
immune activation. Evidence in several neurodegenerative
diseases, including AD, PD, MS, and diseases of the retina
suggests FKN signaling is responsible for dampening
microglia activation, resulting in neuroprotection. Emerging
research also suggests FKN signaling plays an important
role in inner ear neuroprotection. However, the question
remains, what is the specific role of macrophages and FKN
signaling in cochlear pathology as well as other neurological
conditions? We hypothesize that FKN signaling plays dual
roles during cochlear pathology, as a chemokine and a
checkpoint molecule. As a chemokine, FKN signaling mediates
cochlear sensory and neuron protection by recruitment of
anti-inflammatory and pro-healing macrophages from the
circulation to the site of damage, which may be context
or injury dependent. As a check point molecule, FKN
signaling modulates the cochlear inflammatory state by
regulating the inflammatory and phagocytic phenotype
of resident and circulating macrophages. These functions
may be inclusive or exclusive (Figure 3). However, if FKN
signaling is disrupted, which in humans can occur through

the previously mentioned CX3CR1 SNPs, there is diminished
recruitment of peripheral macrophages and dysregulated
production of proinflammatory mediators, leading to
unregulated phagocytosis and SGN death. If accurate, these
hypotheses would support the viability of exogenous FKN as a
therapeutic mechanism to treat inner ear pathology. However,
to fully determine the role of FKN signaling in cochlear
physiology and pathology, the following questions need to be
carefully addressed:

1. What is the role of the FKN ligand in normal and damaged
cochlea? To this point, FKN’s role in modulating cochlear
pathology has only been investigated in terms of the presence
or absence of its cognate receptor CX3CR1. Therefore,
determining the effects of presence and absence of FKN
ligand in the normal and damaged cochlea and in oto- and
neuroprotection and the factors that regulate the endogenous
levels of soluble and membrane-bound FKN in the injured
cochlea are equally vital.

2. What is the precise role of CX3CR1 expressing resident and
recruited macrophages in SGN survival? CX3CR1 is expressed
on both cochlear resident macrophages and on macrophages
that migrate to the damaged cochlea from blood circulation.
However, to what extent CX3CR1-expressing resident and/or
recruited macrophages contribute towards the long-term

FIGURE 3 | The proposed model for fractalkine-mediated neuroprotection after cochlear injury. Following cochlear damage there is a sustained increase in the
numbers of macrophages in the spiral ganglion. This increase in numbers is likely due to infiltration of blood-derived macrophages from the vasculature. (A) Following
cochlear trauma, CX3CL1 is proteolytically cleaved from SGNs/IHCs and soluble CX3CL1 binds to its unique receptor CX3CR1 expressed by macrophages.
Activation of fractalkine signaling induces an immune response characterized by recruitment of anti-inflammatory and pro-healing macrophages from the vasculature
into the injured cochlea, regulation of cochlear inflammation, and preserved SGNs. (B) When FKN signaling is disrupted, i.e., due to loss of function in humans
carrying CX3CR1 polymorphisms, there is a lack of macrophage recruitment and a sustained proinflammatory state following trauma. This results in SGN death, due
to unregulated inflammation and phagocytosis by macrophages.
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survival of SGNs in the damaged cochlea remains to be
determined.

3. Is FKN a chemotactic signal for resident or recruited
macrophages in the injured cochlea? The FKN signaling has
been explored elsewhere in the body for its role in chemotactic
signaling to recruit additional immune cells to sites of tissue
damage. Following cochlear trauma, there is an infiltration
of circulating monocyte-derived macrophages to the site of
injury. However, it is unclear if the FKN signaling axis is
responsible for this migration of macrophages to the cochlea.
Additionally, it is unclear if within the cochlea, FKN signaling
acts as a chemotactic signal to draw additional resident
macrophages from other regions of the cochlea to the site of
cellular damage.

4. Does CX3CR1 regulate cochlear inflammation and immune
response to promote SGN survival following injury? It
is not known if FKN signaling is directly responsible
for protecting SGNs following trauma, and furthermore,
if this neuroprotection is related to its regulation of
proinflammatory mediator production and macrophage
phagocytosis in the injured cochlea.

5. What is the association of human CX3CR1 SNPs in
acquired SNHL? Studies have shown a causal link between
human CX3CR1 SNPs and increased susceptibility to various
neurodegenerative diseases. However, it remains unknown
if these SNPs are also associated with the development,
progression, or severity of cochlear pathology and hearing loss
in humans.

6. Can FKN overexpression or increase in CX3CR1 activity be
used as a viable therapeutic target for SGN survival and

ribbon synapse regeneration? Based on the number of studies
indicated above on the therapeutic viability of using AAV
or peptides to overexpress soluble FKN for the treatment
of neurodegenerative diseases, it will be of great interest to
examine the effects of overexpression of FKN as a viable
treatment option for the survival of SGNs and regeneration
of damaged ribbon synapses following cochlear trauma. Such
putative therapeutics options may be a viable treatment for
hidden-hearing loss.

Addressing the above questions, we will better understand
the role FKN signaling has on immune regulation in the
inner ear during cochlear trauma. By doing so, we can
begin to develop therapeutic targets for not only prophylactic
protection but post-trauma recovery. Together, understanding
the role of FKN signaling in inner ear pathology has great
promise for unraveling the mysteries tied to the treatment of
hearing loss.
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