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Cardiovascular complications are the primary death cause in type 2 diabetes, where 
inflammation can play a role. We, and others, have previously shown that, in diabetic 
cardiomyopathy, cardiac dysfunction is associated with Ca2+ mishandling. It is possible that 
diabetic cardiomyopathy differently affects men and women, as the latter present higher 
risk to develop heart failure and a higher plasmatic level of the pro-inflammatory cytokine, 
tumor necrosis factor alpha (TNFα), than men. However, the gender-dependent regulation 
of Ca2+ signaling in diabetes and its relationship with TNFα signaling are still unclear. Here, 
we analyzed TNFα signaling pathway and its role in Ca2+ signaling dysfunction in male and 
female rodent models of type 2 diabetes linked to obesity (db/db mice) using confocal 
microscopy in freshly isolated cardiomyocytes. TNFα increased [Ca2+]i transient amplitude 
and accelerated its decay without affecting SR Ca2+ load or Ca2+ spark frequency in cells 
from control mice. All TNFα effects on Ca2+ handling were prevented by the inhibition of the 
ceramidase and the phospholipase A2 (PLA2). While the plasmatic level of TNFα was similar 
in male and female db/db mice, only male db/db hearts over-expressed both TNFα converting 
enzyme (TACE) and the protective TNFα receptors 2 (TNF-R2). TNFα receptor 1 (TNF-R1) 
expression, involved in negative inotropic response of TNFα, was unchanged in both male 
and female db/db mice compared to controls. We found that male db/db mice cardiomyocytes 
presented a decrease in [Ca2+]i transient amplitude associated to a drop of sarcoplasmic 
reticulum Ca2+ load, not seen in female db/db mice. Interestingly, sustained incubation with 
TNFα did not restored Ca2+ signaling alteration observed in male db/db mice but still induces 
an increase in Ca2+ spark frequency as seen in control littermates. In cardiomyocytes from 
female db/db mice, TNFα had no visible effects on Ca2+ handling. In conclusion, our study 
shows that the alteration of Ca2+ signaling and TNFα, seen in db/db mice, is gender specific 
presenting an increase in TNFα cardio-protective pathway in male mice.
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INTRODUCTION

Cardiovascular complications, such as coronary artery diseases, 
hypertension, and heart failure, are a leading cause of death 
in type 2 diabetes (Laakso, 1999; Bauters et  al., 2003; Bell, 
2007). Preclinical studies have shown that diabetic cardiac 
dysfunction, with depressed contraction and relaxation, results 
from dysregulation of metabolism, mitochondrial function, 
oxidative stress, and Ca2+ handling (Bugger and Abel, 2014). 
These knowledge result almost exclusively from male animal 
studies. However, in the clinical setting, the risk for developing 
cardiac diseases in diabetes is known to be  gender specific 
(Galderisi et  al., 1991; Rutter et  al., 2003; Toedebusch et  al., 
2018). Indeed, the Framingham Heart Study showed that diabetic 
women present a 5.1-fold increased risk to develop heart failure 
than non-diabetic patients, whereas in diabetic men, this risk 
is only multiplied by 2.4 (Galderisi et  al., 1991; Rutter et  al., 
2003). In addition, the hospital admission rate for cardiovascular 
diseases is higher in diabetic women compared to diabetic 
men. Yet, the gender differences in the alterations of cardiac 
cellular function in diabetes are unclear, notably regarding Ca2+ 
mishandling.

Ca2+ regulates contraction through the excitation-contraction 
coupling in cardiomyocytes. For each heartbeat, sarcolemmal 
L type Ca2+ channels open during the action potential, leading 
to Ca2+ influx that activates Ca2+ release from the ryanodine 
receptors (RyR) located at the sarcoplasmic reticulum (SR). 
This release of Ca2+ by the RyR (visualized as a [Ca2+]i 
transient) activates contractile myofibrils to generate 
cardiomyocyte contraction. After the contraction, the Ca2+ 
is re-uptaken into the SR by the SERCA pump and extruded 
outside the cardiomyocytes mainly by the Na+/Ca2+ exchanger, 
resulting in cardiomyocyte relaxation. We  and others have 
shown that, in animal models of type 2 diabetes linked to 
obesity, contractile dysfunction is associated with a decrease 
in the Ca2+ transient amplitude. This lower Ca2+ transient 
amplitude is associated to reduced L-type Ca2+ current density 
combined with downregulation of RyR expression (Belke 
et  al., 2004; Pereira et  al., 2006b, 2014). We  found that these 
alterations may be  different in male and female db/db 
mice  (Pereira et  al., 2014); however, the mechanisms remain 
unclear.

Clinical and preclinical studies pointed out an increase 
in plasmatic level of TNFα, in type 2 diabetes, notably in 
women (Yamakawa et al., 1995; Pereira et al., 2006a; Preciado-
Puga et al., 2014). TNFα is an inflammatory cytokine commonly 
associated to infectious and non-infectious cardiomyopathy, 
such as viral myocarditis, congestive heart failure, and 
myocardial infarction. The level of TNFα seems correlated 

to the development of cardiac dysfunction (Feldman et  al., 
2000; Blum and Miller, 2001), and its over-expression leads 
to cardiac hypertrophy, fibrosis, arrhythmia, and dysfunction 
(Kubota et  al., 1997; Kadokami et  al., 2000; London et  al., 
2003). Yet, whether TNFα is a cause or a consequence of 
cardiac dysfunction is still under debate. The biological 
response of TNFα is mediated through two receptors, the 
TNFα receptor 1 (TNF-R1) and TNFα receptor 2 (TNF-R2). 
TNF-R1 activation is responsible for a cardiac negative 
inotropic response, whereas TNF-R2 mediates cardiac positive 
inotropic response (Meldrum, 1998). At the cellular level, 
TNFα regulates contraction either by direct regulation of 
Ca2+ signaling in acute condition or via iNOS activation in 
sustained conditions (Fernandez-Velasco et  al., 2007). Still, 
whether TNFα activation positively or negatively alters the 
Ca2+ transient is quite controversial, and studies found either 
a decrease, an increase, or no effect on Ca2+ transient. Those 
discrepancies seem to depend on the animal model, the 
concentration of TNFα used, and the incubation time 
(Yokoyama et  al., 1993; Goldhaber et  al., 1996; Bick et  al., 
1997; Sugishita et  al., 1999; Li et  al., 2003; Zhang et  al., 
2005; Duncan et  al., 2010; Greensmith and Nirmalan, 2013). 
In addition, whether the regulation of TNFα signaling in 
type 2 diabetic cardiomyopathy linked to obesity is gender 
specific remains unknown.

Considering all these controversial findings surrounding TNFα 
regulation of Ca2+ handling, we first studied the effect of TNFα 
on Ca2+ signaling in WT mice. Then, using the db/db mice, 
an animal model of type 2 diabetes with insulin resistance 
linked to obesity, we  found that both Ca2+ and TNFα signaling 
underwent distinct alterations in male compared to female. 
Here, we  found that male db/db mice presented a depressed 
Ca2+ transient associated with a lower SR Ca2+ load, not seen 
in female db/db mice. More interestingly,  in male db/db, 
cardiomyocytes seem to put in place a protective mechanism 
to counteract those alterations by increasing the expression of 
cardio-protective TNF-R2 signaling pathway.

MATERIALS AND METHODS

Cell Isolation
Experiments were carried out according to the ethical principles 
of the French Ministry of Agriculture and the European Parliament 
on the protection of animals. Ventricular adult cardiomyocytes 
were isolated from 8  weeks old male C56Bl6 mice, male and 
female 15 weeks old db/db (Janvier), and their control littermates 
(db/+). Mice were euthanized by intraperitoneal injection of 
sodium pentobarbital (100 mg/kg). Cardiac ventricular myocyte 
isolation was performed by standard enzymatic methods 
(collagenase type II, Worthington) using the Langendorff perfusion 
as previously described (Pereira et  al., 2006b, 2007, 2012; Leroy 
et  al., 2011; Ruiz-Hurtado et  al., 2015). After isolation, cells 
were kept in 1 mM [Ca2+] for an hour prior experiments. Only 
rod-shaped cells and quiescent cells when unstimulated and 
excitable were used for the Ca2+ experiments.

Abbreviations: ATK, arachidonyl trifluoromethyl ketone; TNFα, tumor necrosis 
factor alpha; TNF-R1, TNFα receptor 1; TNF-R2, TNFα receptor 2; KO, knock-out; 
NO, nitric oxide; NOE, n-oleoylethanolamine; o.i., oil immersion; PKA, protein 
kinase A; PLA2, phospholipase A2; RyR, cardiac ryanodine receptor; SR, sarcoplasmic 
reticulum; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; TACE, TNFα 
converting enzyme.
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Measurements of Plasmatic TNFα
TNFα determination by ELISA Soluble TNFα concentration 
was determined in plasma samples from mice using commercial 
ELISA test (BIOTRAK, Amersham Life Science, Sweden).

Confocal Microscopy
Ca2+ handling was recorded in freshly isolated ventricular 
adult cardiomyocytes loaded with the fluorescent Ca2+ dye, 
the Fluo-3 acetoxymethyl ester (Fluo-3 AM, Molecular Probes) 
at 5  μM diluted in a mixture of DMSO-pluronic acid 20%. 
A line scan across the longitudinal axis of the myocyte  
was performed to measure cardiomyocyte shortening. 
Cardiomyocyte shortening corresponds to the difference 
between cardiomyocyte length at rest and cardiomyocyte 
length during contraction (during electrical stimulation), as 
previously described (Fernandez-Velasco et  al., 2009). Ca2+ 
transient, Ca2+ sparks, and SR Ca2+ load were recorded using 
confocal microscopy (Meta Zeiss LSM 510, objective w.i. 
63×, n.a. 1.2) in line scan mode (1.54 ms) along the longitudinal 
axis of the cell. Ca2+ transients were evoked by field stimulation 
(1  Hz) applied through two parallel platinum electrodes. 
Spontaneous Ca2+ sparks were recorded in quiescent cells 
after Ca2+ transient recording. Ca2+ transient decay time 
corresponds to the kinetic of the relaxation phase due to 
the re-uptake of Ca2+ into the SR by the SERCA pump as 
well as the extrusion of Ca2+ by the Na2+/Ca2+ exchanger. 
Ca2+ transient decay time is calculated using a mono-
exponential function to fit the Ca2+ transient decline phase. 
SR Ca2+ load was assessed by rapid caffeine application 
(10  mM) after 1  min pacing to reach the steady state. 
Parameters were studied with or without TNFα (1  h to 1  h 
30  min) supplemented or not with a ceramidase inhibitor 
n-oleoylethanolamine (NOE, 5  μM) and a phospholipase A2 
(PLA2) inhibitor (ATK, 10  μM) (Sigma-Aldrich). 
Fluo-3  AM  was excited with an Argon laser (λex  =  488  nm), 
and emission was collected at wavelengths >505  nm. Image 
analysis was performed using homemade routines in interactive 
data language (IDL).

Western-Blot Analysis
Adult ventricular homogenates were quickly frozen in liquid 
nitrogen and then placed in Tris solution (50 mmol/L, pH = 7.4) 
containing proteases and phosphatase inhibitors (10  μg/ml 
leupeptin, 10  μg/ml trypsin inhibitor, 2  μg/ml aprotinin, and 
5  μM okadaic acid). Homogenization was performed on ice 
using a Politron. Homogenate was centrifuged at 18,925  g for 
10  min at 4°C. Proteins were resuspended in Laemmli (5%) 
sample buffer, boiled (90°C for 5–10  min), and separated by 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) using 10% polyacrylamide gels. After separation, proteins 
were transferred to polyvinylidene fluoride membranes 
(Amersham Biosciences), and non-specific binding sites were 
blocked overnight at 4°C in 5% dried milk and Tris-buffer 
saline (TBS, pH  =  7.4) and 0.01% Tween 20. Membranes were 
incubated overnight (at 4°C) for the rabbit polyclonal 

anti-TACE (1:300; Proscience) and the rabbit polyclonal anti-
TNFR2 (H-202) (1:250; Santa Cruz), at room temperature for 
1  h 30  min for the rabbit polyclonal anti-TNFR1 (H-271) 
(1:500; Santa Cruz). A secondary horseradish peroxidase-
conjugated goat anti-rabbit IgG (Amersham Biosciences) was 
used in combination with an enhanced chemiluminescence 
detection system (SuperSignal West Pico Chemiluminescent 
Substrate, Pierce) to visualize the primary antibodies. Band 
densities were determined with a laser-scanning densitometer 
(HP-3970) and Quantity One software (BioRad SA). Protein 
loading was controlled by probing all Western blots with anti-
GADPH antibody (1:4,000) (Ambion).

Statistical Analysis
Results were expressed as mean  ±  SEM. Significance between 
two groups was determined using unpaired Student’s t test or 
non-parametric Mann-Whitney test. Data involving more than 
two groups were analyzed using either one-way ANOVA or 
two-way ANOVA as appropriate. We  used GraphPad Prism 7 
(GraphPad) for statistical comparison. Differences with values 
of p < 0.05 were considered significant.

RESULTS

Sustained TNFα Exposure Increases  
Ca2+-Induced Ca2+ Release
TNFα-mediated Ca2+ signaling regulation is quite controversial, 
which is probably due to protocol differences. Therefore, we first 
studied, in our experimental settings, the effect of sustained 
activation (1–1 h 30 min) of TNFα on Ca2+ handling parameters 
such as Ca2+ transient, Ca2+ spark frequency, and SR Ca2+ load 
(Figure 1). In our hands, 10 and 50  ng/ml TNFα treatment 
significantly increased Ca2+ transient amplitude (F/F0 of 3.1 ± 0.3 
for 10 ng/ml, 3.5 ± 0.3 for 50 ng/ml vs. 2.5 ± 0.14 for baseline, 
p  <  0.05). Moreover, TNFα significantly accelerated the Ca2+ 
re-uptake into the SR as shown by the faster SR Ca2+ transient 
decay time (Figures 1A,B) (~29% faster for 10  ng/ml and 
~25% for 50 ng/ml, p < 0.01). This acceleration of Ca2+ re-uptake 
did not modified SR Ca2+ load (Figure 1D) and did not affect 
Ca2+ spark frequency (Figures 1E,F) at any concentration 
studied. However, 100 ng/ml of TNFα had no effects on either 
Ca2+ transient amplitude, Ca2+ spark frequency, or SR Ca2+ 
load. However, 100  ng/ml of TNFα still accelerated the Ca2+ 
transient decay (Figure  1C).  These results clearly show that 
sustained TNFα activation mediates an increase in systolic 
Ca2+ release. Altogether, our results lean toward the idea of a 
positive inotropic effect.

PLA2 and Ceramidase Mediate TNFα 
Regulation of Ca2+ Signaling
Previous work has suggested that TNFα response is mediated 
by the sphingosine signaling pathway (Hofmann et al., 2003). 
To investigate the signaling pathway involved in TNFα 
regulation of Ca2+ signaling, we  used a ceramidase inhibitor 
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(5  μM NOE) and a PLA2 inhibitor (10  μM ATK). NOE 
fully prevented the increase of Ca2+ transient amplitude 
(Figures 2A,B) and the faster Ca2+ transient decay time 
induced by 10  ng/ml of TNFα (Figure 2C). NOE had no 
significant effects on neither the Ca2+ spark frequency nor 
the SR Ca2+ load (Figures 2D–F). Similarly, the phospholipase 
A2 inhibitor blunted all TNFα-mediated effects on the Ca2+ 
transient and the Ca2+ transient decay time (Figures 2B,C). 
As for NOE, ATK had no effect on SR Ca2+ load (Figure 2D). 
However, ATK, contrarily to NOE, did significantly reduce 
basal Ca2+ spark frequency. Altogether, those results suggest 
that TNFα alters Ca2+ signaling via the activation of the 
ceramidase and phospholipase A2 signaling pathway.

Gender Differences in Upstream TNFα 
Signaling Pathway in Obesity-Linked  
Type 2 Diabetic Mice (db/db)
Since plasmatic TNFα level is significantly elevated in type 2 
diabetic patients, we  first measured the plasmatic level of TNFα 
in male and female db/db mice. At 15  weeks old, db/db mice 
develop a type 2 diabetes linked to obesity with associated 
cardiomyopathy (Pereira et al., 2006b). Surprisingly, neither male 
nor female db/db mice presented an increase in their plasmatic 
level of TNFα compared to control (Figure 3A). Then, we measured 
the expression of key proteins involved in the TNFα signaling 
pathway, such as type 1 and type 2 TNFα receptors and the 
TNFα conversion enzyme TACE in both male and female db/db 

A B

C D

E F

FIGURE 1 | Positive inotropic effect of TNFα incubation. (A) Examples of Ca2+ transient recordings in freshly isolated cardiomyocytes (5 μM Fluo-3 AM) at baseline, 
at 10 ng/ml TNFα and 100 ng/ml TNFα. (B) Mean Ca2+ transient amplitude from cardiomyocytes at baseline (n = 22) and with incremental TNFα treatment (n = 21 
for 10 ng/ml, n = 15 for 50 ng/ml, n = 10 for 100 ng/ml). (C) Ca2+ transient decay time (in ms) at baseline (n = 20) and with incremental TNFα treatments (n = 20 for 
10 ng/ml, n = 15 for 50 ng/ml, n = 9 for 100 ng/ml). (D) Mean of sarcoplasmic reticulum (SR) Ca2+ load obtained by caffeine application after 1 min field stimulation 
in same conditions (respectively, n = 10, n = 11, n = 11, and n = 7). (E) Examples Ca2+ spark frequency (CaSpF) recording in freshly isolated cardiomyocytes at 
baseline, at 10 ng/ml TNFα and 100 ng/ml TNFα. (F) Mean of CaSpF (number of sparks (#) per second per 100 μm) obtained in same groups as in (A) (respectively, 
n = 19, n = 20, n = 15, and n = 7). *p < 0.05, **p < 0.01.
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mice. Interestingly, TACE expression was significantly higher in 
male db/db mice compared to controls, whereas no change was 
detectable in the female group (Figure 3B). Moreover, while 
TNF-R1 receptor expression was unchanged in both db/db groups 
(Figure 3C), TNF-R2  in the db/db male group was significantly 
increased (Figure 3D). These results clearly suggest that in male 
db/db mice hearts, the TNF-R2, known to mediate a cardio-
protective pathway, is over-expressed, probably to protect the 
heart from diabetic-induced stress.

Gender Differences in Obesity-Linked  
Type 2 Diabetic (db/db) Ca2+ Mishandling
In db/db mice, cardiac dysfunction has been associated with a 
decrease in SR Ca2+ transient amplitude and SR Ca2+ load (Belke 

et  al., 2004; Pereira et  al., 2006b, 2014). Here, we  confirmed, in 
isolated cardiac myocytes from male db/db mice, that Ca2+ transient 
amplitude is significantly decreased (Figures 4A,B). This drop in 
Ca2+ transient amplitude (~51% lower than control, p  <  0.01) is 
correlated with a drop in SR Ca2+ load (Figure 4D) (~51% lower 
than control, p < 0.01), which could explain the smaller (although 
not significant) cardiac cell shortening (Figure 4C). In our 
experimental conditions, Ca2+ spark frequency does not seem to 
be altered in db/db compared to control (db/+) (p = N.S.) (Figures 
4E,F). In female db/db mice, the Ca2+ handling was similar in 
db/db compared to their control littermates (Figure 5). Indeed, 
all parameters such as Ca2+ transient amplitude (Figure 5A), Ca2+ 
spark frequency (Figure 5C), SR Ca2+ load (Figure 5D), and cell 
shortening (Figure 5B) were not significantly modified in freshly 
isolated cardiomyocytes in female db/db compared to control. In 

A B

C D

E F

FIGURE 2 | TNFα regulates Ca2+ signaling via the sphingosine pathway. (A) Representative Ca2+ transient examples obtained at baseline, at 10 ng/ml 
TNFα ± ceramide inhibitor (NOE) or phospholipase A2 inhibitor (ATK). (B) Percentage of effect on Ca2+ transient amplitude of TNFα treatment ±NOE or ATK (n = 20 
for 10 ng/ml TNFα, n = 10 for TNFα+NOE, and n = 10 for TNFα+ATK). (C) Ca2+ transient decay time (in ms) in same groups (respectively, n = 19, n = 10, and 
n = 10). (D) Mean of SR Ca2+ load in the same groups (respectively, n = 11, n = 10, and n = 9). (E) Examples Ca2+ spark frequency recording in freshly isolated 
cardiomyocytes at baseline, at TNFα ± NOE or ATK. (F) Mean of CaSpF obtained in conditions (respectively, n = 20, n = 10, and n = 10). *p < 0.05, **p < 0.01.
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conclusion, we found a gender-specific alteration of Ca2+ handling 
in db/db mice, with lower SR Ca2+ release associated to a drop 
in SR Ca2+ load in male, not seen in female.

Gender Differences of TNFα-Mediated 
Effect in Type 2 Diabetic (db/db)
Next, we  compared TNFα regulation of Ca2+ signaling 
between male and female db/db mice. In male db/db mice, 
10  ng/ml TNFα did not alter Ca2+ transient amplitude, cell 
shortening, nor SR Ca2+ load (Figures 4A–C,F). However, 
10  ng/ml of TNFα similarly increased Ca2+ spark frequency 
in both control (~3.29 fold, p  <  0.05) and db/db (1.5 fold, 
p  =  0.06) (Figure 4D). In female control, the higher Ca2+ 
transient amplitude and cell shortening did not reach 
significance. Both female db/db and control had unchanged 
Ca2+ spark frequency. Those results suggest that, in 15 weeks 
old female db/db, the excitation-contraction coupling is 
unchanged compared to female control. Moreover, TNFα 
fails to show the effects found in male db/db (Figure 4D). 

Therefore, there are gender differences in Ca2+ mishandling 
and the underlying mechanisms in type 2 diabetes.

DISCUSSION

We have previously shown that cardiac dysfunction in type 2 
diabetes is associated with cardiomyocyte Ca2+ mishandling, 
resulting from a decrease in the Ca2+ channels involved in 
the Ca2+-induced Ca2+ release process (RyR and L-Type Ca2+ 
channels) (Belke et  al., 2004; Pereira et  al., 2006b). Although 
TNFα is elevated in diabetic patient and animal model of 
diabetes (Yamakawa et al., 1995; Pereira et al., 2006a; Preciado-
Puga et  al., 2014), little was known about its role in cellular 
alteration, notably regarding the Ca2+ signaling pathway and 
gender specificity in animal model of diabetes linked to obesity. 
Here, we  found a gender-specific alteration of Ca2+ and TNFα 
signaling in db/db mice, a common model of type 2 diabetes 
linked to obesity. Indeed, we  found that male db/db mice, not 

A B

C D

FIGURE 3 | Gender-dependent alteration of the TNFα signaling pathway in type 2 diabetic mice (db/db). (A) Plasmatic level of TNFα obtained in male and female 
control and db/db heart tissue homogenates (male control: n = 5, male db/db: n = 7; female control and db/db: n = 8). (B) Representative Western-blot example of 
TACE (98 kDa) and the percent of relative density normalized by GAPDH signal from male and female control (n = 15, n = 17) and db/db (n = 14, n = 17) heart tissue 
homogenates. (C) Representative Western-blot example of TNF-R1 (55 kDa) expression and percentage of relative density normalized by GAPDH signal in male and 
female control (n = 16, n = 18) and db/db (n = 16, n = 18) heart tissue homogenates. (D) Representative Western-blot example of TNF-R2 (75 kDa) expression and 
percentage of relative density normalized by GAPDH signal in male and female control (n = 13, n = 13) and db/db (n = 13, n = 15) heart tissue homogenates. *p < 0.05.
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female, presented the previously described Ca2+ mishandling 
with lower systolic Ca2+ release and SR Ca2+ load. More 
interestingly, we  found that male and female db/db mice 
expressed differently TNF-R2, with an increased expression 
in male db/db mice that might reflect the activation of the 
TNFα cardio-protective TNF-R2-dependent pathway, not seen 
in female db/db.

Cardiac Positive Inotropic Effect of TNFα
Discrepancies regarding the TNFα regulation of Ca2+ signaling 
are quite important in the literature with reported positive or 
negative ionotropic effect. For instance, in cat cardiomyocytes, 
short time exposure of TNFα reduced Ca2+ transient amplitude 
in response to a disruption of Ca2+ influx via L type Ca2+ channels 
leading to cellular shortening, supporting, then, a negative 
ionotropic effect of TNFα (Yokoyama et al., 1993). This negative 
inotropic effect of TNFα has been also described, in rabbit and 
guinea pigs, with TNFα-induced impaired cellular shortening 

cardiomyocytes mediated by NO dependent but Ca2+ independent 
(Goldhaber et  al., 1996; Sugishita et  al., 1999). However, various 
studies performed in rodents have shown that TNFα can lead 
to inotropic positive effects (Bick et  al., 1997; Greensmith and 
Nirmalan, 2013). Here, we  found that TNFα treatments (10 and 
50  ng/ml) induced a time and concentration-dependent effect 
leading to a significant increase in Ca2+ transient amplitude 
between 1  h and 1  h 30  min suggesting a positive inotropic 
effect. Our results are in concordance with Bick et  al. study 
(Bick et al., 1997), who have found that TNFα incubation increases 
Ca2+ transient and cellular contraction in neo-natal cardiomyocytes. 
In adult rat cardiomyocytes treated with 50  ng/ml of TNFα 
(Greensmith and Nirmalan, 2013), Ca2+ transient amplitude and 
cellular shortening were also increased (Greensmith and Nirmalan, 
2013). The absence of effect observed under 100 ng/ml of TNFα 
might be explained by its bimodal effect, as previously described 
in cardiomyocytes, depending on exposure time or dose (Amadou 
et  al., 2002; Shanmugam et  al., 2016). Then, 100  ng/ml TNFα 
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FIGURE 4 | Ca2+ signaling is impaired in male type 2 diabetic mice. (A) Line scan images of Ca2+ transient recorded in male cardiomyocytes from db/+, 
db/db ± TNFα (10 ng/ml). (B) Mean of Ca2+ transient amplitude from db/db ± TNFα (n = 21 and n = 19) cardiomyocytes and their control littermates (db/+, n = 14 
and n = 20). (C) Cell shortening measured in intact db/db ± TNFα (n = 13 and n = 15) and db/+ cardiomyocytes (n = 10 and n = 13) stimulated at 1 Hz. (D) Mean of 
SR Ca2+ load in intact db/db ± TNFα (n = 6 and n = 11) and db/+ cardiomyocytes (n = 10 and 11). (E) Examples Ca2+ spark frequency recording in freshly isolated 
cardiomyocytes at in db/+ and db/db with or without TNFα (F) Ca2+ spark frequency in the same groups (for db/db: n = 12 and 17, for db/+: n = 12 and n = 18) 
**p < 0.01 compared to db/+ and $$p < 0.05 compared to db/db without TNFα treatment.
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or higher doses, and with prolonged exposure, is expected to 
induce negative inotropic effects on Ca2+ handling.

In Mice Cardiomyocytes, TNFα Regulates 
Ca2+ Signaling via the Sphingosine and 
PLA2 Pathways
Previous studies have shown that TNFα produces myocardial 
effects (negative or positive inotropic effect) through different 
mechanisms such as PLA2 or sphingosine signaling pathway 
(Murray and Freeman, 1996; Oral et al., 1997; Liu and McHowat, 
1998). Here, we  found that exposure of TNFα (1  h to 1  h 
30  min) mediates Ca2+ transient increase via the activation of 
both ceramidase (sphingosine precursor) and PLA2 (for 
arachidonic acid production). Sphingosine is commonly 
associated to short-term (within minutes) negative inotropic 
effect of TNFα (Oral et  al., 1997). However, other studies have 
shown that ceramide enhanced SR Ca2+ release and SR Ca2+ 
re-uptake in adult ventricular myocytes (Liu and Kennedy, 
2003). Those results are in line with our prevention of TNFα-
mediated elevation of systolic Ca2+ release and Ca2+ transient 
decay time in cardiomyocytes treated with the ceramidase 
inhibitor NOE (Figures 2B,C). Moreover, inhibition of the 
PLA2 prevented TNFα-mediated increase in Ca2+ transient 

amplitude and SR Ca2+ transient decay time, suggesting that 
TNFα induces Ca2+ mishandling via PLA2-mediated 
phosphorylation of RyR. Indeed, 10  ng/ml of TNFα has been 
shown to increase Ca2+ transient amplitude as a result of PLA-2 
mediated RyR PKA phosphorylation at serine 2,808  in wild-
type mice of RASSF1A knock out (Mohamed et  al., 2014). 
This PKA-dependent mediated effect of PLA-2/arachidonic acid 
on the RyR phosphorylation state perfectly explains why 
we  observed a dramatic drop of Ca2+ spark frequency under 
the inhibition of the PLA-2 (Figure 2F). In addition, TNFα 
also accelerates SR Ca2+ re-uptake reflecting an increase in 
SERCA pump activity as seen under PKA phosphorylation of 
phospholamban supporting the TNFα/PLA-2/PKA pathway. 
This mechanism is confirmed by the restoration of the TNFα-
mediated acceleration Ca2+ transient decay time under ATK, 
the PLA-2 inhibitor (Figures 2B,C).

Gender-Dependent Ca2+ Mishandling in 
db/db Mice, an Obesity-Linked Type 2 
Diabetic Model
Type 2 diabetes is the most common form of diabetes. In 
western countries, 80% of type 2 diabetic patients have developed 
a diabetes linked to obesity resulting in severe glucose intolerance 

A B

C D

FIGURE 5 | EC coupling is unchanged in type 2 diabetic female mice. (A) Mean Ca2+ transient amplitude from db/db ± TNFα (n = 27 and n = 23) cardiomyocytes 
and their control littermates (db/+, n = 11 and n = 18). (B) Cell shortening measured in intact db/db ± TNFα (n = 12 and n = 9) and db/+ cardiomyocytes  
(n = 8 and n = 14). (C) Ca2+ spark frequency in the same groups (for db/db: n = 9 and n = 12, for db/+: n = 10 and n = 17). (D) Mean of SR Ca2+ load in intact 
db/db ± TNFα (n = 17 and n = 18) and db/+ cardiomyocytes (n = 9 and n = 14). p = N.S.
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compared to lean type 2 diabetic patients (Schaffer and Mozaffari, 
1996). Our study was performed in db/db mice, a model that 
recapitulates, in that sense, the human pathology. Indeed, the 
leptin receptor mutation of db/db mice impairs the satiety 
feeling and leads to obesity around 4–5  weeks of age, which 
is followed by diabetic state with hyperglycemia and insulin 
resistance (Coleman, 1978). In type 2 diabetes linked to obesity, 
cardiac dysfunction has been associated to Ca2+ mishandling 
and structural remodeling (Belke et  al., 2004; Pereira et  al., 
2006b; Falcao-Pires and Leite-Moreira, 2012). Indeed, overall, 
animal models of type 2 diabetes present a reduced Na+/Ca2+ 
exchanger activity, and depressed Ca2+ transient linked to 
downregulation of Ca2+ channels, RyRs, and reduced SERCA 
activity (Netticadan et  al., 2001; Zhong et  al., 2001; Abe et  al., 
2002; Belke et  al., 2004; Pereira et  al., 2006b; Boudina and 
Abel, 2010). Here, our results show that those effects are 
recapitulated in male db/db mice (Figure 4), but not in female 
db/db mice. However, the gender-specific regulation in Ca2+ 
handling and/or β-adrenergic response has been previously 
described (Parks et  al., 2014). Supporting this idea, we  found 
that basal Ca2+ transient amplitude is lower in female control 
compared to male control cardiomyocytes. Although Parks 
et  al. (2014) have shown that Ca2+ current, diastolic Ca2+, and 
SR Ca2+ load were similar between control male and female, 
basal cAMP level was lower in control female compared to 
control male due to higher PDE4B expression in female. These 
results are in line with our previous work showing that db/db 
female mice have reduced phosphorylation of the RyR, which 
reduce Ca2+ spark frequency and could explain the preserve 
SR Ca2+ load and Ca2+ transient seen in female db/db compared 
to db/db male. Our results are paradoxical compared to the 
higher risk to develop heart failure for type 2 diabetic women 
compared to diabetic men. This discrepancy could be  explain 
as follow: the decrease in [Ca2+]i transient in male db/db mice 
could be  protective at long term, maybe by preventing Ca2+ 
toxic effects such as apoptosis or preserve ATP content by 
limiting the ATP expense in pumping Ca2+ (Javorkova et  al., 
2010; Parks et  al., 2014). Future studies will be  needed to 
confirm this hypothesis.

Gender Dependent Alteration of Molecular 
TNFα Signaling Pathway in db/db
To our knowledge, plasmatic TNFα level parallels the degree 
of cardiac dysfunction in diabetic patients. In the db/db mice, 
we did not observe any changes in the plasmatic level of TNFα 
compared to control. Even though circulating TNFα is unchanged, 
male db/db mice present an increase in TACE expression 
suggesting a paracrine elevation of TNFα in the heart. Surprisingly, 
despite cardiomyocyte treatment with 10  ng/ml of TNFα, a 
concentration within the in vivo range measured under stress 
and injury (Bitterman et  al., 1991), TNFα did not induce an 
increase in Ca2+ transient amplitude or decay time in db/db, 
as seen in C57Bl6 mice (Figures 4B,C). One explanation could 
be that in db/db control littermate strain background (C57BKS/J 
strain), TNFα is not as effective as in C57Bl6 strain. Indeed, 
genetic background, such as between C57BL6/J and C57BL6/N, 

has been shown to influence cardiac phenotype and propensity 
to develop cardiomyopathies (Tian et  al., 2011; Simon et  al., 
2013). This could also explain the ineffective response of TNFα 
in female control and db/db mice (Figure 5). Although TNFα 
activation has been linked with oxidative stress, no gender-
specific difference in cardiomyocytes redox state at baseline or 
during pathology has been observed (Ren, 2007; Bell et  al., 
2015). Another possibility could be  that in male db/db, the 
dramatically reduced SR Ca2+ load would prevent the high 
Ca2+ systolic release induced by TNFα probably due to the 
phosphorylation of the RyR via the activation of PLA2. Indeed, 
we  found in the presence of TNFα an increase in Ca2+ spark 
frequency in both db/+ and db/db mice reflecting an elevated 
diastolic RyR opening resulting from RyR phosphorylation by 
PKA previously described in male db/db (Pereira et  al., 2014). 
Interestingly, in male db/db mice, the TNF-R2 was overexpressed, 
which is known to exert cardio-protective effects via the activation 
of NF-κB (Burchfield et  al., 2010). Indeed, in liver, TNFα 
inhibits PDE3 expression elevating cAMP level and PKA activation 
(Ke et  al., 2015). This activation of PKA could explain, in 
cardiomyocytes, the elevation of Ca2+ spark frequency in male 
db/+ cardiomyocytes treated with TNFα (Figure 4F). Moreover, 
TNF-R2 is known to be  involved in positive cardiac inotropic 
effect (Defer et  al., 2007). As a result, [Ca2+] overload was 
prevented and Ca2+ transient increased leading to an increase 
in inotropic response. The over-expressed TNF-R2  in a male 
db/db appears as an attempt to counteract the already present 
Ca2+ mishandling to protect from cardiac dysfunction. Indeed, 
prolonged activation of the TNF-R2 pathway in the db/db male 
cardiomyocytes could then activate phosphorylation of excitation-
contraction coupling key proteins, such as phospholamban, to 
restore Ca2+ transient and cardiomyocytes contraction.

In conclusion, we  found for the first time that both Ca2+ 
and TNFα signaling are altered only in male type 2 diabetic 
mice, whereas female does not seem to be  affected. Although 
this study has several limitations in the interpretation such as 
non-comparable hormonal state between female db/db mice 
and diabetic women, lower effect of TNFα in db/+ than C57BL6 
control, we  still clearly show that male db/db mice develop 
Ca2+ mishandling leading to impaired contraction already at 
a young age, while woman seemed to be  protected. Moreover, 
we  found that male db/db mice put into place a protective 
mechanism to counteract those negative effects by over-expressing 
TNF-R2 cardio-protective signaling pathway.
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