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Abstract: The evident implication of the insulin-degrading enzyme (IDE) in Alzheimer’s disease
(AD) and type 2 diabetes mellitus (T2DM), among its capacity to degrade insulin and amyloid-f
peptide (A), suggests that IDE could be an essential link in the relation between hyperinsulinemia,
insulin resistance and AD. However, little is known about the cellular and molecular regulation of
IDE expression, and even less has been explored regarding the post-transcriptional regulation of IDE,
although it represents a great molecular target of interest for therapeutic treatments. We recently
described that miR-7, a novel candidate for linking AD and T2DM at the molecular level, regulates
IDE and other key genes in both pathologies, including some key genes involved in the insulin
signaling pathway. Here, we explored whether other miRNAs as well as other post-transcriptional
regulators, such as RNA binding proteins (RBP), could potentially participate in the regulation of
IDE expression in vitro. Our data showed that in addition to miR-7, miR-125, miR-490 and miR-199
regulate IDE expression at the post-transcriptional level. Moreover, we also found that IDE contains
multiple potential binding sites for several RBPs, and a narrow-down prediction analysis led us to
speculate on a novel regulation of IDE by RALY and HuD. Taken together, these results demonstrate
the novel players controlling IDE expression that could represent potential therapeutical targets to
treat several metabolic diseases with a high impact on human health, including AD and T2DM.

Keywords: insulin; insulin-degrading enzyme (IDE); diabetes; Alzheimer’s disease (AD); RNA
binding proteins (RBPs)

1. Introduction

Insulin resistance in the brain is a key pathological feature contributing to obesity, dia-
betes and neurodegenerative diseases. Insulin and insulin-like receptors (INSR, IGFRs) and
signaling partners are distributed throughout the brain. In general, in the central nervous
system (CNS), insulin and IGFs also play a crucial role in learning and memory, regulating
processes such as neuronal stem cell activation, cell growth, synaptic maintenance and
amyloid-B (Af) degradation. Interestingly, human preclinical studies have shown that
Alzheimer’s disease (AD) is a degenerative metabolic disease, which is characterized by
impairments in brain insulin responsiveness, glucose and energy homeostasis; it is there-
fore known as type 3 diabetes [1-3]. AD patients have shown brain insulin resistance,
accompanied by reduced mRNA and protein expression of INSR, insulin receptor substrate
(IRS) and IGF-1R [4,5]. Importantly, insulin can modulate the clearance of extracellular Af3
oligomers through regulating the insulin-degrading enzyme (IDE), which represents a key
molecular link between AD and type 2 diabetes mellitus (T2DM) [6]. IDE is an atypical
zinc-metalloprotease, recently shown to interact with proteasome components [7], widely
known to prevent the formation of peptide aggregates by the cleavage and inactivation of
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several bioactive peptides, such as insulin, glucagon, amylin and A{3 [8-11]. Expectedly, an
increase in insulin concentration may inhibit the degradation of A3 through competition
as a target for IDE, favoring A3 deposits as a hallmark of AD [6,8,11,12]. IDE expression,
which has been shown to influence Af levels in vitro and in vivo [13], is also impaired
in the brains of AD patients and in Tg2576 transgenic mice and correlates with the accu-
mulation of A during the progression of the disease [14]. Moreover, IDE knockout (KO)
mice display hyperinsulinemia, hyperglycemia, insulin and glucose intolerance, increased
body mass and reduced levels of insulin receptors, as well as accumulation of endogenous
Ap [14-16].Importantly, human genetic studies have pinpointed the IDE region of Chr
10 with both T2DM and AD [16-18]. Therefore, IDE is a strong candidate link between
both T2DM and a late onset of AD and represents an attractive therapeutical target. It has
been previously suggested that controlling IDE levels could provide yet another potential
therapeutic approach in aberrant metabolic states, and several studies have investigated
the possibility of targeting IDE to prevent insulin degradation [8,19-21]. There is great
interest in studying the mechanisms that govern the regulation of IDE expression and
function as a target for therapeutic intervention [22]. Recent report has shown the novel
regulators of IDE, such as JDS-chromium-insulin (CRI)-003, a novel form of insulin that has
been directly conjugated with chromium instead of zinc [23]. Although IDE is regulated
transcriptionally by insulin, to date, only a few studies [14] have explored the regulation of
IDE at the post-transcriptional level.

MicroRNAs (miRNAs) are small (18-25 ntds), evolutionarily conserved, non-coding
RNAs that have an important function in gene regulation, acting at the post-transcriptional
level. By binding to the 3'UTR of target messenger RNAs (mRNAs), miRNAs repress
translation or induce mRNA degradation, or both [24,25]. Interestingly, the expression
of many of these miRNAs is altered in aberrant metabolic states, such as T2DM, as well
as in AD [26-28]. miRNAs are critical regulators of glucose metabolism by regulating
insulin metabolism in the pancreas and peripheral tissues, contributing to obesity and
diabetes [29]. Previous studies from our laboratory have reported that miR-7, a miRNA
enriched in neuroendocrine tissues, such the pancreas and brain, targets and represses
several components of the insulin pathway, such as INSR and IRS2, together with important
regulators of AD, including IDE [30]. Despite the role of miRNAs in regulating insulin
resistance in the brain and in AD remains unexplored. Thus, considering the relevance
of IDE in this context, we aimed to explore additional post-transcriptional regulators that
could contribute to influencing IDE expression.

In addition to non-coding RNAs, RNA binding proteins (RBPs) are a heterogeneous
group of proteins that play a major role in gene expression by controlling all stages of
RNA biology, from transcription, RNA processing, alternative splicing, mRNA stability
and mRNA localization to translation and RNA degradation, via specific RNA interaction
motifs generally present in the 3 "UTR of the target mRNA [31,32]. As we reviewed, several
RBPs have been shown to regulate metabolism and take part in insulin resistance [33].
However, until now, there has been no evidence that RBPs can potentially bind to IDE
transcript or even regulate its levels of expression.

Taking all this into account, here, we identified miR-125-5p, miR-31-a, miR-199-3p
and miR-490-3p as potential candidates to target IDE 3'UTR, in addition to miR-7, as we
previously reported [30]. Using bioinformatic prediction algorithms and gene ontology
(GO) enrichment analysis, we found that miR-31 and miR-199 may regulate IDE and could
be two potential targets in developing novel therapies for AD and T2DM. In addition, we
studied the possible influence of different RBPs on the IDE 3'UTR. Importantly, we showed
that RALY and ELAVL4 (HuD) present a number of potential binding sites to the human
IDE 3'UTR.
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2. Materials and Methods
2.1. Bioinformatic Analysis of miRNAs and RBPs Target Genes

The predicted target miRNAs for IDE 3'UTR were identified using TargetScan 8.0.
(http:/ /www.targetscan.org, accessed on 26 May 2022) [34]. To confirm the prediction, we
used four other different miRNA computational algorithms (miRDB, miRWalk, mirDIP and
miRmap) that utilize distinct parameters to predict the probability of functional miRNA
binding site [24]; we analyzed the results obtained using the Venn diagram. The predicted
human target genes for miR-31-5p and miR-199a-3p were identified using TargetScan
8.0. [34], and the genes were analyzed by gene ontology using Panther v8.0 (http://www.
pantherdb.org, accessed on 22 June 2022) [35]. For a further study of miR-31, the predicted
targets were uploaded and analyzed by DAVID (https://david.ncifcrf.gov, accessed on
22 June 2022) [36,37].

Moreover, we predicted the target genes for hIDE using RBPmap (http://rbpmap.
technion.ac.il/, accessed on 26 May 2022) [38]. Putative targets with more than 100 tar-
get sites were uploaded into the Panther v8.0 gene classification system (http://www.
pantherdb.org, accessed on 22 June 2022) [35] to analyze pathway enrichment.

2.2. Cell Culture and Treatments

The human neuroblastoma SH-SY5Y (SH) cells and human hepatic cell line (HepG2),
obtained from the American Type Culture Collection, were maintained in Dulbecco’s modi-
fied eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2% penicillin-
streptomycin and L-glutamine in 10 cm? dishes at 37 °C with 5% CO,. SH cells are a
fast-growing neuroblastoma cell line from human that has been widely used to study
neurotoxicity, metabolism, miRNAs and AD.

2.3. Transfection of miRNA Mimics, miRNA Inhibitors and siRBPs

Cells (~70% confluence) were transfected with 40 nM miRIDIAN miRNA mimic
(miR-7-5p, miR-31-5p, miR-490-3p and miR-199a-3p) (Dharmacon; Lafayette, CO, USA);
mirVana™ miRNA Mimic (miR-125-5p) (Ambion; Austin, TX, USA; Waltham, MA, USA);
or with 90 nM miRNA hairpin miRNA inhibitor (Inh-miR-31-5p) (Dharmacon) by utiliz-
ing Lipofectamine RNAiMax or Lipofectamine 2000 (Invitogen; Waltham, MA, USA) and
studied 24 h later for miRNA mimics or 48 h later for miRNA inhibitor. For RBPs exper-
iments, 60 nM of siHuD and siRALY (Dharmacon) was transfected using Lipofectamine
2000. In all experiments, an equal concentration of a non-targeting control mimic (CM),
control inhibitor (CI) or non-silencing control (NS), respectively, was used as a control for
non-sequence-specific effects in miRNA and RBPs experiments. Verification of miRNAs
overexpression was performed using quantitative PCR (qPCR), as described below.

2.4. 3'UTR Luciferase Reporter Assays

cDNA fragments corresponding to the 3'UTRs of the human IDE gene were amplified
by reverse-transcription PCR from genomic DNA with Xhol and NotlI linkers. The PCR
products were directionally cloned downstream of the Renilla luciferase open reading
frame in the psiCHECK?2 vector (Promega; Madison, WI, USA), which also contains a
constitutively expressed firefly luciferase gene, which is used to normalize transfections.
Site-directed mutations in the seed region of predicted miR-7-5p, miR-125-5p, miR-31-5p,
miR-490-3p and miR-199a-3p sites within the 3'UTRs were generated using a QuikChange
multisite-directed mutagenesis kit (Agilent; Santa Clara, CA, USA) according to the man-
ufacturer’s protocol. All constructs were confirmed by sequencing. HEK-293 cells were
plated into 12-well plates and co-transfected with 1 pg of the indicated 3'UTR luciferase
reporter vectors and the mimics or negative-control mimic (Dharmacon) for the miRNA
assay and siRNAs or non-silencing control (NS) for the RBPs assay using Lipofectamine
2000 (Invitrogen). Luciferase activity was measured using the Dual-Glo luciferase assay
system (Promega). Renilla luciferase activity was normalized to the corresponding firefly
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luciferase activity and plotted as a percentage of the control (CM). The experiments were
performed in triplicate.

2.5. RNA Isolation and Quantitative Real-Time PCR

Total RNA was isolated from cells using the Trizol reagent (Invitrogen) according to
the manufacturer’s protocol. For mRNA quantification, 1 pg of total RNA was reverse tran-
scribed to cDNA using the iScript RT supermix (Bio-Rad; Hercules, CA, USA), according
to the manufacturer’s protocol. Quantitative real-time PCR was performed in triplicate
using the iQ SYBR green supermix (Bio-Rad) on a real-time detection system (Eppendorf;
Hamburg, Germany). The mRNA level was normalized to the level of GAPDH rRNA
as a housekeeping gene. The primer sequences are available upon request. For miRNNA
quantification, total RNA was reverse transcribed using the miScript II RT kit (Qiagen;
Hilden, Germany).

2.6. Western Blot Analysis

Cells were lysed in ice-cold buffer containing 50 mM Tris-HCI (pH 7.4), 0.1 mM EDTA,
0.1 mM EGTA, 1% NP-40, 0.1% sodium deoxycholate, 0.1% SDS, 100 mM NaCl, 10 mM
NaF, 1 mM sodium pyrophosphate, 1 mM sodium orthovanadate, 1 mM Pefabloc and
2 mg/mL protease inhibitor cocktail (Roche Diagnostics Corp.; Basel, Switzerland). Protein
concentrations were determined using the DC protein assay kit (Bio-Rad; Hercules, CA,
USA). Cell lysates containing 12.5 to 25 ug of protein were analyzed by SDS-PAGE and
immunoblotting. The primary antibodies used included antibodies to IDE (catalog number
ab32216; Cell Signaling), RALY (catalog number ab170105; Abcam; Cambridge, United
Kingdom), HuD (catalog number ab171448; Abcam) and heat shock protein 90 (HSP90)
(catalog number 610419; BD Biosciences; Franklin Lakes, NJ, USA). Secondary antibod-
ies were fluorescence-labeled antibodies, and bands were visualized using the Odyssey
infrared imaging system (Lincoln, NE, USA). Densitometry analysis of the Western blots
was carried out by using the Image] software from the NIH (http:/ /rsbweb.nih.gov /ij/,
accessed on 8 July 2022).

2.7. Mouse Studies

Male 5xFAD mice (MMRRC Strain #034848-JAX; Strain name: B6.Cg-Tg(APPSwFlLon,
PSEN1*M146L*L286V) 6799Vas/Mmjax) at 9 months of age (n = 3) were purchased from
Jackson Laboratories (Bar Harbor, ME) and kept under constant temperature and humidity
in a 12 h controlled dark/light cycle in the animal facility of The Ramon y Cajal Universitary
hospital (IRYCIS). Age-matched wild-type mice were used as controls. Mice were given ad
libitum access to water and food. All animal procedures were carried out in accordance with
the National Institutes of Health guide for the care and use of laboratory animals guidelines
approved by The Ethics Committee of Animal Research of the Hospital Ramén y Cajal and
Madrid Government. Mice were sacrificed by CO,, and brain tissue samples were dissected
and stored at —80 °C until processing for histochemistry and protein expression analysis.

2.8. Thioflavin-S Staining

Mice brain tissues were sacrificed by cervical dislocation, and the extracted brains
were fixed in 4% paraformaldehyde solution (Quimigen; Madrid, Spain). After 24 h of
fixation, brains were immersed in 30% sucrose for 2 days For Thioflavin-S staining, 10 um
thick frozen sections were incubated for 2 h at 60 °C. Then, the slides were rehydrated in
xylene and ethanol solutions (100%, 90% and 70%). After washing in water, the slides were
submerged in Thioflavin S for 3 min and then rinsed in water and 1% acetic acid. Stained
slides were mounted on aqueous fluoromount, and images were captured with a Nikon
A1R confocal microscope.
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2.9. Statistical Analysis

In vitro experiments were routinely repeated at least three times. Data are expressed as
standard errors of the means (SEM) unless otherwise indicated. Statistical differences were
measured using unpaired two-sided Student’s ¢-test. Normality was checked using the
Kolmogorov-Smirnov test. A p value of <0.05 was considered statistically significant. Data
analysis was performed using GraphPad Prism 8.0.1 (GraphPad, San Diego, CA, USA).

3. Results
3.1. Several miRNAs Potentially Bind to hIDE 3'UTR

miRNAs can regulate gene expression by binding to target mRNAs and suppressing
their translation or initiating their degradation. To define possible miRNA-IDE mRNA
interactions, we first investigated which miRNA families could target hIDE 3'UTR and
regulate its expression. To achieve this, we carried out an exhaustive bioinformatic anal-
ysis using TargetScan 8.0. to predict the IDE target miRNAs in mice and humans. We
explored miRNA families broadly conserved among the vertebrates, finding 47 families
that presented at least one complementary site within human IDE mRNA. From these,
five miRNAs, miR-7, miR-31-a, miR-125-5p, miR-199a-3p and miR-490-3p, were selected
based on their involvement in insulin resistance [26,30,39,40]. Figure 1a,b show the number,
type and conservation of predicted sites for the selected miRNAs. Among them, miR-7,
miR-31-a and miR-490-3p are conserved between mice and humans. Later, four additional
computational algorithms (miRDB, miRWalk, mirDIP and miRmap) confirmed the initial
prediction analysis. Further analysis using a Venn diagram showed miR-7 and mir-31-5p
as the top common predicted miRNAs that could target hIDE 3'UTR (Figure 1c).

(a) | Target #Binding sites Type Conservation Position of IDE 3’UTR | (c) Ihf'?f'l/a/l(,
miR-7 2 8-mer Yes 44-51
8-mer Yes 1867-1874
miR-125-5p 2 8-mer Yes 2767-2774
7mer-m8 Yes 2872-2878
miR-31-a 3 7-mer-m8 Yes 10642-1070
7-mer-m8 Poorly 932-938
8-mer Poorly 2578-2585
miR-199-3p 2 7-mer-Al Poorly 832-838
7-mer-m8 Poorly 3584-3590
miR-490-3p 2 8-mer Poorly 4393-4400
7-mer-m8 Poorly 1917-1923
(b) | Target #Binding sites Type Conservation  Position of IDE 3'UTR
miR-7 2 8-mer Yes 22-29
8-mer Yes 1579-1586 %-043
miR-31-a 1 7-mer-m8 Yes 897-903
miR-490-3p 2 8-mer No 1230-1236 (““Aﬁ\ap
7-mer-m8 No 1666-1672 @ mir-31-5p and miR-7

Figure 1. Prediction analysis of IDE target by multiple miRNAs. (a) Predicted human target miRNAs
of IDE, showing the number and type of binding sites and their conservation. (b) Predicted mouse
target miRNAs of IDE, showing the number and type of binding sites and their conservation. (c) Venn
diagram depicting hIDE targeting miRNAs predicted by five different bioinformatic databases.

3.2. Post-Transcriptional Regulation of hIDE by miRNAs

Based on these findings, we decided to further explore the potential targets of hIDE
3'UTR. We found that the miRNAs binding sites were distributed along the hIDE 3'UTR
(Figure 2a). The potential targets sites and types for miR-7, miR-199-3p, miR-31-a, miR-
490-3p and miR-125-5p are represented in Figure 2a. Then, we assessed the IDE mRNA
expression and protein levels upon overexpression of these miRNAs in SH cells. As shown
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in Figure 2b, the IDE mRNA was significantly downregulated by the overexpression of
these miRNAs. Similar results were found for protein levels (Figure 2c). While changes
in miR-125-5p, miR-199a-3p or miR-490-3p overexpression were subtle, miR-31-5p and
miR-7-5p overexpression presented the most potent downregulation of IDE levels in SH
cells by Western blot (Figure 2c).
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Figure 2. The expression of IDE is regulated by multiple miRNAs in vitro. (a) Representation of
predicted target miRNAs sites for hIDE 3'UTR. The square flange color indicates the type of binding
site. The color inside the square shows the miRNA targets of that region (b) qPCR of IDE in SH
cells. (c) Representative Western blot analysis of IDE in SH and HepG2 cells transfected with miR-
31-5p, miR-125-5p, miR-199a-3p and miR-7-5p. (Top) Relative hIDE levels corresponding to the
means £ SEM from three independent experiments. *, p < 0.05; **, p < 0.01; ***, p < 0.001 (significantly
different from cells transfected with the CM).

Given these results, we next sought to investigate the potential direct binding of these
miRNAs to hIDE 3"UTR. To do so, we cloned the full hIDE 3'UTR (4Kb) into a dual lu-
ciferase reporter plasmid (Figure 3a) and assessed their activity under miR-7-5p, miR-31-5p
or miR-199a-3p overexpression conditions (Figure 3b—d). These experiments demonstrated
a significant reduction in the hIDE 3'UTR activity under overexpression conditions for
miR-7-5p, miR-31-5p or miR-199a-3p. The point mutations potentially relieved the inhi-
bition effect of miR-7-5p, miR-31-5p or miR-199a-3p, indicating that modulation at the
post-transcriptional level is due to the binding of these miRNAs to the hIDE 3'UTR, at
least partially (Figure 3b—d). Similar experiments were performed for miR-125-5p and
miR-490-3p (Figure S1).
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Figure 3. Human IDE 3'UTR sequence contains target sites for miR-31-5p, miR-199-3p and miR-7-5p.
(a) psiCHECKTM-2 vector representation. (b—d) Underlined sequences indicate the miRNAs binding
sites. Nucleotides highlighted in red indicate the point mutations in the miRNAs binding sites.
Luciferase reporter activity in HEK-293 cells transfected with the CM or miRNAs mimic and the IDE
3'UTRs (wild-type (WT)) or the constructs containing the indicated point mutations (PM). Data are
expressed as relative luciferase activities compared to the activity in control samples co-transfected
with an equal concentration of the CM and correspond to the mean SEM from three experiments
performed in triplicate. * p < 0.05, ** p < 0.01 (significantly different from cells co-transfected with CM
and the WT or PM 3'UTR).

3.3. miR-31 and miR-199 Target Key Genes Involved in AD

To explore whether the molecular pathways would be affected by miR-31 and miR-199,
we performed a predicted target gene analysis using bioinformatic tools for miRNA target
predictions [34]. We analyzed the predicted target genes (Figure 4) that contain at least one
8-mer binding site using gene ontology [35].

In addition, to further study the miR-31 function, we analyzed miR-31 target genes by
a gene enrichment analysis using DAVID. From the analysis, miR-31 showed the highest
enrichment in AD-related genes compared to the rest of the overrepresented pathways
(Figure 5a). Moreover, we decided to explore whether miR-31-5p could have a direct
implication for IDE expression at the physiological level. For this purpose, we used specific
inhibitors of miR-31-5p in two cell lines (SH and HepG2). We found that inhibiting the
expression of mir-31-5p increased IDE protein levels, corroborating that IDE is regulated
by miR-31-5p (Figure 5b).
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Figure 4. Bioinformatic analysis of predicted miR-31 and miR-199 target genes. Gene ontology
analysis using the Panther software showing enriched pathways for miR-31 predicted target genes
(a) and miR-199 predicted target genes (b).

(@) (b)
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Melanogenesis
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Platelet activation
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15

Figure 5. miR-31-5p regulates genes involved in insulin signaling pathway and controls IDE protein
at the physiological level (a) DAVID analysis showing fractional difference analysis of the top
enrichment pathways of miR-31-5p target genes. * p < 0.05; ** p < 0.01 (observed versus expected).
(b) Representative Western blot analysis of IDE in SH and HepG2 cells transfected with control
inhibitor (CI) or miR-31 inhibitor. HSP90 and Vinculin were used as loading controls.

The MiR-31-5p mature sequence is highly conserved between the mouse and the
human (Figure 6a). Finally, we decided to explore the expression of miR-31 in AD. To
do so, we used a humanized 5xFAD transgenic mice model, which express human APP
and PSENI transgenes with a total of five AD-linked mutations. These mice showed a
marked accumulation of A aggregates compared to WT (Figure 6b). Interestingly, our
qPCR analysis of miR-31 in mouse cortex showed increased levels of this miRNA in the
cortex of 5XxFAD compared to WT mice (Figure 6c).
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Figure 6. miR-31 could play an interesting role in AD. (a) Representation of the mature sequences of
miR-31-5p in humans and mice. (b) Representative images of cortical A3 aggregates in mice stained
with Thioflavin S. Scalebar: 10 um (c) gPCR of miR-31-5p in mouse cortex. Relative miR-31 expression
corresponding to the means &= SEM from three independent experiments. ** p < 0.01; (significantly
different from cells transfected with the CM). A and B represent magnifications images of insets
selected in WT and 5xFAD, respectively.

3.4. Post-Transcriptional Regulation of hIDE 3'UTR by RBPs

RBPs can control the fate of transcripts through mRNA binding. Since no data showed
the regulation of IDE by RBPs and the role of these proteins in insulin signaling, we decided
to explore this novel possibility. By using the prediction algorthim RBPmap [38], we found
130 RBPs with at least one binding site in the hIDE 3'UTR. From those, we narrowed down
the RBPs list by selecting those containing more than 300 consensus sites, theoretically
selecting those with a higher probability of binding to hIDE 3'UTR (Table 1).

Table 1. Predicted target RBPs of hIDE 3’ UTR, showing the number and type of binding sites and
their conservation in human.

. N° Binding Matching RNA . . .
Gene Protein Name Sites Motif Motif Biological Function Reference
Cholesterol
RNA-binding biosynthesis
RALY protein RALY 301 uuuuu/uuuuuub RRM x 1 Mitochondrial [41-43]
metabolism
mRNA metabolism
regulation
Post-transcriptional
ELAVL4 ELAVThke 322 wuauw/uaauu RRM x 3 control of.gene [44-47]
(HuD) protein 4 expression

Nervous system
development and
plasticity
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Table 1. Cont.

Gene Protein Name N SBiltr::c:mg M;;f)}tlil?g hljlljt?f Biological Function Reference
Synaptic plasticity
regulation
Nucleolysin Alternative pre-RNA
TIA1 TIA-1 322 uuuuubk /uuuuu RRM x 3 splicing [48,49]
isoform p40 Regulation of mRNA
translation
Apoptosis
RNA-binding
motif, single- Tumor cell defense
RBMS3 stranded- 347 auauau/hauaua RRM x 2 Gene expression [50-52]
interacting regulation
protein 3
Deleted in aguuu/
DAZ3 azoospermia 348 & RRM x 1 Spermatogenesis [53-55]
. uuguuu
protein 3
Ir?lfcfle;;);g firki?:ls- huuuuuk/ Cell cycle
HNRNPC . 349 RRM x 1 RNA Polymerase II [56,57]
cleoproteins uuuuu T it for ¢
C1/C2 ranscripts for Expor
Far upstream Transcriptional
KHSRP/ element- uguau/ regulator
FUBP2 binding 3% uuuuu KH x4 Gene expression (58,591
protein 2 regulation
Heterogeneous
HNRNP nuclear r1b9nu— 357 huuuuuk/ RRM x 1 Nucleosome assembly [60,61]
CL1 cleoprotein uuuuu
C-like 1
Fazllé Ef;le:_lm uauau/
FUBP3 bindi 375 uuaau/ KH x 4 Gene expression [62]
inding
protein 3 vavat

Among the RBPs examined, we focused on two of them, RALY and HuD, due to their
involvement in pathways related to metabolism and neurodegeneration [63-66]. We further
performed an analysis of the location and density of the overlapping binding sites and
the selected RBPs at the 3'UTR of IDE, revealing several parts of this region with a high
number of overlapping consensus sequences through which these RBPs could interact with
IDE mRNA (Figure 7a). To further explore the potential effect of these RBPs on IDE, we
performed 3'UTR luciferase assays of human IDE in previously transfected cells treated
with specific siRNAs against RALY or HuD. This analysis showed that the silencing of
RALY and HuD significantly increases IDE 3'UTR luciferase activity (Figure 7b), which
correlated with an increase in IDE protein levels under the same conditions (Figure 7c).
Although further studies are needed to confirm the outcome of the effects of the binding of
these RBPs to IDE, these initial observations point out the potential new targets, including
two new miRNAs, for IDE regulation at the post-transcriptional level.
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Figure 7. RALY and HuD are post-transcriptional regulators of IDE. (a) Representation of predicted
target RALY and HuD sites for human IDE 3'UTR. (b) Luciferase reporter activity in HEK-293 cells
transfected with the NS or siRNA against HuD or RALY and the IDE 3'UTRs. Data are expressed
as relative luciferase activities compared to the activity in control samples co-transfected with an
equal concentration of NS. ** p < 0.01 (significantly different from cells co-transfected with NS and
the siRBPs). (c) Western blot analysis of IDE in SH cells transfected with the respective RBP silencing.

4. Discussion

Brain insulin resistance and insulin deficiency are mediators of cognitive impairment
and neurodegeneration, which support a pathophysiological connection between AD and
diabetes [2,5,11,67,68]. Despite this, the molecular mechanism underlying this relation
remains unclear. IDE has been proposed as an essential link between both pathologies
due to its role in insulin and extracellular A3 oligomers clearance [67,69]. For this reason,
IDE is a promising therapeutical target, and understanding the underlying mechanisms
of its regulation may be the key to the development of new therapies. Little is known
about the physiological regulation of IDE expression and its activity in the brain. Instead,
IDE regulation has been studied in hepatocytes because of its role in insulin modulation.
There is evidence that IDE activity increases through insulin exposure, while its mRNA
and protein levels remain unaltered in hepatocytes [15,70]. Interestingly, exogenous insulin
upregulates IDE protein levels in mouse primary hippocampal neurons [70]. In addition to
insulin regulation, there are several studies that demonstrate that IDE is regulated at the
transcriptional level [28].

It has been described that chelators, divalent cations, insulin-binding inhibitors could
block IDE function, and other biomolecules, such as non-esterified fatty acids, nucleotide
triphosphates [35], post-translational modification and protein interaction, can also modu-
late its activity [36]. Indeed, the discovery of the crystal structure of IDE opens the door to
novel pharmacological regulators of IDE functions [70]. Although miRNAs are abundantly
expressed in the brain, where they are involved in the modulation of multiple physiological
functions and pathological states and metabolic pathways involved in neurodegener-
ation [24,25,33,71], only a few studies have explored the potential post-transcriptional
regulation of IDE [28].

The first miRNA that has been described as a modulator of IDE expression was miR-7,
which is an important post-transcriptional regulator of brain insulin resistance and AD. We
described that miR-7, which is itself regulated by insulin, impairs insulin signaling and
could lead to insulin resistance in the brain through the post-transcriptional regulation
INSR, IRS-2. In addition to insulin signaling, miR-7 can also target genes directly involved
in AD, such as IDE, together with other neuroprotective pathways against AD, such as the
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LXR-ABCA1 axis involved in A3 metabolism [30]. In this work, we explored additional
miRNAs, such as miR-199a-3p and miR-31-a, in the regulation of IDE expression.

miR-31 is highly expressed in neural stem cells (NSCs), where it plays an essential
role in NCSs division and proliferation [72], and it was found to be required for termi-
nal astrocyte differentiation, development and maturation through the control of Lin28
levels [73]. Moreover, miR-31 improves the functional recovery after ischemia stroke
through the inhibition of neuron apoptosis [74]. Therefore, it is not surprising that miR-31
dysregulation can contribute to neurological dysfunctions. Indeed, several groups have
described altered levels of miR-31 in plasma from AD patients [40,75]. However, there
are no data available showing the changes of miR-31 levels in susceptible target tissues
in AD, such as the cortex or hippocampus, compared to healthy tissues. It would be of
interest to determine whether there is an inverse correlation between the expression of IDE
and miR-31, as was found in human brain AD for miR-7 [30]. On the other hand, miR-199
has also been implicated in crucial functions in the brain, such neurogenesis and neuronal
migration [71,76,77]. In particular, miR-199 levels increase during early brain development
and modulate extracellular signal-regulated kinase (ERK) [76]. Intriguingly, an in silico
analysis reported that AD patients’ brains present upregulated levels of miR-199 [78]. Song
et al., showed that miR-199 was involved in the development of AD by decreasing the
expression of neuritin, a protein involved in neural development and plasticity [77]. More-
over, miR-199a-3p can also impair the autophagic process, leading to the accumulation of
autophagosomes and accumulation A{3 [79]. These findings highlight the importance of
miR-31 and miR-199 in the correct development and function of the brain. However, to our
knowledge, this is the first report describing the modulation of IDE by these two miRNAs.
In the present study, we demonstrated, for the first time, that miR-199a-3p and miR-31-a
significantly decreased IDE levels (Figure 2). By using luciferase reporter vectors containing
the WT hIDE 3’UTR and mutated constructs, we verified that miR-31-a and miR-199a exert
inhibitory effects on IDE expression due to their direct binding to IDE mRNA, at least
partially (Figure 3). We also examined whether miR-31 target genes were implicated in
any pathway related to IDE biological functions, finding an enrichment in AD-presenile
pathways. Although the case of miR-199 showed less involvement in this pathway, Aranda
et al.,, demonstrated that miR-199 targets genes involved in intracellular trafficking, in
addition to Caveolin-1 [71,80], which could impair insulin signaling through dysregulation
of INSR, which is primarily located in the lipid raft. Consequently, it can be hypothesized
that miR-199 could indirectly modulate IDE transcriptional regulation by insulin. On the
other hand, our analysis showed that miR-31 could target other genes involved in the
insulin signaling pathway, such as IRS. Again, this could highlight an alternative way for
the regulation of IDE levels by miR-31. Considering the negative feedback mechanism by
which insulin activates the insulin receptor and upregulates IDE in a phosphoinositide
3-kinase (PI3K)-dependent way [14], miR-31 could alter this pathway by targeting IRS,
an PI3K upstream molecule, and consequently modify IDE levels. More experiments are
needed to better characterize the potential underlying mechanisms that could allow miR-31
and miR-199 to post-transcriptionally regulate IDE.

In addition to miRNAs, we aimed to explore the possible post-transcriptional regula-
tion of IDE by RBPs. As shown, IDE has a relatively long 3'UTR, which makes it highly
susceptible to modification at the post-transcriptional level. This is also the case for other
targets involved in metabolism and AD, such as ABCA1, whose post-transcriptional regu-
lation by miRNAs and RBPs has been extensively explored [80-84]. Firstly, we assessed
a prediction analysis of all the RBPs that contained at least one consensus site along the
hIDE 3'UTR. From them, we selected those RBPs that showed more than 300 consensus
sites (Table 1). RALY and HuD attracted our attention because of their involvement in
metabolism and neurodegeneration [63-66]. However, in vitro analyses are needed to
confirm this prediction of direct binding of these RBPs to the hIDE 3'UTR or, alternatively,
by a competing mechanism with other post-transcriptional regulators. Indeed, several
examples in the literature have demonstrated the interplay between miRNAs and RBPs [33].
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Our data suggest a potential novel regulatory mechanism through miRNAs and RBPs that
could be exploited as a therapeutical target in vivo. Future studies will help decipher
the possible mechanisms underlying IDE regulation by these RBPs, which is even more
important considering that little is known regarding RBPs functions in the context of insulin
resistance in AD [33].

To summarize, a better understanding of IDE regulation would lead to therapeutical
options for treating metabolic pathologies and AD. Here, we show, for the first time, that, in
addition to miR-7, several other miRNAs can alter IDE expression. On the other hand, mild,
post-transcriptional regulation of IDE expression cannot be dismissed, since it represents
one of the most pursued therapeutical targets against AD and represents a key common
element linking insulin resistance and AD.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11162538/s1, Figure S1: Human IDE 3’ UTR sequence contains
target sites for miR-125-5p and miR-490-5p.
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