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Vertical root segregation theory
put to the test

Plant roots are an important yet challenging study subject. We are
all aware that roots represent a significant fraction of a plant’s
vegetative body. Furthermore, though not all plant species have
roots, every plant biologist also knows that roots are essential for
the survival of the majority of plants. Indeed, for most plants,
roots are the first entry point of water in to the plant’s vascular
system; roots are responsible for gathering > 15 mineral nutrients
essential for metabolism; roots mediate microbial mutualisms that
are key to gathering some of the most limiting resources; roots
interact with myriad pathogens and herbivores in the soil that can
reduce survival and reproduction; and competition below ground
can dramatically reduce plant growth and reproduction (De Deyn
& Van Der Putten, 2005). The problem with studying roots is
that they are often buried under opaque soil, and the fine roots of
terrestrial plants can be visually indistinguishable, especially
within closely related plant functional types. These logistical
constraints mean that, even if one chooses to study species-specific
characteristics of roots, those studies will likely be: confined to
containers, where the researcher can more easily sample roots at
the end of an experiment; and confined to individual plants
growing alone, where the researcher can easily assign species
identity to the roots at the end of the experiment. The advent of
molecular tools in the late 1990s provided the ability to identify
the roots of plants in a soil sample, meaning that the logistical
barrier to studying species-specific characteristics of root ecology
in the field was eliminated. These molecular methods rely on
either DNA sequencing, different forms of fragment length
polymorphisms, or species-specific primers. Increasingly, quanti-
tative polymerase chain reaction (qPCR) analysis can also be used
to estimate abundance as well as identify species in a soil sample
(Mommer et al., 2011). While these tools have only become
cheaper and more accessible since the 1990s, insight into basic
questions about species-specific plastic root responses has been
sporadic, such studies are still largely confined to containers, and
the enormous potential of these molecular tools has remained
unearthed. In this issue of New Phytologist, Herben et al. (2022;
pp. 2223–2236) used qPCR in the field to identify the 12 most
abundant plant species in a mountain grassland community to
estimate root system depth and shape. Their work examines long-
held hypotheses about how roots of competing species might
distribute themselves in soil layers, hypotheses that have been
almost impossible to test without molecular tools for root
identification.

Vertical root segregation: an old hypothesis that was
hard to test

The idea that the roots of different speciesmight segregate by depth
is one of the oldest hypotheses for a mechanism that might explain
plant species coexistence in diverse communities like grasslands
(Parrish & Bazzaz, 1976). The logic is simple: if plant species
distribute their root biomass differently with depth, this could
minimize interspecific- relative to intraspecific-competition and
promote coexistence via negative frequency dependence
(Chesson, 2000). Unfortunately, before the advent of molecular
tools for the identification of roots, this hypothesis was practically
untestable in the field except by excavation, or in ecosystems where
plants were rare and widely spaced, such as in deserts (Schenk
et al., 1999). Presence–absence data from molecular root identifi-
cation has shown that most species are present at most depths
(Frank et al., 2010), but the segregation hypothesis is implicitly
about biomass distributions, and thus a stronger test requires
estimates of root biomass. Furthermore, in the decades since the
root segregation hypothesis was posed, an active question in the
literature has emerged: is vertical segregation a fixed trait, or does it
emerge from plasticity in root growth placement?

‘The molecular tools for species-level root identification are

fully developed, and it is time that we take studies of species-

specific differences in root plasticity into the field and test

them where they are most biologically relevant.’

Nutrient foraging: a role for plasticity in vertical
segregation?

A well-known concept in root biology is the idea that plants
proliferate roots into nutrient-rich patches (Cahill Jr &
McNickle, 2011). Again, the logic is simple and intuitive: if you
were a plant, and if nutrients are concentrated in a small patch of
soil, where would you put your roots? You would preferentially put
them into the nutrient-rich soil. Hundreds of plant species have
been assayed for this ability, and nearly all have some ability to
preferentially place roots into nutrient-rich soil (Cahill Jr &
McNickle, 2011). At the same time, it is well known that there is
usually a declining gradient of nutrients through the soil profile,
which provides the basis for the idea that vertical root segregation
might also have a plastic component. Indeed, studies in containers
have shown nutrient foraging precision and soil nutrient hetero-
geneitymay have a role in the vertical distribution of roots, and thatThis article is a Commentary on Herben et al. (2022), 235: 2223–2236.
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competitors plastically alter root placement by depth (Mommer
et al., 2010; Padilla et al., 2013). However, in these containers,
diversity and stem density are generally much lower than what is
observed in the field.

A slight detour into eco-evolutionary theory

It is often useful to link hypotheses to formalized theory. Indeed,
theory for how evolution shapes niche partitioning under compe-
tition iswell characterized for bothfixed andplastic traits. By plastic
trait, I simply mean that plants somehow assess and respond to an
external cue by adjusting some aspect of their growth, physiology,
allocation, gene expression, biochemistry or any other biological
trait.However,models give slightly different answers depending on
whether the trait is fixed or plastic, andwhether the taxa are animals
or plants. First, for fixed traits (e.g. a fixed blueprint for rooting
depth) there is substantial theoretical evidence that natural
selection can produce diverse communities where a component
of niche space (e.g. soil depth) is partitioned among species
(Cressman et al., 2017). Thus, if one envisions rooting depth as a
fixed blueprint, then eco-evolutionary theory can both explain and
predict the evolution of this trait under negative frequency-
dependent selection. Second, for plastic traits (e.g. confront a
competitor or avoid a competitor) the answer depends on whether
the organisms are mobile or not. For example, there is substantial
evidence that animals will sometimes confront competitors and
sometimes avoid competition (Maynard Smith & Price, 1973).
But animals have a ‘superpower’ that plants lack when it comes to
avoiding conflict: most animals can choose to just walk away. Since
plants are sessile, except in low density containers, it is essentially
impossible to avoid competition in nature. Thus, eco-evolutionary
models that envision root placement as a plastic trait universally
find that confronting competitors is predicted to be more
evolutionarily stable, and that avoiding competition through
plastic root growth is rarely the best strategy (O’Brien et al., 2007;
Herben & Novoplansky, 2010; Smyeka & Herben, 2017; Cabal
et al., 2020). If one envisions rooting depth as a plastic growth
response, eco-evolutionary theory has trouble explaining how such
a behaviour could evolve. Of course, the true utility of hypotheses
connected to formal theory emerges not from predictions but from
experimental tests that seek to falsify these predictions.

Vertical segregation theory put to the test

The article by Herben et al. (2022) published in this issue of New
Phytologist explicitly examines the question of fixed compared
with plastic vertical root segregation in natural field conditions.
They tookmultiple cores from the field fromwithin a plot, divided
thembydepth, andusedqPCR to estimate the abundance of species
by depth. They then compared the belowground species distribu-
tion with the aboveground stem distribution to arrive at hypoth-
esized root system shapes. Their two key findings were that the
rooting depth in the glasshouse containers predicted the rooting
depth in the field, but that the highly plastic proliferation of roots
into nutrient-rich patches in the glasshouse containers did not
predict proliferation of roots into nutrient-rich zones in the field.

They concluded that root placement in the field was more like a
species-specific fixed architectural blueprint, and that there was a
limited role for plasticity in a multi-species community to shape
vertical segregation. Though their results are from just 12 species in
one community, they represent the first test of the fixed compared
withplastic root segregationhypotheses in thefield.Moredata from
diverse species and communities will be needed to know if this is a
general pattern.

The difference between container results and field results
highlights the need to move beyond the status quo of container-
based studies of roots, and to begin to tap molecular tools for root
identification as a new standard in belowground plant ecology. The
study by Herben et al. (2022) sets a new standard for belowground
plant ecology and the study of both root segregation and foraging
precision. The molecular tools for species-level root identification
are fully developed, and it is time that we take studies of species-
specific differences in root plasticity into the field and test them
where they are most biologically relevant.
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