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An energy costly architecture of neuromodulators for
human brain evolution and cognition
Gabriel Castrillon1,2,3, Samira Epp1,4, Antonia Bose1,4, Laura Fraticelli1,4, André Hechler1,4,
Roman Belenya1,4, Andreas Ranft5, Igor Yakushev6, Lukas Utz1, Lalith Sundar7,
Josef P Rauschecker8,9, Christine Preibisch1,10, Katarzyna Kurcyus1, Valentin Riedl1,3*

In comparison to other species, the human brain exhibits one of the highest energy demands relative to body
metabolism. It remains unclear whether this heightened energy demand uniformly supports an enlarged brain
or if specific signalingmechanisms necessitate greater energy. We hypothesized that the regional distribution of
energy demands will reveal signaling strategies that have contributed to human cognitive development. We
measured the energy distribution within the brain functional connectome using multimodal brain imaging
and found that signaling pathways in evolutionarily expanded regions have up to 67% higher energetic costs
than those in sensory-motor regions. Additionally, histology, transcriptomic data, and molecular imaging inde-
pendently reveal an up-regulation of signaling at G-protein-coupled receptors in energy-demanding regions.
Our findings indicate that neuromodulator activity is predominantly involved in cognitive functions, such as
reading or memory processing. This study suggests that an up-regulation of neuromodulator activity, alongside
increased brain size, is a crucial aspect of human brain evolution.
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INTRODUCTION
Over 400 million years, the brain structure of various species has
evolved according to similar organizational principles (1, 2).
Neurons, acting as the local signaling units, form a dense connec-
tome with widespread signaling pathways through their synapses.
Nonetheless, when compared to humans, certain mammals
exhibit larger brain sizes (e.g., the Indian elephant), higher brain-
to-body mass ratios (e.g., the mouse), or a greater number of
neurons (e.g., the long-finned pilot whale) (3–8). This suggests
that brain structure scaling is not the only factor that has contrib-
uted to the emergence of human cognition (6, 9–13).

Here, our focus is on exploring the metabolic characteristics of
the brain connectome. The brain depends on a constant supply of
energy substrates and, in the case of humans, ranks among the
organs with the highest energy demands (14–18). In comparison
to other species, the human brain exhibits one of the highest
energy demands relative to body metabolism (19). How does met-
abolic energy distribute across the brain? The fundamental design
of neurons has been conserved throughout evolution, with the sig-
naling costs of individual cells being comparable across different
mammals (20–26). On a systems level, the human brain has the

expected quantity of neurons and nonneuronal cells for a primate
brain of its size (27). Furthermore, it maintains a similar distribu-
tion of neurons throughout its cerebral cortex as observed in other
species (4). As a result, we hypothesized that regional energy
demands will vary based on the degree of signaling within the
brain connectome.

In addition to the degree of neuronal signaling, researchers
suggest that neuromodulation plays a crucial role in adaptive behav-
ior and cognition in humans (28, 29). Topological analysis of the
brain connectome even suggests a trade-off in energetic costs
between signaling efficiency and modulation (30). Although our
knowledge of the impact of neuromodulation on human evolution
is still evolving, receptor autoradiography data from human donor
brains reveal substantial variations in the distribution of neuromo-
dulator receptors across the cortex (31). Comparative studies of the
brain metabolome further demonstrate substantial differences in
metabolites related to energy metabolism and synaptic modulation
between the human brain and closely related primate species, with a
notable regional variability (6). In summary, metabolomics and re-
ceptor data indicate regional heterogeneity in neuromodulation and
suggest a potential link to energy metabolism. However, it remains
unknown whether energy metabolism varies across the human con-
nectome and scales with the presence of certain signaling
mechanisms.

RESULTS
We quantified the energetic costs of signaling by examining the cor-
relation between a voxel’s glucose metabolism and its overall func-
tional connectivity across the cortex. Healthy subjects were scanned
on an integrated positron emission tomography (PET)/magnetic
resonance imaging (MRI) scanner, allowing us to simultaneously
measure the cerebral metabolic rate of glucose (CMRglc) and the
cumulative level of synchronized signaling among approximately
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12.000 cortical voxels, i.e., the degree of functional connectivi-
ty (dFC).

We identified a linear relationship between CMRglc and dFC in
each individual brain of three different cohorts that were measured
at two different institutions. We first analyzed data from an explor-
atory cohort (TUM.exp1 and TUM.exp2, age: 43 ± 7 years, four
females, N = 9, measured twice) and replicated our results in
three other datasets from two cohorts (TUM.rep cohort, age: 27 ±
5 years, six females, N = 11, measured once; VIE.rep1 and VIE.rep2
cohort, age: 27 ± 7 years, five females,N = 10, measured twice) using
the identical analysis pipeline (Fig. 1B; all Psmash < 0.024, correcting
for spatial autocorrelation with permutation testing, see Materials
and Methods). Figure 1D shows exemplary plots of individual
subject data, while the results of each subject and imaging session
can be found in fig. S1 (Pearson’s r: mean = 0.42, SD = 0.08; all P <
0.1 × 10−24, from individual correlation analyses, N = 47; Psmash >
0.05 for N = 8 datasets).

There was no significant difference in Pearson’s r between
cohorts {Pearson’s r range = [0.17, 0.57]; mean = 0.42; SD = 0.08;
F1,28 = 2.41, P = 0.13, one-way analysis of variance (ANOVA)}.
Please note that across cohorts and scanners, we identified a
similar increase in energy demand per connection (slope range =
1.12 to 3.79; mean = 2.42; SD = 0.69; F1,28 = 0.07, P = 0.79, one-
way ANOVA), but varying baseline CMRglc (y intercept). Further-
more, the linear increase in energetic costs is independent of sex and
age (Pearson’s r female /male: mean = 0.44 /0.41, SD = 0.10 /0.05;
F1,28 = 0.82, P = 0.37, one-way ANOVA; Pearson’s r age = 0.07; P =
0.70; CI: [−0.30, 0.42]; N = 30 subjects). We also found no effect of
gray matter partial volume on the energy-connectivity scaling using
voxel-based morphometry as an explanatory variable in the linear
model (F2,330 = 50.05, P = 0.13, one-way ANOVA). Finally, we tested
the stability of the energy-connectivity scaling for different connec-
tivity measures. Results show a consistent scaling of energetic costs
of signaling with both dynamic functional and structural connectiv-
ity (fig. S2). We deposited scripts and data in online repositories,
and one can replicate individual steps of the analysis in an online
jupyter-notebook (see Data and materials availability).

Next, we identified regions with deviating energetic costs of sig-
naling calculated as the residual CMRglc per dFC (Fig. 2A, top row).
Across all cohorts and individual brains, we identified a consistent
cortical distribution of energetic costs for signaling. The brain map
in Fig. 2A shows regions of higher (red) and lower (blue) energetic
costs averaged across subjects of the cohort TUM.exp1. We per-
formed identical analyses on the remaining four datasets and
found a consistent cortical distribution of metabolic energy in
each of the cohorts, with higher energetic costs of signaling in
frontal and lower costs in sensory cortices [Fig. 2B; significant
spatial similarity between the pattern of each cohort and that of
TUM.exp1, all Psmash < 0.0001, voxel-wise permutation test (two-
sided) preserving spatial autocorrelation, 1000 permutations].
Figure 2C shows the average map of energetic costs of signaling
across all subjects of all cohorts. Please note that residual CMRglc
varies by up to ± 25% across the connectome compared to an
average metabolic rate of CMRglc = 31.4 μmol/(min � 100 g).

We then investigated whether energetic costs of signaling relate
to certain functional domains of the cortex. Figure 2D shows the
result of a group analysis identifying cortical regions with signifi-
cant deviations in CMRglc against the null hypothesis of the
linear model fit [P < 0.01, voxel-wise nonparametric permutation

t test (two-sided) with 5000 permutations, corrected for multiple
comparisons using the family-wise error rate]. Results show that
28.7% of all regions have significantly lower (blue) and 24.1% of
regions have significantly higher (red) energetic costs than predict-
ed by the model. On the subject level, we identified a set of 76
regions (23% of all regions) with diverging energetic costs in
>95% of all datasets (colored ROIs in Fig. 2E; dots represent
single subjects) and a core set of 23 regions (7% of all functional
regions) with deviating energetic costs in each subject of all datasets.
The color scheme in Fig. 2F indicates the affiliation of cost-deviating
regions to one of six established functional networks (see Materials
andMethods). The pie charts show that regions with lower energet-
ic costs cluster in sensory-motor networks (violet, blue, and green
sum up to 75%), while regions with higher energetic costs are
mainly located in fronto-parietal networks (red and yellow sum
up to 78%).

In summary, we identify a consistent pattern of varying energetic
costs of signaling pathways in individual subject data. In particular,
the energy demand for signaling in fronto-parietal networks is up to
67% higher than in sensory-motor networks.

Given the higher energetic costs of certain signaling pathways,
we next investigated whether the human brain has an overall
higher glucose metabolism as compared to other species. The bio-
logical scaling of metabolism in relation to the size or volume of an
organ is called metabolic allometry. We replicated the scaling expo-
nent of −0.14 (18) for the log-log relationship between brain
CMRglc and brain volume across 10 mammals [least-square fit,
CMRglc = 0.814 � brain volume−0.14; R2 = 0.81; P = 0.0004; N =
10. The average glucose metabolism in our human cohorts
(CMRglc = 31.35 μmol/min � 100 g)] lies within the confidence in-
terval of the least-square fit (Fig. 3A; CI: [−0.19, −0.01]). This
means that the energy metabolism of the entire human brain is as
high as predicted for its size by allometric scaling. Is there a region-
ally varying distribution of energetic costs? Using a morphometric
atlas that describes the expansion of homologous brain regions from
chimpanzees to humans (see Materials and Methods), we found a
positive linear relationship between the energetic costs of signaling
and brain expansion [Fig. 3B; r = 0.30, P < 0.0001; Psmash = 0.047, CI:
[0.49, 0.89]; N = 335 regions from Human Connectome Project -
Multi-Modal Parcellation (HCP-MMP) parcellation], which re-
mained after removing outlier values (±3 median absolute devia-
tions; r = 0.28, P < 0.0001; Psmash = 0.053, CI: [0.51, 0.98]; N =
335 regions from MMP parcellation). Please note that the x axis in-
dicates the extent of expansion during evolution and not the actual
size of a region. In summary, the cortical metabolism of the entire
human brain follows allometric scaling. However, regions that ex-
panded most during human evolution have higher metabolic
demands per gram tissue than the rest of the brain.

In a next step, we studied the microstructure of brain regions
with high energetic costs of signaling by means of the BigBrain
Atlas (see Materials and Methods). This is a histological atlas of
the cellular distribution across 50 cortical layers of a human
donor brain. For each region, the staining intensity of brain cells
is plotted along the cortical depth and transformed into a density
distribution. The density skewness indicates the relative distribution
of cells along the cortical depth (left skewness ~ higher cell density
in lower layers). We then calculated the correlation between ener-
getic costs of signaling and the cell density distribution across cor-
tical regions. Results show a significant negative relationship
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Fig. 1. Glucose metabolism scales linearly with the degree of functional connectivity in individual brains. (A) Illustration of the cortical distribution of energy
metabolism and brain-wide functional connectivity for four exemplary regions (r). The cerebral metabolic rate of glucose (CMRglc) is derived from PET and calculated per
voxel or average per region r. The degree of functional connectivity (dFC) is calculated as the sum of connection weights with all other voxels or regions across the cortex;
weights are proportional to the level of synchronized fMRI signals between two voxels or regions. The table includes only exemplary values. (B) We analyzed the voxel-
wise relationship of CMRglc and dFC in the individual brain space of each subject from an exploratory cohort measured twice at our institution (TUM.exp1/2: light/dark
orange), from a younger replication cohortmeasured again at our institution (TUM.rep: violet), and from a second replication cohort of healthy subjects that were scanned
twice at a different institution (VIE.rep1/2: light/dark green). (C) For group statistics, brain data were transformed into a standard brain space (MNI, see Materials and
Methods) on either the level of voxels or averaged for functional regions of a standard parcellation atlas (top; MMP, see Materials and Methods). Significant Pearson’s
correlation between voxel-wise CMRglc and dFC in MNI space averaged across individuals from each of the five groups. The distribution of Pearson’s r values of each
individual dataset are summarized in violin plots (bottom). (D) Exemplary plots of significant Pearson’s correlation between voxel-wise CMRglc and dFC of individual
datasets. Regression plots of all subjects can be found in fig. S1.
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between energetic costs and the skewness towards upper layers
(Fig. 3C, right; r = −0.5, P < 0.0001, Psmash = 0.011, CI: [−5.29,
−3.81]; N = 335 MMP regions). This means that regions with
high energetic costs of signaling have a higher cell density in
lower cortical layers compared to regions with low energetic costs.

Given our results so far about the difference in macroscale and
microscale morphology, we hypothesized a unique molecular
profile associated with the distribution of energetic costs of signal-
ing. The Allen Human Brain Atlas (AHBA) provides transcriptomic
data sampled across the cortical surface and averaged across six
donor brains (see Materials and Methods). We projected the
AHBAmicroarray data onto our map of energetic costs of signaling
and performed pairwise correlations between regional costs and
each of the expression profiles of 8426 genes across cortical
regions. Results show that 617 gene expression profiles significantly
correlate with energetic costs of signaling across the human cortex
(Fig. 4A, left; P < 0.005, FDR-corrected for multiple comparisons).
We then investigate the putative function of the significantly corre-
lated genes using a gene ontology enrichment (GOE) analysis. The

analysis of “cellular components” revealed that regions with high
energetic costs of signaling are significantly enriched in genes
coding for the components “synapse,” “synapse part,” and “den-
drite,” i.e., cellular compartments that are involved in signal trans-
duction (Fig. 4A, middle; P < 0.02, FDR-corrected; table S1). The
analysis of “molecular functions” identified seven significantly en-
riched clusters, also predominantly related to signal transduction
(Fig. 4A, right; P < 0.05, FDR-corrected; table S2). Specifically, we
found gene annotations for the activity of receptors and transport-
ers involved in metabotropic, i.e., G protein–coupled, neuromodu-
lation, and voltage-gated signaling. Results were replicated using a
different GOE tool and database (see Materials and Methods, tables
S3 and S4). A summary of the molecular functions is depicted in the
stacked pie chart of Fig. 4B. This shows that 95% of genes that are
overexpressed in regions with high energetic costs are involved in
signal transduction (green), and mainly in metabotropic signaling
(pink, 40%). In other terms, the human brain spends excessive
energy on the long-lasting regulation of (fast) neurotransmission

Fig. 2. Regional distribution of energetic costs of signaling across the brain connectome. (A) Upper row: Scatterplot of dFC (x axis) and CMRglc (y axis) for a single
subject with corresponding distribution of residual CMRglc showing voxels with higher (red) and lower (blue) energy demand per dFC. Lower row: Brain map of average
energetic costs of signaling in cohort TUM.exp1. The scatterplot of fitted (x axis) versus residual (y axis) CMRglc across all subjects shows a random distribution, indicating
no unexplained structure in themodel (r = 0, p = 1, CI = [−0.03, 0.03]). (B) Significant spatial similarity between the distribution of energetic costs of signaling in TUM.exp1
and each of the four cohorts. (C) Voxel-wise scatter plot and region-wise brain surface of energetic costs of signaling averaged across the subjects of all cohorts. (D) Brain
surface showing regions significantly deviating, specifically with higher (red) and lower (blue) energetic costs of signaling. Pie chart summarizes the distribution of
regions with varying energetic costs. (E) Strip plot illustrates the region-wise (x axis) distribution of energetic costs of signaling for each subject of all cohorts (dots)
sorted from low-to-high median costs. Regions are colored if energetic costs deviate from the normalized cortex mean in >95% of all subjects. Color codes illustrate
the affiliation of regions to one of seven normative functional networks (seeMaterials andMethods). (F) Pie charts summarize the affiliation of regionswith lower (left) and
higher (right) energetic costs of signaling to any of the six normative brain networks projected on the brain surface.
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with (slow) neuromodulators such as serotonin, dopamine, or
noradrenaline.

Next, we replicated this finding about the genetic up-regulation
of neuromodulator activity with receptor imaging data. In a strong
collaborative approach, colleagues recently gathered PET imaging
data about the brain-wide activity of 19 unique receptors and trans-
porters from 28 different PET studies (see Materials and Methods).
This includes receptor-activity maps of the serotonergic (5HT1b,
5HT6, 5HT1a, 5HTT, 5HT2a, and 5HT4), dopaminergic (D1,
FDOPA, DAT, and D2), cholinergic (A4B2, VAChT, and M1), ad-
renergic (NAT), histaminergic (H3), cannabinoid (CB1), and
opioid (MU) system, in addition to three receptors of the glutama-
tergic (mGluR5 and NMDA) and GABA-ergic (GABAa-bz) system.
We entered all PET maps of ligand occupancy into a partial least-
squares regression (PLS) analysis to test the joint explanatory power
of neuromodulator activity for the spatial distribution of energetic
costs of signaling. The first component of the PLS analysis (brain
map in Fig. 4C) explains 86% of the cortical variance in energetic
costs (P = 0.0002 after 5000 randomizations). Specifically, 16 recep-
tors and transporters significantly contribute to the main latent var-
iable (bar plots in Fig. 4C). This means that the cortical distribution
of energetic costs of signaling is strongly related to the regional level
of neuromodulator activity.

We finally validated the consistency between transcriptomic and
PET imaging data for individual receptors. Three of the 617 over-
expressed genes from the AHBA specifically code for membrane re-
ceptors whose density was captured by unique PET ligands,
respectively (see “bold’ ligands in Fig. 4C; receptor/gene/PET
ligand combination listed here: opioid receptor MU/OPRM1/[11
C]-carfentanil; serotonergic receptor 5HT4/HTR4/[11 C]-
SB207145; cholinergic receptor alpha-4 beta-2/CHRNA4/[18F]-flu-
batine). This allowed us to specifically test the consistency between

gene expression levels and imaging-based activity for unique recep-
tors. For each of the three receptors, ligand activity confirmed the
level of gene expression with similar signs and slopes of regressions
across cortical regions (Fig. 4C, right; PET data: MU: r = 0.32, P <
0.0001, CI = [0.17, 0.46]; 5HT4: r = −0.05, P = 0.532, CI: [−0.21,
0.11]; A4B2: r = 0.41, P < 0.0001, CI: [0.26, 0.53]). Together, tran-
scriptomics and molecular imaging independently suggest a high
level of neuromodulator activity in energetically expensive regions
of the brain. In particular, our analyses point toward excessive
energy demands for long-lasting, G protein–coupled
neuromodulation.

So far, we have identified a high density of slow-acting neuromo-
dulator activity in evolutionarily most expanded cortex. In a final
step, we explored whether these regions are involved in higher cog-
nitive processing. This would support the notion of an expensive
signaling architecture being dedicated to human cognition. The
Neurosynth project is a meta-analytic database with statistical
maps aggregating voxel-wise activity for a wide range of cognitive
functions derived from thousands of neuroimaging studies (seeMa-
terials andMethods). We extracted the regional activity maps for 23
cognitive domains ranging from simple sensory processing to
complex cognition and evaluated the similarity between the chemo-
architecture map of Fig. 4C with each activity map. Results show
that regions with strong neuromodulator activity particularly con-
tribute to complex functions such as memory processing and
reading but are less prominent in activity patterns of sensory-
motor processing (Fig. 4D).

DISCUSSION
Using a unique imaging setup, we quantified the energetic costs of
signaling across the human brain. We identified an excessive

Fig. 3. Energetic costs of signaling relate to the evolution of brain morphology on the macro- and microscale. (A) Allometric scaling of brain CMRglc with volume
across 10 mammals including humans (external data, see Materials and Methods). Our data from gray matter (GM) fall within the confidence interval of the model fit
(orange dot). (B) Significant Pearson’s correlation between energetic costs of signaling and the degree of cortical expansion from nonhuman to human primates. (C)
Energetic costs of signaling correlate with cell density in infragranular layers. Histological slice of the BigBrain atlas (see Materials and Methods) showing the staining
intensity for cells in the gray matter (top). The distribution of staining intensity for cells between pial and white matter (WM) surfaces is shown for two exemplary regions
(violet and yellow), which is then translated into the skewness of staining intensity (bottom). The two regions are examples for high cell density in supragranular (yellow,
right tailed) and infragranular (violet, left tailed) layers. The brain surface shows the cortical distribution of layer predominance across the entire cortex. The scatterplot
reveals a significant negative Pearson’s correlation between energetic costs of signaling and cell density skewness, indicating highest energetic costs in regions with
highest cell density in infragranular layers.
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metabolic demand for the long-term regulation of neurotransmitter
signaling via neuromodulators. Neuromodulator activity is dense in
the evolutionarilymost expanded cortex and is particularly involved
in cognitive processing.

On a global level, we confirm that total cerebral energy metabo-
lism scales according to metabolic allometry (18, 32, 33). As with
metabolic allometries reported for other organs (19), the exponent
of −0.14 means that larger brains use proportionally less energy per

volume. It has been suggested that this is due to an energy-efficient
global signaling architecture in humans (2, 12, 20, 21, 30). We mea-
sured an averagemetabolic rate of 31.35 μmol glucose/min per 100 g
of gray matter tissue, which is the equivalent of around 12 cubes of
sugar (4 g per cube) that aremetabolized by an average-sized human
brain per day. On the regional level, however, we identified up to
50% variance in energetic costs for individual signaling pathways.
A recently published BrainEnergyAtlas models the energy budget

Fig. 4. Regional activity of neuromodulators relates to high energetic costs of signaling and complex cognition. (A) Significant Pearson’s correlations (dashed
lines) between energetic costs and each of 8.426 brain specific gene expression values across 170 cortical regions. Gene ontology enrichment analysis identifies cellular
components (middle) and molecular functions (right) that are significantly associated with correlated genes. (B) Hierarchical summary of the gene ontology enrichment
analysis from (A) stressing the involvement of genes coding for proteins involved in signal transduction (95%, green, inner pie), and particularly of G protein–coupled,
metabotropic, neuromodulation (40%, pink, external pie), and ionotropic signaling (26%, orange, external pie). (C) Multi-dimensional PLS analysis reveals that 86% of the
cortical distribution of energetic costs (first latent variable, PLS 1) is explained by the linear combination of neurochemical signaling as defined by receptor-PET imaging
of 19 neuromodulators and neurotransmitters (metabotropic: pink, ionotropic: orange, transporters: gray). Error bars represent 95% confidence intervals using bootstrap
resampling (5000 permutations). (Right) For three receptors, both transcriptomic [colored bars in (A)] and imaging [“bold’ ligands in (C)] data are available, which allows
validating the activity of unique receptors with gene expression data. For the ionotropic (A4B2) and the two metabotropic (MU, 5HT4) receptors, the separate regression
analyses between energetic costs and both transcriptomic and imaging data yield similar directions and slopes (colored regressions: PET imaging, gray regressions:
transcriptomic data), supporting the results from imaging with transcriptomic data. The x axes correspond to z-scores of either the receptor density (colored) or the
gene expression (gray). (D) Joyplot shows histograms of the voxel-wise first latent score between energetic costs and chemoarchitecture profiles (z-score > 2.3) for each of
23 cognitive domains (y axis) from themeta-analytic Neurosynth database (seeMaterials andMethods). Color-coding illustrates the increasing rank (blue > red) of average
energetic costs from simple sensory processing to higher cognitive functions.
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of all neuropil activity and also found unequal regional distributions
(34). In particular, we noticed higher energy metabolism in evolu-
tionarily most expanded structures. However, it is important to note
that any differences between the human and chimpanzee brain data
cannot be attributed to a single ancestor but rather reflect an inter-
action of changes on both lineages. Still, our finding about regional
variance in metabolism corresponds with findings from transcrip-
tomic and metabolomic analyses of post-mortem brains from
humans and primates, which suggest metabolic up-regulation in
the frontal cortices (6, 9, 11, 35).

What is the mechanism behind the excessive energy demands?
Using transcriptomic and receptor imaging data, we find that exces-
sive energy metabolism in evolutionarily expanded cortex is related
to neuronal signaling and particularly to metabotropic neuromodu-
lator activity. These neuromodulators, such as serotonin, dopamine,
and noradrenaline, act as general modulators of brain-wide circuits
(36, 37). The G protein–mediated regulation of fast neurotransmit-
ter signaling creates a long-lasting and widespread effect on infor-
mation processing. This effect is more about setting the tone of
general excitability than transferring individual bits of information.

The greater energy demand of slow-acting neuromodulators
compared to fast neurotransmitter signaling is due to a sequence
of biochemical steps that include second messengers and protein
transformations (38). This confirms our observation of excessive
energy demand for regions with a large number of neuromodula-
tors on top of a general linear scaling of energy demand with the
degree of signaling pathways. Regions with an up-regulation of me-
tabotropic signaling also have a distinct cellular and genetic compo-
sition. Our analysis of histological data indicates a higher cell
density in lower cortical layers, while transcriptomic data show an
enrichment of genes associated with signal integration at dendrites
and synapses. This is supported by recent autoradiography data that
link information integration to cellular components, particularly
those in lower cortical layers (31).

Recent research has suggested that the energetic costs of signal-
ing increase during long-term processes such as memory formation
(39). Our human data indicate that brain regions with high energet-
ic costs of metabotropic signaling play an important role in cogni-
tive processing over longer timescales, including memory
processing, cognitive inhibition, and reading. Additionally, neuro-
modulators have been linked to cognitive dysfunctions associated
with major mental disorders (40). Unfortunately, the efficacy of
current psychoactive drugs in regulating neuromodulators is
limited, and further research is needed to better understand the dys-
function of metabotropic signaling in those patients.

Our findings suggest that the evolution of human cognition may
have emerged not only from an overall larger brain, but particularly
by the development of slow-acting neuromodulator circuits. It
seems that the benefits of increased cortical energy metabolism, to-
gether with an increased supply of energy substrates (15–17), have
outweighed its risks. Yet, our knowledge of how the interaction of
slow-acting neuromodulators with fast information processing con-
tributes to human cognition is still limited.

MATERIALS AND METHODS
The data processing was performed using the Python packages
Pandas (41) and Numpy (42), the neuroimaging data were
handled using Nilearn (43) and Nibabel (44), the plotting was

performed with Matplotlib (45), Seaborn (46), and Joyplot (47),
whereas the brain surface representations were printed using
WBplot (48).

Participants
Forty-seven datasets from 30 healthy participants from three inde-
pendent cohorts were included in the study. Three additionally
available datasets had to be excluded, two due to motion artifacts
with framewise displacement >0.25 mm (49) and one due to incom-
plete data. All participants were right-handed and did not report
any history of psychiatric conditions. Participants were informed
about the objectives and potential risks of the study, and signed a
written consent inform. The study was approved by the local insti-
tutional review board of the Hospital Rechts der Isar and was con-
ducted in accordance with the Declaration of Helsinki. Three
cohorts of participants were analyzed, two of them were recruited
from our site and another from an external site: (i) a within-subject
exploration sample (TUM.exp) of 9 participants (mean age = 43
years, SD = 7 years; four females); (ii) a prospective replication
sample (TUM.rep) of 11 participants (mean age = 27 years, SD =
5 years; six females); and (iii) an external within-subject replication
sample (VIE.rep) (50) of 10 participants (mean age = 27 years, SD =
7 years; five females). Two participants from the VIE.rep cohort had
only one session.

Data acquisition
At TUM, we simultaneously measured FDG-PET activity and blood
oxygen level–dependent (BOLD)–functional magnetic resonance
imaging (fMRI) signals during resting conditions while the partic-
ipants kept their eyes open, except for the second imaging session of
TUM.exp., where the participants had their eyes closed. Data were
acquired on an integrated PET/MR (3 T) Siemens Biograph mMR
scanner (Siemens, Erlangen, Germany) and used a 12-channel
phase-array head coil for the MRI acquisition. The PET data were
collected in list-mode format with an average intravenous bolus in-
jection of 184 MBq (SD = 12 MBq) of [18F]FDG. In parallel to the
PET measurement, automatic arterial blood samples were taken
from the radial artery every second to measure blood radioactivity
using a Twilite blood sampler (Swisstrace, Zurich, Switzerland).

The fMRI data were acquired during a 10-min time interval
using a single-shot echo planar imaging sequence (300 volumes;
35 slices; repetition time, TR = 2000 ms; echo time, TE = 30 ms;
flip angle, FA = 90°; field of view, FOV = 192 × 192 mm2; matrix
size = 64 × 64; voxel size = 3 × 3 × 3.6 mm3). Diffusion-weighted
images were acquired using a single-shot echo planar imaging se-
quence (60 slices; 30 noncolinear gradient directions; b-value =
800 s/mm2 and one b = 0 s/mm2 image; TR = 10,800 ms, TE = 82
ms; FA = 90°; FOV = 260 × 264 mm2; matrix size = 130 × 132; voxel
size = 2 × 2 × 2 mm3). Anatomical images were based on a T1-
weighted 3D-MPRAGE sequence (256 slices; TR = 2300 ms; TE =
2.98 ms; FA = 9°; FOV = 256 × 240 mm2; matrix size = 256 × 240;
voxel size = 1 × 1 × 1 mm3).

The acquisition and formats of data from the VIE site were
similar to the TUM site and described elsewhere (50). The main dif-
ferences were a higher dose and variability of injected [18F]FDG
(mean dose = 356 MBq, SD = 66 MBq), manual measurement of
the blood radioactivity for the arterial input function, and a slightly
different fMRI protocol with acquisition time (~7 min), TR (2400
ms), and voxel size (2 × 2 × 3.7 mm3).
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Data processing
The following pre- and postprocessing pipelines for MR and PET
data were established on the TUM.exp-dataset and applied
without further modification to the TUM.rep- and VIE.rep-data-
sets, except for reasons of different data structure between TUM
and VIE data, which is explicitly stated below. All processing steps
and calculation of parameter maps were performed in native space
of each modality and only transformed for group analyses into a
standard brain space of the Montreal Neurological Institute
MNI152NLin6ASym with 3-mm voxel resolution. For the region-
of-interest (ROI) analyses, we used the HCP-MMP1.0 parcellation
scheme, a population-based cortical parcellation with 180 ROIs per
hemisphere from the Human Connectome Project dataset (51) and
calculated the median value of the metric of interest per ROI. Fur-
thermore, each ROI was labeled according to its location within one
of seven normative brain functional networks (52).
Magnetic resonance imaging
The preprocessing of the structural and fMRI data was performed
using the Configurable Pipeline for the Analysis of Connectomes
(53) (C-PAC, version 1.4.0) following a standard protocol:

- The anatomical images were skull-stripped, segmented into
three tissue types [cerebrospinal fluid (CSF), white matter (WM),
and gray matter (GM)] and registered to the MNI152NLin6ASym
template provided by FSL (54). The individual gray matter masks
were generated by keeping the voxels with a probability of over
25% in the gray matter probability maps and a temporal signal-
to-noise ratio (tSNR) over the 15 percentiles of all tSNR values in
the functional image. The gray matter group masks for every
cohort were derived by averaging the gray matter probability
maps across subjects and keeping the voxels with a gray matter
probability over 25%. For the joint analysis, the gray matter group
masks of every cohort were multiplied with each other. The voxel-
based morphometry (VBM) analysis was performed using FSL-
VBM (55). The modulated gray matter images were smoothed
with an isotropic Gaussian kernel [full width at half maximum
(FWHM) = 5 mm].

- Functional images were slice-time–corrected, realigned,
motion-corrected, skull-stripped, and registered to the anatomical
images. Thereafter, the global mean intensity was normalized across
the fMRI run, the nuisance signals were regressed-out (scanner
drift, physiological noise, and head motion signals), and the time
series were band-pass–filtered (0.01–0.1 Hz). Next, the dFC was cal-
culated based on the voxel-wise Pearson’s correlation (P < 0.001 sig-
nificance threshold) of the preprocessed time series of each voxel
within the individual gray matter mask using the function 3dDe-
greeCentrality from AFNI (56). Finally, the dFC map was spatially
smoothed (Gaussian filter, FWHM = 6 mm) and registered to the
MNI152NLin6ASym 3-mm template through the anatomical
image. The regression of the nuisance signals modeled the
scanner drift using quadratic and linear detrending, whereas the
physiological noise was modeled using the five principal compo-
nents with the highest variance from the decomposition of white
matter and CSF voxel time series (CompCor) (57).

- The dynamic functional connectivity was calculated as the SD
over time of the dFC generated from sliding windows time series
(58) (width = 40 s in steps of 20 s). The dynamic dFC map was spa-
tially smoothed (Gaussian filter, FWHM = 6 mm) and registered to
the MNI152NLin6ASym 3-mm template through the anatomi-
cal image.

- Diffusion-weighted images preprocessing and probabilistic
tractography were performed using MRtrix3 (version 3.0.0) (59),
FSL (60), and Advanced Normalization Tools (ANTs) (61), follow-
ing the anatomically constrained tractography pipeline (62). The
preprocessing included denoising, eddy-current correction,
motion correction (using FSL topup), and bias-field correction
(using ANTs). The structural connectivity matrices were derived
from the preprocessed images using single-tissue constrained
spherical deconvolution probabilistic tractography (63). Addition-
ally, a spherical deconvolution informed filtering was applied to the
tractograms, constrained by the anatomical tissue masks and the
HCP-MMP parcellation. Finally, the strength of the structural con-
nectivity was derived from the communicability between each pair
of brain regions (64), capturing the communication capacity of
direct and indirect connections.
Positron emission tomography
For the TUM cohorts, the first 45 min of the PET acquisition was
reconstructed offline using the NiftyPET library (65) based on the
ordered subsets expectation maximization (OSEM) algorithm with
14 subsets and four iterations, and divided into 33 dynamic frames:
10 × 12 s, 8 × 30 s, 8 × 60 s, 2 × 180 s, and 5 × 300 s. The attenuation-
correction was based on the T1-derived pseudo-CT images (66). For
the VIE cohort, the first 40 min of the PET acquisition was recon-
structed offline using the Siemens e7 reconstruction tool based on
the OSEM algorithm with 21 subsets and three iterations, and
divided into 30 dynamic frames: 24 × 5 s, 1 × 60 s, 1 × 120 s, 1 ×
300 s, 1 × 600 s, and 2 × 1200 s after injection. The attenuation-cor-
rection was based on low-dose CT images from the partici-
pants (50).

All reconstructed PET images were motion-corrected and spa-
tially smoothed (Gaussian filter, FWHM = 6 mm). The net
uptake rate constant (Ki) was calculated using the Patlak plot
model (67) based on the last five frames of the preprocessed PET
images (frames between 20 to 45 min) and the arterial input func-
tion derived from the preprocessed arterial blood samples. The ce-
rebral metabolic rate of glucose (CMRglc) was calculated by
multiplying the Ki map with the concentration of glucose in
plasma of every participant, divided by a lumped constant of 0.65
(68). Finally, the CMRglc maps were partial volume corrected using
the GM,WM, and CSF masks derived from the T1 images using the
iterative Yang method (69) and registered to the MNI152NLin6A-
Sym 3-mm template through the anatomical image.
Arterial input function
For the TUM cohorts, the blood time-activity curves (TACs) were
preprocessed using the Turku PET Center command-line interface
library TPCCLIB (70) (version 0.7.5). First, the blood TACs were
converted to plasma TAC using the b2plasma function, based on
the reference FDG plasma/blood ratio function (71) over time
and the hematocrit value of each participant when measured; oth-
erwise, a reference value of 0.4/0.45 (female/male) was used (72).
For the VIE cohort, the whole blood samples were centrifuged to
measure the radioactivity in the plasma. For all cohorts, the
plasma TACs were modeled using a sum of exponential functions,
which was fitted to the middle of the reconstructed PET timeframes
to derive the arterial input function (AIF) (73). For four participants
from the TUM.exp. cohort without complete arterial sampling, the
AIF was generated based on a population-based input function
(PBIF) (74) derived from all the participants from the TUM.
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Population-based input function
The population-based AIF was calculated as the average AIF across
participants with arterial input sampling from our center (n = 16).
The individual AIF was then normalized by the expected FDG con-
centration immediately after injection Cp*(0) (Eq. 1) (75)

PBIFðtÞ ¼
1
n

Xn

i¼1

AIFðtÞ
Cp�i ð0Þ

ð1Þ

where Cp i*(0) is the initial plasma concentration of [18F]FDG,
defined as the expected concentration directly after tracer injection,
calculated by evaluating Eq. 2 at t = 0. Equation 2 models the plasma
concentration of tracer as an exponential function during the period
of intravascular and extravascular [18F]FDG equilibrium (76),
between 5 and 30 min after tracer injection (77).

Cp�ðtÞ ¼ Cp�ð0Þ � e� αt ð2Þ

α was derived by fitting Eq. 2 with the nonlinear least squares
optimization method from SciPy (78). For four participants of
TUM.exp., who did not have arterial sampling due to technical
errors, their individual AIFs (AIFiPBIF) were calculated based on
the population-based input function (Eq. 1), scaled by the expected
[18F]FDG concentration immediately after injection [Cp*(0)] (Eq.
3).

AIFiPBIFðtÞ ¼ Cp�ð0Þ � PBIFðtÞ ð3Þ

whereCp*(0) can be approximated as a function of the injected dose
(iD), and the participant body weight (W ) and height (H ), when
arterial sampling is not available (Eq. 4) (74, 75).

Cp�ð0Þ ¼
iD

c �Hh �Ww ð4Þ

where h, w, and c were derived by minimizing the coefficient of var-
iation of c CV ¼ S:D:ðcÞ

meanðcÞ

h i
across the participants with arterial input

sampling in our center, while varying independently the parameters
h and w in the ranges of 0 to 2 and 0 to 1 in Eq. 4, respectively (75).
Energetic costs of signaling
The relationship between brain energy metabolism (CMRglc) and
the degree of brain-wide functional connectivity (dFC) was
modeled using a linear regression model (Eq. 5) across cortical
voxels within the GM mask.

CMRglc ¼ dFC � βþ ε ð5Þ

The energetic costs were defined as the residual after fitting the
model in Eq. 5, representing the variation in CMRglc not explained
by dFC. Positive energetic costs, located above the regression line,
represent areas with a higher energy demand than expected for a
given dFC, whereas negative energetic costs, located below the re-
gression line, represent areas with a lower energy demand than ex-
pected for a given dFC.

External data sources
Here, we integrated our group imaging data with seven different ex-
ternal datasets about brain morphology, histology, transcriptomic
data, molecular imaging, and comparative brain data. Each of the
external datasets was provided in their own regional parcellation
schemes and first converted to the HCP-MMP1.0 parcellation

using the parcellation conversion tools provided by the Enigma-
toolbox (79).

1. Allometric scaling between total brain metabolism and brain
volume across species (18). This dataset includes the CMRglc of un-
anesthetized adult animals during resting conditions from 10 differ-
ent species, including humans, compiled from previous studies.

2. Cortical expansion from nonhuman primates to humans (35).
This dataset provides a brain map of the cortical expansion from
chimpanzees (Pan troglodytes) to humans (Homo sapiens) using
surface-to-surface mapping of 3D cortical regions across both
species based on in vivo T1-weightedMR images of 29 chimpanzees
and 30 humans.

3. BigBrain Atlas (80). This dataset provides an ultrahigh-resolu-
tion volumetric reconstruction of a postmortem, Merker-stained
human brain from a 65-year-old. We used the version with 50 equi-
volumetric surfaces sampled between the pial and WM surfaces
provided by the BigBrain Warp toolbox (81). First, the volume
values were inverted to reflect the cellular density across cortical
depth (82), and then the skewness of each intensity profile was cal-
culated to illustrate the distribution of cellular density between
infra- and supra-granular layers (83).

4. Allen Human Brain Atlas (84). This dataset provides microar-
ray data collected across the entire cortex of six human donor
brains. We used a preprocessed version of the data provided by
the Enigma toolbox (79), based on the Abagen toolbox (85). Prepro-
cessing included the intensity-based filtering of microarray probes,
the selection of a representative probe for each gene across hemi-
spheres, the matching of microarray samples to brain parcels from
the HCP-MMP1.0 parcellation, the normalization using the scaled
robust sigmoid function across genes and samples, and the averag-
ing within parcels and across donors of genes with a similarity
across donors of at least 0.2, leaving a total of 8426 genes for
further analysis. For the gene sets below, we calculated the region-
wise mean and z-scored expression values for each gene.

5. Genotype Tissue Expression database (GTEx v8) (86). This
dataset provides tissue-specific gene expression profiles collected
from 54 nondiseased tissue sites from around 1000 participants.
A list of 1588 genes that are expressed significantly more in the
brain than compared to other organs was extracted based on P <
0.05 (one-sided t test, FDR-corrected) and used as a background
list for the GOE analysis (35).

6. External PET neuroreceptors maps (87). This dataset compiles
data from 28 different and previously published PET-imaging
studies on the chemoarchitecture of the healthy human. It includes
group-averaged volumetric PET maps of ligand occupancy from 19
unique receptors and transporters across nine neurotransmitter and
neuromodulator systems: dopamine, norepinephrine, serotonin,
acetylcholine, glutamate, GABA, histamine, cannabinoid, and
opioid. A subsequent analysis between transcriptomic and PET-
imaging data included the following three PET ligands: the cholin-
ergic nicotinic (acetylcholine) receptor alpha 4 beta 2 ([18F]fluba-
tine tracer), the opioid receptor mu 1 ([11C]carfentanil tracer), and
the serotonin 5-hydroxytryptamine receptor 4 ([11C]
SB207145 tracer).

7. Neurosynth database (88). This dataset provides meta-analyt-
ic, statistical maps of brain activity related to 23 cognitive terms that
are gathered from thousands of studies and ranging from sensori-
motor to higher-order cognitive functions (89). The statistically sig-
nificant areas from themeta-analytic maps (z-score > 2.3) were used
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as masks to extract the distribution of the joint PLS score between
the energetic costs and chemoarchitecture maps.

Statistical analysis
Correlation analyses
The significance of the relationship between two variables was eval-
uated parametrically, based on the P value associated to the Pear-
son’s correlation between them, and nonparametrically, based on
the distribution of P values derived from permuting the data 1000
times while preserving the spatial autocorrelation information of
the target map (Psmash) using the Brainsmash toolbox (90). To
test for possible differences between cohorts and sex, these two var-
iables were used as between-subject factors in independent one-way
ANOVA analyses. The slope and correlation values derived from
the linear relationship between CMRglc and dFC were used as the
dependent variable. Additionally, the effect of age on the linear re-
lationship between CMRglc and dFC was tested by calculating the
Pearson’s correlation between the individual correlation values and
age. The ANOVA and correlation analyses were performed using
the python package Pingouin (version 0.3.9) (91).
Analysis of spatial similarity between brain maps
The spatial similarity between the distribution of energetic costs of
TUM.exp1 and those of the remaining cohorts was assessed based
on a spatial Pearson’s correlation between them. The statistical sig-
nificance of this correlation was evaluated by comparing it to a null
distribution of correlation values derived from permuting the ener-
getic costs of the TUM.exp1 map (1000 times) while preserving its
spatial autocorrelation.
Statistical comparison between linear models
A one-way ANOVA was used to test for differences in the CMRglc
variance explained by two linear models: a simple one with dFC as
the only predictor variable, and a multiple linear model with dFC
and other connectivity measures as additional predictors. The
model comparison was performed in R Statistical Software
(version 4.1.2) (92).
Allometric scaling
Allometry describes the scaling relationship of body parameters
(93). Metabolic allometry of the brain model’s total brain size as a
function of CMRglc is according to the general allometric scaling
relationship (18)

brain size ≏ intercept � CMRglcallometric factor ð6Þ

Equation 6 was fitted as a linear regression between log-log data
of brain size and CMRglc using the nonlinear least squares optimi-
zation method provided by the python library SciPy (version
1.7.3) (78).
Group analysis of energetic costs
Brain regions with significantly deviating energetic costs were iden-
tified using voxel-wise one-sample t tests of the individual param-
eter maps across all participants from all cohorts using the FSL
randomize (94) permutation-testing tool (P < 0.01, familywise
error rate corrected, 5000 permutations).
GOE analysis
In this analysis, we assessed the differentially expressed genes and
their putative functions in brain regions of varying energetic
costs. Across cortical regions, we correlated expression values of
the 8426 AHBA genes with the average energetic costs map. Signifi-
cantly correlated genes (P < 0.005, Benjamini-Hochberg FDR-

corrected) were subsequently used as an input to the GOE analysis
and visualization tool GOrilla (version 03/06/2021) (95), and repli-
cated using a different tool, Panther (version 17.0) (96). This anal-
ysis identifies gene ontology annotations for which the genes are
significantly enriched using a minimal hypergeometric P value
threshold of 10−3 (95, 97), and corrected for multiple comparisons
using a Benjamini-Hochberg FDR correction. As background, we
used the brain specific gene set from the GTEx database (see the
“External data sources” section).
PLS analysis
The pyls python library (98) was used to perform the PLS analysis
between the z-scored map of energetic costs (334 ROIs × 30 partic-
ipants) and the set of external PET maps about the chemoarchitec-
ture of the human brain (334 ROIs × 19 neurotransmitter receptors,
see above). This analysis uses singular value decomposition to reveal
the shared information between the two datasets represented as a set
of orthogonal latent variables. The statistical significance of the
latent variables was determined using permutation testing (5000
permutations), whereas bootstrap resampling (5000 times) was
used to examine the contribution and reliability of the input fea-
tures to each latent variable. The energetic costs score (surface rep-
resentation in Fig. 4C) was calculated by projecting the energetic
costs maps onto the first latent variable, whereas the receptor load-
ings (bar plot in Fig. 4C) are the Pearson correlation between the
neuroreceptors map and the first energetic costs score.

Supplementary Materials
This PDF file includes:
Figs. S1 and S2
Tables S1 to S4
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