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Abstract

Background: Pathology reports serve as an auditable trial of a patient’s clinical narrative, containing text pertaining to diagnosis, prognosis, 
and specimen processing. Recent works have utilized natural language processing (NLP) pipelines, which include rule-based or machine-
learning analytics, to uncover textual patterns that inform clinical endpoints and biomarker information. Although deep learning methods 
have come to the forefront of NLP, there have been limited comparisons with the performance of other machine-learning methods 
in extracting key insights for the prediction of medical procedure information, which is used to inform reimbursement for pathology 
departments. In addition, the utility of combining and ranking information from multiple report subfields as compared with exclusively 
using the diagnostic field for the prediction of Current Procedural Terminology (CPT) codes and signing pathologists remains unclear. 
Methods: After preprocessing pathology reports, we utilized advanced topic modeling to identify topics that characterize a cohort of 93,039 
pathology reports at the Dartmouth-Hitchcock Department of Pathology and Laboratory Medicine (DPLM). We separately compared 
XGBoost, SVM, and BERT (Bidirectional Encoder Representation from Transformers) methodologies for the prediction of primary CPT 
codes (CPT 88302, 88304, 88305, 88307, 88309) as well as 38 ancillary CPT codes, using both the diagnostic text alone and text from all 
subfields. We performed similar analyses for characterizing text from a group of the 20 pathologists with the most pathology report sign-
outs. Finally, we uncovered important report subcomponents by using model explanation techniques. Results: We identified 20 topics that 
pertained to diagnostic and procedural information. Operating on diagnostic text alone, BERT outperformed XGBoost for the prediction 
of primary CPT codes. When utilizing all report subfields, XGBoost outperformed BERT for the prediction of primary CPT codes. 
Utilizing additional subfields of the pathology report increased prediction accuracy across ancillary CPT codes, and performance gains for 
using additional report subfields were high for the XGBoost model for primary CPT codes. Misclassifications of CPT codes were between 
codes of a similar complexity, and misclassifications between pathologists were subspecialty related. Conclusions: Our approach generated 
CPT code predictions with an accuracy that was higher than previously reported. Although diagnostic text is an important source of 
information, additional insights may be extracted from other report subfields. Although BERT approaches performed comparably to the 
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XGBoost approaches, they may lend valuable information to pipelines that combine image, text, and -omics information. Future resource-
saving opportunities exist to help hospitals detect mis-billing, standardize report text, and estimate productivity metrics that pertain to 
pathologist compensation (RVUs).

Keywords: BERT, current procedural terminology, deep learning, machine learning, pathology reports, XGBoost

Background and Significance
Electronic Health Records (EHR)[1] refer to both the 
structured and unstructured components of patients’ health 
records/information (PHI), synthesized from a myriad of 
data sources and modalities. Such data, particularly clinical 
text reports, are increasingly relevant to “Big Data” in the 
biomedical domain. Structured components of EHR, such 
as clinical procedural and diagnostic codes, are able to 
effectively store the patient’s history,[2-4] whereas unstructured 
clinical notes reflect an amalgamation of more nuanced 
clinical narratives. Such documentation may serve to refresh 
the clinician on the patient’s history, highlight key aspects 
of the patient’s health, and facilitate patient handoff among 
providers. Further, analysis of clinical free text may reveal 
physician bias or inform an audit trail of the patient’s clinical 
outcomes for purposes of quality improvement. As such, 
utilizing sophisticated algorithmic techniques to assess text 
data in pathology reports may improve decision making 
and hospital processes/efficiency, possibly saving hospital 
resources while prioritizing patient health.

NLP[3,5-8] is an analytic technique that is used to extract 
semantic and syntactic information from textual data. 
Traditionally, rule-based approaches cross-reference and 
tabulate domain-specific key words or phrases with large 
biomedical ontologies and standardized vocabularies, such as 
the Unified Medical Language System (UMLS).[9,10] However, 
although these approaches provide an accurate means of 
assessing a narrow range of specified patterns, they are 
neither flexible nor generalizable since they require extensive 
annotation and development from a specialist. Machine-
learning approaches (e.g. support vector machine (SVM), 
random forest)[11,12] employ a set of computational heuristics 
to circumvent manual specification of search criteria to reveal 
patterns and trends in the data. Bag-of-word approaches[13,14] 
study the frequency counts of words (unigrams) and phrases 
(bigrams, etc.) to compare the content of multiple documents 
for recurrent themes, whereas deep learning approaches[15-17] 
simultaneously capture syntax and semantics with artificial 
neural network (ANN) techniques. Recent deep learning 
NLP approaches have demonstrated the ability to capture 
meaningful nuances that are lost in frequency-based 
approaches; for instance, these approaches can effectively 
contextualize short- and long-range dependencies between 
words.[18,19] Despite potential advantages conferred from less 
structured approaches, the analysis of text across any domain 
usually necessitates balancing domain-specific customization 
(e.g. a medical term/abbreviation corpora) with generalized 
NLP techniques.

The analysis of pathology reports using NLP has been 
particularly impactful in recent years, particularly in 
the areas of information extraction, summarization, 
and categorization. Noteworthy developments include 
information extraction pipelines that utilize regular 
expressions (regex), to highlight key report findings 
(e.g., extraction of molecular test results),[20-23] as well as 
topic modeling approaches that summarize a document 
corpus by common themes and wording.[24] In addition 
to extraction methods, machine-learning techniques have 
been applied to classify pathologist reports[25]; notable 
examples include the prediction of ICD-O morphological 
diagnostic codes[26,27] and the prediction of CPT codes 
based only on diagnostic text.[28,29] Widespread misspelling 
of words and jargon specific to individual physicians have 
made it difficult to reliably utilize the rule-based and even 
machine-learning approaches for report prediction in a 
clinical workflow. In addition, hedging and uncertainty in 
text reports may further obfuscate findings.[30]

The CPT codes are assigned to report reimbursable 
medical procedures for diagnosis, surgery, and ordering of 
additional ancillary tests.[31,32] Assignments of CPT codes 
are informed by guidelines and are typically integrated into 
the Pathology Information System. As such, the degree 
to which new technologies and practices are implemented 
and disseminated are often informed by their impact on 
CPT coding practices. Reimbursements from CPT codes 
can represent tens to hundreds of millions of dollars of 
revenue at mid-sized medical centers, and thus systematic 
underbilling of codes could lead to lost hospital revenue, 
whereas overbilling patterns may lead to the identification of 
areas of redundant or unnecessary testing (e.g., duplication 
of codes, ordering of unnecessary tests, or assignment of 
codes representing more complex cases, etc.).

Ancillary CPT codes represent procedural codes that are 
automatically assigned when ancillary tests are ordered (e.g., 
immunohistochemical stains; e.g., CPT 88341, 88342, 88313, 
88360, etc.). In contrast, primary CPT codes (e.g., CPT 88300, 
88302, 88304, 88305, 88307, and 88309)  are assigned based 
on the pathologist examination of the specimen, where CPT 
88300 represents an examination without requiring the use of 
a microscope (gross examination), whereas CPT 88302–88309 
include gross and microscopic examination of the specimen 
and are ordered by the case’s complexity level (as specified by 
the CPT codebook; an ordinal outcome; e.g., CPT 88305: 
Pathology examination of tissue using a microscope, intermediate 
complexity), which determines reimbursement. The assignment 
of such codes is not devoid of controversy. Although it is 
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expected that raters will not report a specimen with a higher/
lower code level, some may argue that such measures may not 
reflect the degree of difficulty for a particular case or there may 
not be a specific language that denotes primary CPT code 
placement of the phenomena (i.e., unlisted specimen, where it 
is at the pathologist’s discretion to determine placement). For 
these codes, case complexity may ultimately be traced back to 
the clinical narrative reported in the pathology report text.[33]

Since the assignment of case complexity is sometimes 
unclear to the practicing pathologist as guidelines evolve, the 
prediction of these CPT codes from the diagnostic text using 
NLP algorithms can be used to inform whether a code was 
assigned that matches the case complexity. Recently developed 
approaches to predict CPT codes demonstrate remarkable 
performance; however, they only rely on the first 100 words 
from the report text, do not compare across multiple state-of-
the-art NLP prediction algorithms, and do not consider report 
text outside of the diagnosis section.[28] Further, report lexicon 
is hardly standardized, as it may be littered with language and 
jargon that is specific to the sign-out pathologist and may vary 
widely in length for the same diagnosis, which can make it 
difficult to build an objective understanding of the report text.

Comparisons of different algorithmic techniques and 
relevant reporting text to use for the prediction of primary 
CPT codes are essential to further understand their utility for 
curbing under/overbilling issues. In addition, contextualizing 
primary code findings by ancillary findings and building a 
greater understanding of how pathologists differ in their 
lexical patterns may provide further motivation for the 
standardization of reporting practices and how report text 
can optimize the ordering of ancillary tests.[34]

Objective
The primary objective of this study is to compare the 
capacity to delineate primary CPT procedural codes (CPT 
88302, 88304, 88305, 88307, 88309)  corresponding to 
case complexity across state-of-the-art machine-learning 
models over a large corpus of more than 93,039 pathology 
reports from the Dartmouth-Hitchcock Department of 
Pathology and Laboratory Medicine (DPLM), a mid-
sized academic medical center. Using XGBoost, SVM, and 
BERT techniques, we hope to gain a better understanding 
of which algorithms are useful for predicting primary 
CPT codes representing case complexity, which will prove 
helpful for the detection of under/overbilling.

Secondary Objectives
We have formulated various secondary objectives that are 
focused on capturing additional components of reporting 
variation:

1.	 Expanded reporting subfields: Exploration of methods 
that incorporate other document subfields outside 
of the diagnostic text into the modeling approaches, 
which may contain additional information.

2.	 Ancillary Testing Codes: Predicting the assignment of 
38 different CPT procedure codes, largely comprising 
secondary CPT codes, under the hypothesis that 
nondiagnostic text provides additional predictive 
accuracy as compared with primary CPT codes, which 
may rely more heavily on the diagnostic text. Although 
the prediction of whether an ancillary test was ordered 
via secondary CPT codes has limited potential for 
incorporation into the Pathology Information System, 
as these codes are automatically assigned after test 
ordering, prediction of the ancillary tests can provide an 
additional context for the prediction of primary codes.

3.	 Pathologist-Specific Language: Investigate whether the 
sign-out pathologist can be predicted based on word 
choice. Although the sign-out pathologist can be found 
through an SQL query in the Pathology Information 
System, we are interested in translating sign-outs to a 
unified language that is consistent across sign-outs (i.e., 
a similar lexicon across pathologists, given diagnosis, 
code assignments, and subspecialty). As an example, 
some pathologists may more verbosely describe a 
phenomenon that could be succinctly summarized 
to match a colleague’s description, though this could 
be difficult to disentangle without a quantitative 
understanding of lexical differences. To do this, we need 
to identify several components of variation (i.e., within 
a subspecialty, where reports from pathologists may vary 
widely); we want to further understand this heterogeneity 
to standardize communications within our department.

Although the final two objectives (ancillary testing and 
pathologist prediction) can be resolved by using an SQL 
query, we emphasize that these secondary objectives were 
selected to better identify the potential sources of reporting 
inconsistency with the aim of informing optimal reporting 
standards rather than imputing information that can be 
readily queried through the Pathology Information System.

Approach and Procedure

Data acquisition
We obtained Institutional Review Board approval and 
accessed more than 96,418 pathologist reports from 
DPLM, collected between June 2015 and June 2020. We 
removed a total of 3,379 reports that did not contain 
any diagnostic text associated with CPT codes, retaining 
93,039 reports (Supplementary Table 1). Each report 
was appended with metadata, including corresponding 
EPIC (EPIC systems, Verona, WI),[35] Charge Description 
Master (CDM), and CPT procedural codes, the sign-
out pathologist, the amount of time to sign out the 
document, and other details. Fuzzy string matching using 
the fuzzywuzzy package was used to identify whether 
any pathologists’ names were misspelled (or resolve 
potential last name changes) between documents.[36] First, 
all unique pathologist names were identified. Then, for 
each pair of names, the token sort ratio was calculated, 
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thresholded by whether the ratio exceeded 0.7 to establish 
a unipartite graph of pathologist names connected to their 
candidate duplicates. Finally, clusters of similar names 
were identified by using connected component analysis. 
In most cases, unique names were assigned to each 
cluster of names, though in select cases, names were kept 
separate.[37] The documents were deidentified by stripping 
all PHI-containing fields and numerals from the text and 
replacing with holder characters (e.g. 87560 becomes 
#####). As a final check, we used regular expressions 
(regex) to remove mentions of patient names in the report 
text. This was accomplished by first compiling and storing 
several publicly available databases of 552,428 first and 
last names (Supplementary Materials, section “Additional 
Information on Deidentification Approach”). Then, using 
regex, we searched for the presence of each first and last 
name in the report subsections and replaced names at 
matched positions with white spaces. However, we did 
not remove mention of the physicians and consulting 
pathologist. The information on the physicians and 
consulting pathologist were identified in the “ordered by,” 
“reports to,” and “verified by” fields of the pathology report 
using known personal identifiers. The deidentification 
protocol was approved by the Institutional Review Board, 
Office of Research Operations and Data Governance. 
A total of 17,744 first and last names were stripped from 
the in-house data.

Preprocessing
We used regular expressions (regex) to remove punctuation 
from the text, and the text was preprocessed by using the 
Spacy package,[38] to tokenize the text. We utilized Spacy’s 
en_core_web_sm processing pipeline (https://spacy.io/
models/en#en_core_web_sm) to remove English stop 
words and words shorter than three characters. Out of 
concern for removing pathologist lexicon germane to 
pathologist sign-out, for this preliminary assessment, we 
did not attempt to prune additional words from the corpus 
outside of the methods used to generate word frequencies 
for the bag of words approaches. We also split up each 
pathology report into their structured sections: Diagnosis, 
Clinical Information, Specimen Processing, Discussion, 
Additional Studies, Results, and Interpretation. This 
allowed for an equal comparison between the machine-
learning algorithms. The deep learning algorithm 
BERT can only operate on 512 words at a time due to 
computational constraints (See the “Limitations” and 
Supplementary Materials section “Additional Information 
on BERT Pretraining”). Sometimes, the pathology reports 
exceeded this length when considering the entire document 
(1.77% exceeded 512 words) and as such these reports were 
limited to the diagnosis section (0.02% exceeded 512 words) 
when training a new BERT model (Supplementary Table 
1; Supplementary Figure 1). We removed all pathology 
reports that did not contain a diagnosis section.

Characterization of the text corpus
After preprocessing, we encoded each report tabulating the 
occurrence of all contiguous one- to two-word sequences 
(unigram and bigrams) to form sparse count matrices, 
where each column represents a word or phrase and 
each row represents the document, and the value is the 
frequency of occurrence in the document. Although the 
term “frequency” may be representative of the distribution 
of words/phrases in a corpus, high-frequency words that 
are featured across most of the document corpus are less 
likely to yield an informative lexicon that is specific to a 
subset of the documents. To account for less important but 
ubiquitous words, we transformed raw word frequencies to 
term frequency inverse document frequency (tf-idf) values, 
which up-weights the importance of the word based on its 
occurrence within a specific document (term frequency), 
but down-weights the importance if the word is featured 
across the corpus (inverse document frequency) (see the 
Supplementary Material section “Additional Description of 
Topic Modeling and Report Characterization Techniques”). 
We summed the tf-idf value of each word across the 
documents to capture the word’s overall importance across 
the reports and utilized a word cloud algorithm to display 
the relative importance of the top words.

After constructing count matrices, we sought to characterize 
and cluster pathology documents as they relate to each 
other and ascribe themes to the clusters. Uniform Manifold 
Approximation and Projection for Dimension Reduction 
(UMAP)[39] dimensionality reduction was used to project 
the higher dimensional word frequency data into lower 
dimensions while preserving important functional 
relationships. Each document could then be represented 
by a 3D point in the Cartesian coordinate system; these 
points were clustered by using a density-based clustering 
algorithm called HDBSCAN[40] to simultaneously estimate 
characteristic groupings of documents while filtering out 
noisy documents that did not explicitly fit in these larger 
clusters. To understand which topics were generally present 
in each cluster, we deployed Latent Dirichlet Allocation 
(LDA),[13] which identifies topics characterized by a set of 
words, and then derives the distribution of topics over all 
clusters. This is accomplished via a generative model that 
attempts to recapitulate the original count matrix, which 
is further outlined in greater detail in the Supplementary 
Material section “Additional Description of Topic Modeling 
and Report Characterization Techniques.” The individual 
topics estimated using LDA may be conceptualized as a 
Dirichlet/multinomial distribution (“weight” per each word/
phrase) over all unigrams and bigrams, where a higher 
weight indicates membership in the topic. The characteristic 
words pertaining to each topic were visualized by using a 
word cloud algorithm. Finally, we correlated the CPT codes 
with clusters, topics, and select pathologists by using Point-
Biserial and Spearman correlation measures[41] to further 
characterize the overall cohort.
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Machine learning models
We implemented the following three machine-learning 
algorithms in our study as a basis for our text classification 
pipeline [Figure 1]:

SVM
We trained an SVM[42,43] to make predictions by using 
the UMAP embeddings formed from the tf-idf matrix. 
The SVM operates by learning a hyperplane that obtains 
maximal distance (margin) to datapoints of a particular 
class [Figure 1A]. However, because datapoints/texts 
from different classes may not be separable in the original 
embedding space, the SVM model projects data to a higher 
dimensional space where data can be linearly separated. 
We utilized GPU resources via the ThunderSVM 
package[44] to train the model in reasonable compute time.

Bag of words with XGBoost
XGBoost algorithms[45] operate on the entire word by report 
count matrix and ensemble or average predictions across 
individual Classification and Regression Tree (CART) 
models.[46] Individual CART models devise splitting rules 
that partition instances of the pathology notes based 
on whether the count of a particular word or phrase in 
a pathology note exceeds an algorithmically derived 
threshold. Important words and thresholds (i.e. partition 
rules) are selected from the corpus based on their ability 
to partition the data, based on the purity of a decision 
leaf through the calculation of an entropy measure. Each 
successive splitting rule serves to further minimize the 
entropy or maximize the information gained. Random 
Forest models[47] bootstrap which subsets of predictors/
words and samples are selected for a given splitting rule of 
individual trees and aggregate the predictions from many 
such trees; Extreme Gradient Boosting Trees (XGBoost) fit 
trees (structure and the conditional means of the terminal 
nodes) sequentially based on the residual (in the binary 
classification setting, misclassification is estimated using a 
Bernoulli likelihood) between the outcome and the sum of 

both the conditional means of the previous trees (which are 
set) and the conditional means of the current tree (which 
is optimized). This gradient-based optimization technique 
prioritizes samples with a large residual/gradient from 
the previous model fit to account for the previous “weak 
learners” [Figure 1B]. In both scenarios, random forest (a 
bagging technique) and XGBoost (a boosting technique), 
individual trees may exhibit bias but together cover a 
larger predictor space. Our XGBoost classifier models 
were trained by using the XGBoost library, which utilizes 
GPUs to speed up calculation.

BERT
ANN[48] are a class of algorithms that use highly 
interconnected computational nodes to capture 
relationships between predictors in complex data. The 
information is passed from the nodes of an input layer 
to the individual nodes of subsequent layers that capture 
additional interactions and nonlinearities between 
predictors while forming abstractions of the data in the 
form of intermediate embeddings. The BERT[18] model 
first maps each word in a sentence to its own embedding 
and positional vectors, which captures key semantic/
syntactic and contextual information that is largely 
absent from the bag of words approaches. These word-
level embeddings are passed to a series of self-attention 
layers (the Transformer component of the BERT model), 
which contextualizes the information of a single word in 
a sentence based on short- and long-term dependencies 
between all words from the sentence. The individual 
word embeddings are combined with the positional/
contextual information, obtained via the self-attention 
mechanism, to create embeddings that represent the 
totality of a sentence. Finally, this information is passed 
to a series of fully connected layers that produce the final 
classification. With BERT, we are also able to analyze the 
relative importance and dependency between words in a 
document by extracting “attention matrices.” We are also 
able to retrieve sentence-level embeddings encoded by the 

Figure  1: Model Descriptions: Graphics depicting: (A) SVM, where hyperplane linearly separates pathology reports, which are represented by 
individual datapoints; (B) XGBoost, which sequentially fits decision trees based on residuals from sum of conditional means of previous trees and 
outcomes; (C) All-Fields BERT model, where a diagnosis-specific neural network extracts relevant features from the diagnostic field, whereas a neural 
network trained on a separate clinical corpus extracts features for the remaining subfields; subfields are weighted and summed via the attention 
mechanism, indicated in red; subfields are combined with diagnostic features and fine-tuned with a multilayer perceptron for the final prediction
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network by extracting vectors from the intermediate layers 
before they pass for the final classification.

We trained the BERT models by using the HuggingFace 
Transformers package,[49] which utilizes GPU resources 
through the PyTorch framework. We used a collection 
of models that have already been pretrained on a large 
medical corpus[50] in order to both improve the predictive 
accuracy of our model and significantly reduce the 
computational load compared with training a model 
from scratch. Because significant compute resources are 
still required to train the model, most BERT models limit 
the document characterization length to 512 words. To 
address this, we split pathology reports into document 
subsections when training BERT models.

In training a BERT model, we updated the word 
embeddings through fine-tuning a pretrained model on 
our diagnostic corpus. This model, which had been trained 
solely on diagnostic text, could be used to predict the target 
of interest (Dx Model). However, we then used this fine-
tuned model to extracted embeddings that were specific 
to the diagnosis subfield to serve as input for a model 
that could utilize text from other document subfields. 
We separately utilized the original pretrained model to 
extract embeddings from the other report subfields that 
are less biased by diagnostic codes and thus more likely 
to provide contextual information (All Fields Model). We 
developed a global/gating attention mechanism procedure 
that serves to dynamically prune unimportant, missing, 
or low-quality document subsections for classification 
[Figure 1C]. Predictions may be obtained when some/all 
report subfields are supplied via the following method:
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�
z represents the embeddings extracted from the 

pretrained and fine-tuned BERT embeddings on respective 
report subsections, and 

�
α  is a vector of attention scores 

between 0 and 1 that dictates the importance of particular 
subsections. These attention scores are determined by 
using a separate gating neural network, fgate, which 
maps 

�
z, a 768-dimensional vector to a scalar for each 

document subsection through two projection matrices: W1 
a 768-dimension (dimensionality of BERT embeddings) 
by 100-dimensional matrix, and W2 a 100-dimension 
(dimensionality of BERT embeddings) by 1-dimensional 
matrix that generates the attention scores. A  softmax 
transformation is used to normalize the scores between 

zero and one across the subsections. Finally, fMLP are 
a set of fully connected layers that operate on the 
concatenation between the BERT embeddings that were 
fine-tuned on the diagnosis-specific section and those 
extracted by using the pre-trained BERT model on the 
other document subfields, as weighted by using the gated 
attention mechanism (Supplementary Section “Additional 
Description of Explanation Techniques”). To train this 
model, we experimented with an ordinal loss function,[51] 
based off  of the proportional odds cumulative link model 
specification, which respects the ordering of the primary 
CPT codes by case complexity, though ultimately, we 
opted for using a Cross-Entropy loss since ordinal loss 
functions are not currently configured for the other 
machine-learning methods (e.g., XGBoost).

Prediction of primary current procedural 
terminology codes
We developed machine-learning pipelines to delineate 
primary CPT codes requiring examination with a 
microscope (CPT 88302, 88304, 88305, 88307, 88309) using 
BERT, XGBoost, and SVM, with reports selected 
based on whether they contained only one of the five 
codes (where the primary codes were present in the 
following proportions: CPT 88302:0.67%, 88304:6.59%, 
88305:85.97%, 88307:6.32%, and 88309:0.44%). The 
prevalence of most of the five codes did not change over 
time (Supplementary Figure 2; Supplementary Table 2). 
Given the characterization of the aforementioned deep 
learning framework, we utilized a BERT model that was 
pretrained first on a large corpus of biomedical research 
articles from PubMed, and then pretrained by using a 
medical corpus of free text notes from an intensive care unit 
(MIMIC3 database; Bio-ClinicalBERT; Supplementary 
Materials section “Additional Information on BERT 
Pretraining”).[50,52,53] Finally, the model was fine-tuned on 
our DHMC pathology report corpus (to capture institution-
specific idiosyncrasies) for the task of classifying particular 
CPT codes from diagnostic text. XGBoost was trained on 
the original count matrix, whereas SVM was trained on a 
6-dimensional UMAP projection; a UMAP projection was 
utilized for computational considerations. The models were 
evaluated by using five-fold cross-validation as a means to 
compare the model performances. Internal to each fold is a 
validation set used for identifying optimal hyperparameters 
(supplementary section “Additional Information on 
Hyperparameter Scans”) through performance statistics 
and a held-out test set. For each approach, we separately 
fit a model considering only the Diagnosis text (Dx 
Models) and all of the text (All Fields Models) to provide 
additional contextual information. We calculated the 
Area Under the Receiver Operating Curve (AUC-Score; 
considers sensitivity/specificity of the model at a variety of 
probability cutoffs; anything above a 0.5 AUC is better than 
random), F1-Score (which considers the tradeoff between 
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sensitivity and specificity) and macro-averaged these scores 
across the five CPT codes, which gives greater importance 
to rare codes. Since codes are also ordered by complexity 
(ordinal variable), we also report a confusion matrix, which 
tabulates the real versus predicted codes for each approach 
and measures both a spearman correlation coefficient and 
linear-weighted kappa between predicted and real CPT 
codes as a means to communicate how the model preserves 
the relative ordering of codes (i.e., if the model is incorrect, 
better to predict a code of a similar complexity).

Ancillary testing current procedural terminology codes 
and pathologist prediction tasks
To contextualize findings for primary codes, these 
machine-learning techniques were employed to predict 
each of 38 different CPT codes (38 codes remained after 
removing codes that occurred less than 150 times across 
all sign-outs) (e.g., if  the prediction of primary codes relies 
on the diagnostic section, do secondary codes rely on 
other document sections more?). The primary code model 
predicted a categorical outcome, whereas ancillary testing 
models were configured in the multitarget setting, where 
each code represents a binary outcome. We compared 
cross-validated AUC statistics between and across the 
38 codes to further explore the reasons that some codes 
yielded lower scores than others. We also compared 
different algorithms via the sensitivity/specificity reported 
via their Youden’s index (the optimal tradeoff possible 
between sensitivity and specificity from the receiver 
operating curve), averaged across validation folds.

We similarly trained all models to recognize the texts of 
the 20 pathologists with the most sign-outs to see whether 
the models could reveal pathologist-specific text to inform 
future efforts to standardize text lexicon. We retained 
reports from the 20 pathologists with the most sign-outs, 
reducing our document corpus from 93,039 documents to 
64,583 documents, and we utilized all three classification 
techniques to predict each sign-out pathologist 
simultaneously. The selected pathologists represented 
a variety of specialties. Choosing only the most prolific 
pathologists removed the potential for biased associations 
by a rare outcome in the multiclass setting.

Model interpretations
Finally, we used shapley additive explanations (SHAP; 
a model interpretation technique that estimates the 
contributions of predictors to the prediction through credit 
allocation)[54] to estimate which words were important for 
the classification of each of these codes, visualized by 
using a word cloud. For the BERT model, we utilized the 
Captum[55] framework to visualize backpropagation from 
the outcome to predictors/words via IntegratedGradients[56] 
and attention matrices. Additional extraction of attention 
weights also revealed not only which words and their 
relationships contributed to the prediction of the CPT code 

(i.e. self-attention denotes word-to-word relationships), but 
also which document subfields other than the diagnosis 
field were important for assignment of the procedure code 
(i.e. global/gating attention prunes document subfields 
by learning to ignore irrelevant information; the degree 
of pruning can be extracted during inference). Further 
description of these model interpretability techniques 
(SHAP, Integrated Gradients, Self-Attention / “word-to-
word”, Attention) may be found in the supplementary 
material (section “Additional Description of Explanation 
Techniques: SHAP, Integrated Gradients, Self-Attention, 
Attention Over Pathology Report Subfields”). Pathologist-
specific word choice was extracted by using SHAP/Captum 
from the resulting model fit and visualized by using word 
clouds and attention matrices.

Results

Corpus preprocessing and Uniform Manifold 
Approximation and Projection for Dimension Reduction 
results
After initial filtering, we amassed a total of 93,039 
pathology reports, which were broken into the following 
subsections: Diagnosis, Clinical Information, Specimen 
Processing, Discussion, Additional Studies, Results, and 
Interpretation. The median word length per document 
was 119 words (Interquartile Range; IQR=90). Very 
few reports contained subfields that exceeded the length 
acceptable by the BERT algorithm (2% of reports 
containing a Results section exceeded this threshold; 
Supplementary Table 1; Supplementary Figure 1).

Displayed first are word clouds of  the top 25 words in 
only the diagnostic document subsection [Figure 2A] 
and across all document subsections [Figure 2B], with 
their size reflecting their tf-idf  scores [Figure 2A and B]. 
As expected, the diagnostic-field cloud contains words 
that are pertinent to the main diagnosis, whereas the 
all-field cloud contains words that are more procedural, 
suggesting that other pathology document subfields 
yield distinct and specific clinical information that 
may lend complementary information versus analysis 
solely on diagnostic fields. We clustered and visualized 
the diagnostic subsection and also all document 
subsections after running UMAP, which yielded 8 
and 15 distinct clusters, respectively [Figure 2C and 
D]. The number of  words per report correlated poorly 
with the number of  total procedural codes assigned 
(Spearman r p= <0 066 0 01. , . ). However, when these 
correlations were assessed within the HDBSCAN report  
clusters (subset to reports within a particular cluster 
for cluster-specific trends), 33% of  the all-fields report 
clusters reported moderate correlations (Supplementary 
Table 3). Interestingly, one of  the eight report  
clusters from the diagnostic fields experienced a 
moderate negative correlation with the number of 
codes assigned.
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Topic modeling with Latent Dirichlet Allocation and 
additional topic associations
From our LDA analysis on all document subsections, 
we discovered 10 topics [Figure 3; Supplementary 
Table 4]. Correlations between these topics with clusters, 
pathologists, and CPT codes are displayed in the 
supplementary material (Supplementary Figures 3–6). We 
discovered additional associations between CPT codes, 
clusters, and pathologists (Supplementary Figure 7A), 
suggesting a specialty bias in document characterization. 
We clustered pathologists using co-occurrence of 
procedural code assignments in order to establish 
“subspecialties” (e.g., pathologist who signs out multiple 
specialties) that could be used to help interpret sources of 
bias in an evaluation of downstream modeling approaches.

Primary current procedural terminology code 
classification results
The XGBoost and BERT models significantly 
outperformed the SVM model for the prediction of primary 
CPT codes [Table 1; Figure 4A and B; Supplementary 

Table 5]. The BERT model made more effective use 
of the diagnostic text (macro-f1=0.825; κ = 0 852. ) as 
compared with the XGBoost model (macro-f1=0.807; 
κ = 0 835. ). Incorporating the text from other report 
subfields provided only a marginal performance gain 
for BERT (macro-f1=0.829; κ = 0 855. ) and both a 
large and significant performance gain for XGBoost 
(macro-f1=0.831; κ = 0 863. ) [Figure 4A and B]. Across 
the BERT and XGBoost models, codes were likely to be 
misclassified if  they were of a similar complexity [Table 1; 
Supplementary Table 5]. Plots of low-dimensional text 
embeddings extracted from the BERT All-Fields model 
demonstrated clustering by code complexity and relative 
preservation of the ordering of code complexity (i.e., 
reports pertaining to codes of lower/higher complexity 
clustered together) [Figure 4C].

Ancillary current procedural terminology code and 
pathologist classification results
We were able to accurately assign ancillary CPT codes 
to each document, regardless of which machine learning 

Figure 2: Pathology report corpus characterization: (A and B) Word cloud depicting words with the highest aggregated tf-idf scores across the corpus 
of: (A) diagnostic text only, (B) all report subfields (all-fields); important words across the corpus indicated by relative size of the word in the word 
cloud; (C and D) UMAP projection of the tf-idf matrix, clustered and noise removal via HDBSCAN for: (C) diagnostic texts only, and (D) all report 
subfields (all-fields)
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algorithm was utilized (Supplementary Figure 8; 
Supplementary Table 6). Across all ancillary codes, we 
found that XGBoost (median AUC=0.985) performed 
comparably to BERT (median AUC=0.990; P  =  0.64) 
when predicting CPT codes based on the diagnostic 
subfield alone, whereas SVM performed worse 
(median AUC=0.966) than both approaches, per cross-
validated AUC statistics (Supplementary Tables  6–10; 
Supplementary Figure 9). In contrast to results obtained 
for the primary codes, we discovered that classifying 
by including all of the report subelements (All Fields) 
performed better than just classifying based on the 
diagnostic subsection (P  <  0.001 for both BERT and 
XGBoost approaches; Supplementary Tables 6, 8–10; 

Supplementary Figures 9 and 10), suggesting that these 
other more procedural / descriptive elements contribute 
meaningful contextual information for the assignment 
of ancillary CPT codes (Supplementary Materials 
section “Supplementary Ancillary CPT Code Prediction 
Results”). We also report that the sign-out pathologist 
can also be accurately identified from the report text, 
with comparable performance between the BERT 
(macro-f1=0.72) and XGBoost (macro-f1=0.71) models, 
and optimal performance when all report subfields are used 
(macro-f1=0.77 and 0.78, respectively) (Supplementary 
Materials section “Supplementary Pathologist Prediction 
Results”; Supplementary Table 11; Supplementary 
Figure 11).

Figure 3: LDA Topic Words: Important words found for three select LDA Topics from: (A) diagnostic text only and (B) all report subfields (all-fields); 
important words across the corpus indicated by relative size of the word in the word cloud

Table 1: Predictive performances for primary CPT code algorithms
Approach Type Macro-F1 ± SE κ  ± SE

AUC ± SE Spearman 
± SE

BERT Diagnosis 0.825 ± 0.0064 0.852 ± 0.0033 0.99 ± 0.0008 0.84 ± 0.0044

All fields 0.828 ± 0.0062 0.855 ± 0.0032 0.99 ± 0.0006 0.843 ± 0.0044

XGBoost Diagnosis 0.807 ± 0.0069 0.835 ± 0.0034 0.99 ± 0.0007 0.824 ± 0.0045

All fields 0.832 ± 0.0069 0.863 ± 0.0032 0.994 ± 0.0004 0.855 ± 0.0042

SVM Diagnosis 0.497 ± 0.0047 0.644 ± 0.0043 0.554 ± 0.0021 0.637 ± 0.0056

All fields 0.518 ± 0.0048 0.668 ± 0.0044 0.554 ± 0.0014 0.652 ± 0.0058
Macro-F1 and AUC measures are agnostic to the ordering of the CPT code complexity; whereas Linear Kappa ( κ ) and Spearman correlation 
coefficients respect the CPT code ordering (88302, 88304, 88305, 88307, and 88309)
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Figure 5: SHAP interpretation of XGBoost predictions: Word clouds demonstrating words found to be important using the XGBoost algorithm (All-
Fields) for the prediction of primary CPT codes, found via shapley attribution; important words pertinent to each CPT code indicated by the relative 
size of the word in the word cloud; word clouds visualized for word importance (A) across all five primary CPT codes and (B–F) for the following CPT 
codes: (B) CPT code 88302; (C) CPT code 88304; (D) CPT code 88305; (E) CPT code 88307; and (F) CPT code 88309; note that the size of the word 
considers strength but not directionality of the relationship with the code, which may be negatively associated in some cases

Figure 4: Primary CPT Code Model Performance: (A and B) Grouped boxenplots demonstrating the performance of machine-learning models (BERT, 
XGBoost) for the prediction of primary CPT codes (bootstrapped performance statistics; A) macro-averaged F1-Score, (B) Linear-Weighted Kappa for 
performance across different levels of complexity, which takes into account the ordinal nature of the outcome; reported across five CPT code), given 
analysis of either the diagnostic text (blue) or all report subfields (orange); (C) UMAP projection of All-Fields BERT embedding vectors after applying the 
attention mechanism across report subfields; each point is reported with information aggregated from all report subfields; individual points represent 
reports, colored by the CPT code; large thick circles represent the report centroids for each CPT code; note how codes CPT 88302 and CPT 88304 cluster 
together and separately CPT 88307 and CPT 88309 cluster together, whereas CPT 88305 sits in between clustered reports of low and high complexity
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Model interpretation results
We also visualized which words were found to be important 
for a subsample of primary and ancillary procedural codes 
by using the XGBoost algorithm [Figure 5; Supplementary 
Figure 12]. In the Supplementary Materials, we have also 
included a table that denotes the relevance of the top 30 

words for the XGBoost All Fields model for the prediction 
of specific primary CPT codes, as assessed through SHAP 
(Supplementary Table 12). Reports that were assigned the 
same ancillary CPT code clustered together in select low-
dimensional representations learned by some of the All 
Fields BERT models [Figure 6A, C, and E]. Model-based 

Figure 6: Embedding and Interpretation of BERT Predictions: (A, C, and E) UMAP projection of All-Fields BERT embedding vectors after applying 
the attention mechanism across report subfields; each point is reported with information aggregated from all report subfields; (B, D, and F) Select 
diagnostic text from individual reports interpreted by Integrated Gradients to elucidate words positively and negatively associated with calling the CPT 
code; Integrated Gradients was performed on the diagnostic text BERT models; Utilized CPT codes: (A and B) CPT code 88307, (C and D) CPT code 
88342, and (E and F) CPT code 88360

Figure 7: BERT Diagnostic Model Self-Attention: Output of self-attention maps for select self-attention heads/layers from the BERT diagnostic text 
model visualizes various layers of complex word-to-word relationships for the assessment of a select pathology report that was found to report CPT 
code 88307
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interpretations of a few sample sentences for CPT codes 
using the Diagnosis BERT approach revealed important 
phrases that aligned with assignment of the respective 
CPT code [Figure 6C, D, and F]. Finally, we included a few 
examples of the attention mechanism used in the BERT 
approach, which highlights some of the many semantic/
syntactic dependencies that the model finds within text 
subsections [Figure 7]. These attention matrices were 
plotted along with importance assigned to subsections of 
pathology reports using the All-Fields model [Figure  8], 
all with their respective textual content. Additional 
interpretation of reports for pathologists may be found in 
the Supplementary Materials (Supplementary Figures 13 
and 14).

Discussion
In this study, we characterized a large corpus of almost 
100,000 pathology reports at a mid-sized academic 
medical center. Our studies indicate that the XGBoost and 
BERT methodologies produce highly accurate predictions 
of both primary and ancillary CPT codes, which has 
the potential to save operating costs by first suggesting 
codes prior to manual inspection and flagging potential 
manual coding errors for review. Further, both the BERT 
and XGBoost models preserved the ordering of the code/
case complexity, where most of the misclassifications 
were made between codes of a similar complexity. The 
model interpretations via SHAP suggest a terminology 
that is consistent with code complexity. For instance, 
“vulva,” “uterus,” and “adenocarcinoma” were associated 
with CPT code 88309. We noted associations between 
“endometrium diagnosis” and “esophagus” and CPT 
code 88305. “Biopsy” was associated with CPT codes 

88305 and 88307, while “myocyte” was associated with 
CPT code 88307 (myocardium). In addition, we noticed 
a positive association between “products of conception” 
and lower complexity codes (CPT code 88304)  and a 
negative association with higher complexity codes. The 
aforementioned associations uncovered using SHAP 
are consistent with reporting standards for histological 
examination.[31,32,57]

Previous studies predicting CPT codes have largely 
been unable to characterize the importance of different 
subsections of a pathology report. Using the BERT 
and XGBoost methods, we were also able to show that 
significant diagnostic / coding information is contained 
in nondiagnostic subsections of the pathology report, 
particularly the Clinical Information and Specimen 
Processing sections. Such information was more pertinent 
when predicting ancillary CPT codes, as nondiagnostic 
subfields are more likely to contain test ordering 
information, though performance gains were observed for 
primary codes when employing the XGBoost model over 
an entire pathology report. This is expected, as many of 
the CPT codes are based on procedure type / specimen 
complexity and ancillary CPT codes are expected to 
contain more informative text in the nondiagnostic 
sections. Potentially, the variable presence/absence of 
different reporting subfields may have made predicting 
primary codes using the BERT model more difficult, as 
the extraction of information different subsections was 
not optimized for aside from how much weight to apply 
to each section.

Although our prediction accuracy is comparable to 
previous reports of CPT prediction using machine-
learning methods, our work covers a wider range of 

Figure 8: BERT All-Fields Model Interpretation: Visualization of importance scores assigned to pathology report subfields outside of the diagnostic 
section for three separate pathology reports (A–C) that were assigned by raters CPT code 88360; information from report subfields that appear 
more red was utilized more by the model for the final prediction of the code; attention scores listed below the text from the subfields and title of each 
subfield supplied
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codes than previously reported, compares the different 
algorithms through rigorous cross-validation, reports 
a significantly higher sensitivity and specificity, and 
demonstrates the importance of utilizing other parts 
of the pathology report for procedural code prediction. 
Further, previous works had only considered the first 
100 words of the diagnostic section and had failed to 
properly account for class-balancing, potentially leading 
to inflated performance statistics; however, our study 
carefully considers the ordinality of the response and 
reports macro-averaged measures that take into account 
infrequently assigned codes.

We also demonstrated that the pathology report 
subfields contained pertinent diagnostic and procedural 
information that could adequately separate our text 
corpus based on ancillary CPT codes and the signing 
pathologist. With regard to ancillary testing, it was 
interesting to note how some of  the clinical codes for 
acquisition and quantification of  markers on specialized 
stains (CPT 88341, 88342, 88344, 88360) performed the 
worst overall, which may potentially suggest inconsistent 
reporting patterns for the ordering of  specialized 
stains.[34] The revision of  CPT codes 88342 and 88360, 
and the addition of  CPT codes 88341 and 88344 in 
2015 lay just outside of  the range of  the data collection 
period, which was from June 2015 to June 2020.[58] 
Evolving coding/billing guidelines will always present 
challenges when developing NLP guidelines for clinical 
tests, though our models’ optimal performance and the 
fact that major coding changes occurred outside of  the 
data collection period suggest that temporal changes 
in coding patterns did not likely impact the ability to 
predict CPT codes. We did not find significant changes 
in the assignment of  most of  the primary codes over the 
study period. Since major improvements were obtained 
through incorporating the other report subfields for the 
codes, nondiagnostic text may be more important for 
records of  specialized stain processing and should be 
utilized as such.

Limitations
There are a few limitations to our work. For instance, due 
to computational constraints, most BERT models can only 
take as input 512 words at a time (Supplementary Section 
“Additional Information on BERT Pretraining”). We 
utilized a pretrained BERT model that inherited knowledge 
from large existing biomedical data repositories at the 
expense of flexibility in sequence length size (i.e. we could 
not modify the word limit while utilizing this pretrained 
model). We noticed that in our text corpus, less than 2% 
of reports were longer than this limitation and thus had 
to be truncated when input into the deep learning model, 
which may impact results. Potentially, longer pathology 
reports describe more complicated cases, which may utilize 
additional procedures. From our cluster analysis, we 

demonstrated that this appeared to be the case for a subset 
of report clusters, though for one cluster, the opposite was 
true. However, a vast majority of pathology reports fell 
within the BERT word limits, so we considered any word 
length-based association with CPT code complexity to 
have negligible impact on the model results. The XGBoost 
model, alternatively, is able to operate on the entire 
report text. Thus, XGBoost may more directly capture 
interactions between words spanning across document 
subsections pertaining to complex cases, which may serve 
as one plausible explanation of its apparent performance 
increase with respect to the BERT approaches. Although 
we attempted to take into account the ordinality of case 
complexity for the assignment of primary CPT codes, 
such work should be revisited as ordinal loss functions for 
both deep learning and tree-based models become more 
readily available. There were also cases where multiple 
primary codes were assigned; whereas the ancillary codes 
were predicted by using a multitarget objective, and the 
primary code prediction can be configured similarly 
though this was outside the scope of the study.[32] Although 
we conducted coarse hyperparameter scans, we note that 
generally such methods are deemed both practical and 
acceptable. Although other advanced hyperparameter 
scanning techniques exist (e.g., Bayesian optimization or 
genetic algorithm), in many cases, these methods obtain 
performance similar to randomized hyperparameter 
searches and may be far more resource intensive.[59]

Future directions
Given the secondary objectives of our study (e.g., 
prediction of ancillary codes, studying sources of 
variation in text, i.e. pathologist), we were able to identify 
additional areas for follow-up.

First, we were able to assess nuanced pathologist-specific 
language, which was largely determined by specialty (e.g. 
subspecialties such as cytology use highly regimented 
language, making it more difficult to separate practitioners). 
There is also potentially useful information to be gained by 
working to identify text that can distinguish pathologists 
within subspecialties (found as a flag in the Pathology 
Information System) and conditional on code assignment 
rather than identify pathologists across subspecialties. 
This information can be useful in helping to create more 
standardized lexicons / diagnostic rubrics (for instance, 
The Paris System for Urine Cytopathology[60]). Research 
into creating a standard lexicon for particular specialties 
or converting raw free text into a standardized report could 
be very fruitful, especially for the positive impact it would 
have in allowing nonpathologist physicians to more easily 
interpret pathology reports and make clinical decisions. 
As an example of how nonstandardized text lexicon can 
impact reporting, it has long been suspected that outlier 
text can serve as a marker of uncertainty or ambiguity 
about the diagnosis. For instance, if  there is a text content 
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outlier in a body of reports with the same CPT code, then 
we can hypothesize that such text may be more prone to 
ambiguous phrases or hedging, from which pathologists 
may articulate their uncertainty for a definitive diagnosis. 
As such, we would also like to assess the impact of hedging 
in the assignment of procedural codes, and further its 
subsequent impact on patient care. As another example, 
excessive ordering of different specialized stains and 
pathology consults may suggest indecisiveness, as reflected 
in the pathology report. To ameliorate these differences in 
reporting patterns, generative deep learning methods can 
be employed to summarize the text through the generation 
of a standard lexicon.

Other excellent applications of  BERT-based text models 
include the prediction of  relative value units (RVU’s) 
via report complexity for pathologist compensation 
calculations (which is related to primary code assignment) 
and the detection of  cases that may have been mis-billed 
(e.g., a code of  lower complexity was assigned), which 
can potentially save the hospital resources.[61] We are 
currently developing a web application that will both 
interface with the Pathology Information System and 
can be used to estimate the fiscal impact of  underbilling 
by auditing reports with false positive findings. Tools 
such as Inspirata can also provide additional structuring 
for our pathology reports outside of  existing schemas.[62]

Although much of the patient’s narrative may be told 
separately through text, imaging, and omics modalities,[63] 
there is tremendous potential to integrate semantic 
information contained in pathologist notes with 
imaging and omics modalities to capture a more holistic 
perspective of the patient’s health and integrate potentially 
useful information that could otherwise be overlooked. 
For instance, the semantic information contained in a 
report may highlight specific morphological and macro-
architectural features in the correspondent biopsy 
specimen that an image-based deep learning model might 
struggle to identify without additional information. 
Although XGBoost demonstrated equivalent performance 
with the deep learning methods used for CPT prediction, 
its usefulness in a multimodal model is limited because 
these machine-learning approaches rely heavily on the 
feature extraction approach, where feature generation 
mechanisms using deep learning can be tweaked during 
optimization to complement the other modalities. 
Alternatively, the semantic information contained within 
the word embedding layers of the BERT model can be 
fine-tuned when used in conjunction with or directly 
predicting on imaging data, allowing for more seamless 
integration of multimodal information. Integrating such 
information, in addition to structured text extraction 
systems (i.e., named entity recognition) that can recognize 
and correct the mention of such information in the text, 
may provide a unique search functionality that can benefit 
experiment planning.[34]

Although comparisons between different machine-
learning models may inform the optimal selection of tools 
that integrate with the Pathology Information System, 
we acknowledge that such comparisons can benefit from 
updating as new machine-learning architectures are 
developed. As such, we plan to incorporate newer deep 
learning architectures, such as the Reformer or Albert, 
which do not suffer from the word length limitations of 
BERT, though training all possible language models was 
outside of the scope of our study since pretrained medical 
word embeddings were not readily available at the time of 
modeling.

Conclusion
In this study, we compare three cutting-edge machine 
learning techniques for the prediction of  CPT codes 
from pathology text. Our results provide additional 
evidence for the utility of  machine-learning models 
to predict CPT codes in a large corpus of  pathology 
reports acquired from a mid-sized academic medical 
center. Further, we demonstrated that utilizing text 
from parts of  the document other than the diagnostic 
section aids in the extraction of  procedural information. 
Although both the XGBoost and BERT methodologies 
yielded comparable results, either method can be used 
to improve the speed and accuracy of  coding by the 
suggestion of  relevant CPT codes to coders, though 
deep learning approaches present the most viable 
methodology for incorporating text data with other 
pathology modalities.
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Supplementary Materials	
Supplementary Methods

Additional Information on Deidentification 
Approach
In this section, we have compiled a list of all publicly 
available datasets used to remove identifiable patient 
names from the report text:

1.	 First Names
a.	 https://github.com/ankane/age/blob/master/

names/
b.	 https://github.com/smashew/NameDatabases/blob/

master/NamesDatabases/first%20names/all.txt
c.	 https://hackage.haskell.org/package/gender
d.	 https://raw.githubusercontent.com/solvenium/

names-dataset/master/dataset/Male_given_
names.txt

e.	 https://raw.githubusercontent.com/solvenium/
names-dataset/master/dataset/Female_given_
names.txt

f.	 https://github.com/philipperemy/name-dataset/
tree/master/names_dataset/v1

2.	 Last Names

a.	 https://github.com/smashew/NameDatabases/
blob/master/NamesDatabases/surnames/all.txt

b.	 https://raw.githubusercontent.com/solvenium/
names-dataset/master/dataset/Surnames.txt

c.	 https://github.com/philipperemy/name-dataset/
tree/master/names_dataset/v1

Additional Description of Topic Modeling and 
Report Characterization Techniques: TF-IDF, 
UMAP, HSBSCAN, LDA
Here, we briefly provide an overview of the modeling 
techniques that, when utilized in conjunction, characterized 
the pathology report corpus through the establishment 
of important words that were not ubiquitous across the 
corpus (TF-IDF), removal of noise and discovery of 
clusters (UMAP and HDBSCAN), and generating topics 
that describe recurrent themes (LDA).

TF-IDF (term frequency inverse document frequency) takes 
as input a sparse count matrix, which contains the reports as 
rows and individual words/n-grams as columns, where each 
element is a count of the n-gram in the document. TF-IDF 
re-weights the count matrix based on an algorithm that 
modifies word importance on the basis of whether the word 
is ubiquitous across all documents and/or enriched in its own 
document. The formula for TF-IDF is:

tf idf tf
n
dft d t d

t

− =
+

+, , *log
1

1

where t and d refer to the specific term and document, 
respectively. The term-frequency, tf, is the reported 

count of  the n-gram in the particular document, 
whereas document frequency, df, is the number of 
reports that contain the term (i.e. how ubiquitous the 
word is across the corpus). Usually these values are 
normalized via the euclidean norm to downweight 
longer documents.

Such information may replace the count matrix for 
downstream analysis, though it is not necessary.

The UMAP operates on the count/tf-idf matrix to reduce 
the dimensionality of the reports while preserving the key 
relationships between the reports. This is unlike PCA, 
which selects principal components to maximize variance, 
and TSNE (T-Stochastic Neighborhood Embedding), 
which learns a lower dimensional manifold that preserves 
local distance between reports. The UMAP forms fuzzy 
simple sets that represent the higher dimensional manifold 
at multiple distances. Computationally, this amounts to 
constructing a weighted nearest-neighbors graph and an 
optimization routine that preserves a similar structure in 
the low-dimensional manifold while optimizing a force-
directed graph layout.

HDBSCAN is a clustering algorithm that operates on the 
lower dimensional manifold to find natural groupings of 
the data. HDBSCAN combines hierarchical clustering 
techniques, which iteratively merge similar clusters, with 
density-based clustering, which estimates clusters of 
a similar density. HDBSCAN estimates the density of 
points based on whether a certain number of  points exist 
within a small well-defined neighborhood and whether 
two points share a common neighbor, both outside of 
that which is expected if  there were noise. HDBSCAN 
varies the size of  this neighborhood to consider/integrate 
density on multiple scales to form a hierarchy, which may 
be further processed to yield the clusters. This yields a 
set of  clusters and points that have been defined as noise. 
Since the algorithm considers the notion of  distance 
and connectedness on multiple scales / neighborhoods, 
it often pairs well with UMAP due to similarities in 
formulation.

Latent Dirichlet Allocation (LDA) is a three-level 
probabilistic/Bayesian generative model that is used 
for inferring a distribution of topics across a document 
corpus. Ultimately, the goal of the model is to provide a 
mechanistic model for how the count matrix arises (that is, 
estimating the frequency of words in each of the reports). 
The simplified conceptual framework is as follows:

1.	 A document is selected.
2.	 N number of words are selected from a Poisson 

distribution (which iterates steps 3-4 N times).
3.	 For each word (not yet selected), a topic is selected from 

a set of latent topics (topic mixture) that characterize 
the document with some probability.

4.	 A word is selected from a set of words that are ascribed 
to the topic.



5.	 The distribution of words selected via the generative 
approach in steps 1-3 are compared with the true 
distribution of words after marginalizing over the 
topics and documents.

The generative model initially places two separate 
Dirichlet priors over selecting topics (topic mixture) 
and words from topics (a k words by V topics matrix). 
Variational Bayes and expectation maximization 
techniques are applied to estimate the posterior 
distribution of  the topic mixture and topic-word 
parameters by assuming the conditional posterior 
follows a known family of  distributions. Ultimately, 
sampling the predictive posterior allows for an inference 
of  the distribution of  topics across documents.

Additional Information on Hyperparameter Scans

We performed coarse hyperparameter searches for 
ideal model specifications. We registered optimal 
hyperparameters based on the loss over each validation 
set (alternatively by either an F1-score or an AUC 
metric), depending on the modeling approach. Model 
convergence was monitored by using the validation set; 
the test set was completely held out from the updating 
of parameters or the tuning of hyperparameters. Here, 
we list the hyperparameters scanned over for each model 
through coarse inspection of validation set statistics. 
Selection of this grid was based on a mixture of sensible 
recommendations and experimentation. Selected 
hyperparameters are marked in bold, and unlisted 
hyperparameters were set to package defaults:

•	 Support Vector Machine:
•	 Kernel: Radial Basis (RBF), Linear
•	 Gamma (scales RBF distance): Automatic (set to 

[ ]number features −1 , where number features is 6 
based on UMAP embeddings), 1, or 5

•	 XGBoost:
•	 Max Depth: 2, 5, 8, None (runs until split criterion 

are satisfied, e.g., minimum samples to split on)
•	 Number of trees: 100, 300, 600, 800
•	 Number of GPU histogram bins (for optimal run 

time using GPU): 500, 800, 2000

•	 BERT-Dx (Fine-tuning pretrained BERT model) 
(AdamW optimizer):
•	 Batch size: 16, 64
•	 Number of Epochs: 1, 2, 3, 5, which is typical for 

fine-tuning a BERT model

•	 BERT-All Fields (Adam optimizer):

•	 Learning rate: 1e-2, 1e-3, 5e-4, 1e-4, 1e-5
•	 Batch size: 4, 8, 16, 64
•	 Number of epochs: 25, 100
•	 Loss function: Cross-Entropy, Ordinal Penalized 

Cross-Entropy

We note here that the BERT All-Fields model was trained 
by using a cosine annealing learning rate scheduler, which 
oscillates between the selected chosen rate and a η min  
value of 1e-5 repetitively over the course of many epochs. 
This serves to scan a range of potential learning rates for 
optimal validation loss, from which to terminate training. 
Similarly, the BERT-Dx model was trained with an initial 
learning rate of 5e-5 for fine-tuning, with a linear decay 
scheduler, from which the learning rate asymptotically 
decreased toward zero. The BERT-Dx model was fine-
tuned to predict specific code(s)/pathologist(s) and update 
pretrained word embeddings for input to the BERT-All 
Fields model. We tested an ordinal loss function that 
penalized misclassifications by adjacent categories/code 
complexity less than more distant codes. Weight decay was 
employed for both the BERT-Dx and All-Fields models as 
additional regularization.

Additional Information on BERT Pretraining
The BERT-Dx and BERT All-Fields models were 
pretrained by using the Bio-ClinicalBERT model, of 
which details for pre-training can be found here: https://
huggingface.co/emilyalsentzer/Bio_ClinicalBERT. 
These word embeddings were downloaded a total of 
1,290,981 times in the month of November 2021 alone, 
which demonstrates the widespread adoption of such an 
embedding system despite the fixed length nature of BERT 
inputs (512 words per input sequence). This embedding 
system was adopted for the purpose of this study because 
at the time of adoption, these pretraining embeddings 
were the most widely adopted embedding system and were 
only available for BERT. Further, leveraging a publicly 
available set of embeddings provides added value and 
generalization for fine-tuning our in-house dataset versus 
training from scratch. As additional evidence, other 
nondiagnostic report subfields were not fine-tuned on our 
corpus and performed well using the All-Fields models 
using the public embeddings alone, and only a small 
fraction of our corpus featured reports with a length that 
exceeded 512 words.

Additional Description of Explanation 
Techniques: SHAP, Integrated Gradients,  
Self-Attention, Attention Over Pathology 
Report Subfields
Shapley additive explanations (SHAP) is a technique that 
explains the results of any machine-learning model, which 
may have a complex decision surface. SHAP approximates 
this surface on a sample-by-sample basis by fitting one 
local additive model per sample. The coefficients of this 
model represent the importance of a feature or word. 
Local additive models operate to directly estimate the 
prediction of the machine-learning model when summed. 
That is, if  f is the machine-learning model, g, for pathology 



report i, with term frequency x, then the approximation 
is as follows:

f x g x E f z f xi i i
k

k i i( ) ≈ ( ) = ( )  + ( )∑φ , ,

Here, φk i,  represents the shapley coefficient for term k of  
report i. The fitting procedure decides how to distribute the 
remainder between the mean value of the learned model 
over the dataset and the prediction to each of the predictors, 
while considering the importance of the individual predictor 
over the permutation or ensemble of the possible orderings 
of predictors when assigning reward (remainder). The 
predictor importance derived for individual CPT codes or 
pathologists was estimated by averaging these term/word-level 
importances / shapley coefficients across the entire document 
(we subsampled with a random seed for a more efficient 
computation) report corpus for a given model. This analysis 
was conducted for the XGBoost modeling approaches.

We utilized integrated gradients to interpret which words 
were found to be important for individual sentences 
when utilizing the BERT model, which we applied on the 
diagnostic text. Integrated gradient is a backpropagation-
based method that is used for identifying salient features. 
Many traditional methods for ascertaining important 
predictors will take the gradient of the model prediction 
with a defined input ∇ ( )F x

� , which serves as a linear 
approximation to the complex functional approximation, 
and multiply by the original input, �x, to yield the 
predictor specific importance (

� �
�x F x∇ ( )). However, 

this is less than ideal when 
�
x exists in the domain where 

the gradient saturates and also has no baseline for 
comparison. Integrated gradients, related to shapley 
values, overcome these two issues by first establishing a 
noninformative baseline/counterfactual x0

���
; then, they 

successively sum more informative gradients along the 
path from the baseline to the observation xi

��
 to yield the 

overall importance of the predictors:

IG x x x F x x xi i i

�� �� ��� ��� �� ���
( ) = −( ) ∇ + −( )( )

=

=

∫0
0

1

0 0*
α

α

α

Much of the success of the BERT methodology can be 
attributed to a neural network modeling approach known 
as the Transformer. As input to the model, each word 
is mapped to a semantic vector that captures the word’s 
meaning, which is updated throughout the training 
process. The Transformer contextualizes the set of word 
vectors in a report through its encoder and decoder layers. 
The encoder and decoder layers are further decomposed 
into self-attention and feed-forward neural networks. 
Self-attention mechanisms capture dependencies between 
words within the sentence by forming a weight between 
each word and individually all of the words of the 
sentence; that is, identifying the most relevant words for the 
understanding of the current word. This is accomplished 
by estimating a weight between two words of a sentence. 

Here, matrix operations may be employed to speed up the 
calculation of the self-attention.

Suppose the word embeddings of the sentence are 
encapsulated in matrix 

�
X , where rows indicate words and 

columns are the latent dimensions. Parameterized query, 
key, and value matrices are generated via the following 
operations:

� �
Q W XQ=

� �
K W XK=

� �
V W XV=

The query and key vectors are utilized as follows to 
construct the paired attention weights across a sentence, 
which could be thought of as learning/estimating a 
weighted unipartite matrix, attention matrix 

�
A ( dk  is used 

for further normalization):

�
� �

A softmax
QK

d

T

k

=










�
A is the estimate of the word-to-word dependencies in the 
sentence for this particular operation. The embeddings of 
the sentence are updated/contextualized by multiplying 
this self-attention matrix with the embedding values:

� � �
Z AV=

Usually, these self-attention matrices represent particular 
dependencies within the sentence. However, there may 
exist many complex dependencies to build a global 
understanding of the sentence/paragraph/report. As such, 
multiple self-attention “heads” are generated by allowing 
the existence of many query, key, and value matrices per 
encoding layer. We visualized the output of the estimated 
self-attention matrices in our article to demonstrate some 
of the learned dependencies. We have also omitted from 
this discussion nuanced specifics pertaining to the decoder 
(eg. retaining the query and key matrices from the encoder 
layers), residual connections, and positional embeddings, 
as they do not necessarily pertain to methods to interpret 
the output of the BERT model for a pathology report.

Attention across document subfields is entirely separate 
from BERT self-attention mechanisms. As mentioned in 
the main text, attention weights are utilized to decide how 
much information from report subsections to incorporate 
into the final global representation of the report. A weight 
matrix W , an nz (number of latent dimensions) by one 
matrix (alternatively substituted by a gating neural 
network fgate, as detailed in the main text), serves as a 
filter/gate to score how important a subsection is. The 
scores for each of the report subfields are softmaxed to 
assign a probability to each subfield for incorporation, 

�
α .  

The gate is learned via model parameter updates during 



backpropagation. Importantly, we report the attention 
weights 

�
α  to communicate the importance of specific 

report subsections.

Supplementary Results

Supplementary Ancillary CPT Code Prediction Results
XGBoost (median AUC=0.997) outperformed BERT 
(median AUC=0.995) statistically (p<0.001) when 
utilizing all of  the report subfields but given the high 
predictive performance these differences were not 
meaningful. Plots and tabulated statistics of  the Youden 
Index derived from sensitivity/specificity of  these 
algorithms across all of  the validation folds confirm that 
utilizing information from all report subfields is better 
than utilizing information from the diagnostic text for the 
ancillary codes (Supplementary Table 10; Supplementary 
Figures 8–10). Averaging Youden’s J statistic across 
all XGBoost and deep learning models, codes for 
immunohistochemistry/cytochemistry (CPT 88341, 
88342, 88344, 88360), surgical pathology (CPT 88305), 
and flow cytometry (CPT 88188, 88189)  performed 
worse versus other ancillary procedural codes; however, 
the performance improved considerably when including 
all report subfields for these codes (Supplementary Tables 
6–9). Interestingly, the code for cytogenetic testing (CPT 
88271) also experienced large improvements in sensitivity 
and specificity by incorporating other report subfields 
(Supplementary Table 10).

Supplementary Pathologist Prediction Results
After subsetting to 64,583 documents that correspond to 
the 20 pathologists with the most sign-outs, the prediction 
of the pathologist who had written each pathology report 
was done with a reasonably high accuracy for the XGBoost 
and BERT approaches. BERT (macro-f1=0.72) performed 
comparably to XGBoost (macro-f1=0.71) for the prediction 
of pathologists on the diagnostic text; BERT (macro-f1=0.77) 
and XGBoost (macro-f1=0.78) also performed comparably 
when considering all report subfields (all-fields) 
(Supplementary Figure 11). Model performance improved 
when incorporating all report subsections. Interestingly, these 
pathologist-specific subtleties could not be distinguished 
via the SVM approach (Supplementary Tables 4 and 8). 
Comparisons between the embeddings formed by the All-
Fields model and those using UMAP (Supplementary Figure 
13A-B) show how the BERT methodology is able to extract 
features that are more pathologist specific, as compared 
with utilizing a bag-of-words approach. Comparing which 
pathologists were misclassified via the confusion matrix 
(Supplementary Figure 7 B) and corroboration with cross-
tabulations with procedural codes (Supplementary Figure 7 
A) demonstrates that pathologists with similar subspecialties 
were less distinguishable; however, individual patterns 
persist. We visualized some of the patterns that BERT was 
able to find in sample sentences via Integrated Gradients 
and important words via the XGBoost for select pathologists 
using SHAP (Supplementary Figure 14).

Supplementary Figure 1: Boxenplots of the number of words for each subfield across pathology report corpus; BERT cutoff word count of 512 words 
represented by a horizontal dashed line



Supplementary Figure 2: CPT Code Statistics: A) Bar chart representing breakdown of the corpus by assigned codes (proportion); B) Changes in 
primary CPT codes over time, from 2017-2020, aggregated counts by week

Supplementary Figure 3: Strength of correlation between topics and CPT codes denoted by the size and color of each circle; large blue circles 
indicate strong positive associations, whereas large red circles indicate strong negative associations; associations for: A) diagnostic text; B) all-
fields text



Supplementary Figure 5: Strength of correlation between topics and individual pathologists denoted by the size and color of each circle; large blue 
circles indicate strong positive associations, whereas large red circles indicate strong negative associations; associations for: A) diagnostic text; B) 
all-fields text

Supplementary Figure 4: Strength of correlation between topics and HDBSCAN report clusters denoted by the size and color of each circle; large 
blue circles indicate strong positive associations, whereas large red circles indicate strong negative associations; associations for: A) diagnostic text; 
B) all-fields text



Supplementary Figure 7: Pathologist Associations: A) Clustered heatmap between associations/co-occurrence between pathologist and CPT codes 
establishes “subspecialties,” where pathologists who order similar CPT codes are likely of similar subspecialty/subspecialties; left color track is 
colored by established subspecialty clusters; B) Clustered confusion matrix for pathologist prediction task (BERT diagnostic-text model); rows 
indicate true pathologists, whereas columns indicate predicted pathologist; row and column color bars utilize established “subspecialty” clusters; 
since the clustering of rows and columns place pathologists of a similar subspecialty together, this indicates that the misclassification occurred 
mostly within subspecialties

Supplementary Figure 6: Strength of correlation between CPT codes and HDBSCAN report clusters denoted by the size and color of each circle; 
large blue circles indicate strong positive associations, whereas large red circles indicate strong negative associations; associations for: A) diagnostic 
text; B) all-fields text



Supplementary Figure 9: Histogram of pairwise comparison (subtraction) of AUC statistics (averaged across cross-validation folds) between sets 
of algorithms / utilized document subfields; histogram tabulates AUC differences for individual codes, of which there are 38 values to be distributed 
among the histogram bins; reported relative performance gain (comparison/subtraction) of: A) XGBoost using all report subfields versus BERT using 
all report subfields, B) XGBoost using diagnostic subfield versus BERT using diagnostic subfield, C) BERT using all report subfields versus BERT using 
diagnostic subfield, D) XGBoost using all report subfields versus XGBoost using a diagnostic subfield

Supplementary Figure  8: Ancillary CPT Code Model Performance: 
Grouped boxenplots demonstrating the performance of machine-
learning models (BERT, XGBoost, SVM) across CPT codes (distribution 
of AUCs reported for each CPT code), given the analysis of either the 
diagnostic text (blue) or all report subfields (orange)



Supplementary Figure 12: SHAP interpretation of XGBoost predictions: Word clouds demonstrating words found to be important using the XGBoost 
algorithm for the prediction of specific ancillary CPT codes, found via shapley attribution; important words pertinent to each CPT code indicated by 
the relative size of the word in the word cloud; word clouds visualized for three example CPT codes: A-B) CPT code 88189; C-D) CPT code 88313; 
E-F) CPT code 88360; visualizations performed for A,C,E) diagnostic text only, B,D,F) all report subfields (all-fields)

Supplementary Figure 11: Averaged weighted AUC statistics across pathologists/cross-validation folds for the prediction of top 20 pathologists with 
most sign-outs; reports for BERT and XGBoost for the diagnosis and all-fields models

Supplementary Figure 10: Scatterplot of sensitivity and specificities for each CPT code, after averaging across CPT codes; the individual point 
is a CPT code; the point is colored by whether it was predicted from the diagnostic text or all report subfields; histograms at plot margins indicate 
marginal distribution of code sensitivity/specificity



Supplementary Figure 13: Pathology reports colored by practicing pathologist: UMAP embeddings of pathology reports, colored by the pathologist 
who had written the report; each point indicates a pathology report, projected from use of either: A) Bag-Of-Words / tf-idf count matrix; B) embeddings 
after integrating information from all report subsections via the BERT all-fields model

Supplementary Figure  14: Interpretation of BERT and XGBoost models for pathologist prediction: Word cloud output of top words (size of 
word indicates importance; importance determined using SHAP) for XGBoost model prediction of the specific pathologist and Integrated Gradients 
highlighting of text via the BERT diagnostic model for select pathologists: A) Pathologist 5; B) Pathologist 20



Supplementary Table 3: Correlation between length of the word document and the number of uniquely assigned codes; broken 
down by a reported cluster using the diagnostic fields and all report fields

Cluster
Diagnostic clusters All-field clusters

Correlation p-value Correlation p-value
1 -0.09 1.6E-26 0.39 5.7E-178

2 0.07 1.6E-02 -0.05 7.1E-02

3 -0.30 3.4E-85 0.01 7.1E-01

4 -0.05 2.8E-02 0.02 3.9E-01

5 0.18 6.9E-93 0.00 9.6E-01

6 0.21 9.4E-37 0.01 2.9E-01

7 0.27 2.5E-26 0.08 1.7E-05

8 0.14 6.3E-137 0.57 4.9E-93

9   0.10 1.0E-28

10   0.31 5.3E-113

11   0.32 1.2E-33

12   0.16 1.0E-23

13   0.48 5.1E-98

14   0.09 3.9E-07

15   0.32 0.0E+00

Supplementary Table 2: Changes in primary CPT code assignment over time; model fits for several logistic regression models, 
modeling time as years since 2017 (continuous) and whether a CPT code was assigned on a specific day as the dichotomous 
outcome variable
CPT Code B SE P-value CI [2.5%] CI [97.5%]
88300 -0.050 0.037 0.172 -0.122 0.022

88302 0.135 0.053 0.012 0.030 0.239

88304 0.096 0.020 <0.001 0.056 0.136

88305 0.004 0.009 0.687 -0.014 0.021

88307 -0.004 0.018 0.818 -0.039 0.031

88309 -0.043 0.041 0.298 -0.123 0.038

Supplementary Table  1: Recording the percent missingness of each report subsection before removing reports lacking 
a diagnostic section. Summary measures (median, 1st quartile, 3rd quartile) for the number of words in each document 
subsection (where the subfield existed) and the percentage of documents whose length exceeded 512 words
Report subfield Missingness 

before removal
Median word count 1st Q Word count 3rd Q Word count Exceeds 

BERT max 
words

ADDENDUM DISCUSSION          96.2% 84 47 121 0.000%

ADDITIONAL STUDIES     86.6% 78 11 92 0.039%

CLINICAL INFORMATION         5.3% 25 18 61 0.000%

DIAGNOSIS 3.5% 23 13 28 0.022%

DISCUSSION                   81.7% 36 16 68 0.017%

FINAL DIAGNOSIS              99.9% 235 186 313 0.000%

FROZEN SECTION               99.4% 2 1 11 0.000%

FROZEN SECTION DIAGNOSIS     99.3% 20 12 33 0.000%

INTERPRETATION               99.9% 135 91 141 0.000%

RESULTS   97.9% 248 216 268 2.198%

SPECIMEN PROCESSING          34.4% 38 27 64 0.389%

Complete Text (All Fields) 0% 119 68 158 1.768%



Supplementary Table  4: Top 10 words found for each LDA topic (“topic descriptors”); 10 topics were discovered for the 
diagnostic text; and 10 additional topics were discovered for all of the report subfields (All Fields)
Diagnostic textTopic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
0 tumor tissue test mucosa cervical colon nevus cells shave fragments

1 lymph right cancer gastric results polypectomy shave placenta cell benign

2 carcinoma left lesion esophagus cancer tubular excision cord carcinoma endocer-
vical

3 grade benign cervical chronic please adenoma left umbilical left evidence

4 nodes excision please normal guidelines polyp right vessel right cervical

5 prostatic soft results within test hyperplastic melanocytic acute specimen effect

6 left breast consensus limits consensus ascending changes seen basal squamous

7 right fallopian management abnormality screening sigmoid compound three squamous dysplasia

8 identified inflam-
mation

http://www.asccp.org diagnostic manage-
ment

fragments specimen grams discussion mucosa

9 invasive resection guidelines seen cells transverse back villous peripheral hpv

All-fields text Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
0 pap skin tissue tissue pap tissue biopsy positive clinical skin

1 hpv specimen biopsy polyp hist lymph diagnosis antibody pertinent shave

2 test clinical formalin submitted hpv margin specimen tissue total biopsy

3 hist 'clock quantity/size colon test specimen clinical clinical received left

4 screening excision sections/processing formalin screening tumor see studies fluid clinical

5 cervical submitted submitted clinical cervical right case diagnostic source right

6 clinical tissue labeled/fixative soft clinical left punch formalin specimen submitted

7 therapy left description labeled/
fixative

therapy node discussion staining preparation specimen

8 cancer nevus soft history cancer submitted submitted core description tissue

Supplementary Table 5: Confusion matrices for each of the modeling approaches for primary CPT code prediction; aggregated 
across test sets of cross-validation folds; note how for BERT and XGBoost modes, misclassifications are mostly by codes of a 
similar case complexity

Predicted
Diagnosis All Fields

88302 88304 88305 88307 88309 88302 88304 88305 88307 88309

TRUE BERT 88302 357 25 27 3 0 356 29 24 3 0

88304 19 3594 322 92 2 18 3568 321 118 4

88305 21 664 50434 392 20 16 614 50490 388 23

88307 3 148 257 3247 36 3 131 253 3249 55

88309 2 10 29 96 123 1 3 27 94 135
XGBoost 88302 338 29 45 0 0 334 33 44 1 0

88304 10 3322 616 78 3 12 3418 515 82 2

88305 19 387 50867 250 8 8 376 50921 221 5

88307 2 149 522 2989 29 0 116 366 3178 31

88309 1 9 46 100 104 0 5 38 97 120
SVM 88302 45 59 289 19 0 56 84 243 29 0

88304 20 3384 436 189 0 3 3312 618 96 0

88305 16 1516 48712 1287 0 13 1068 49382 1068 0

88307 5 299 774 2613 0 11 373 736 2571 0

88309 1 18 81 160 0 0 20 98 142 0



Supplementary Table 6: Summary of distribution of AUCs across ancillary CPT codes for BERT, XGBoost, and SVM prediction 
models for diagnostic and all-fields text
Model Report subfields Median 1st Quartile 3rd Quartile
BERT Diagnosis 0.990 0.973 0.995

 All-Fields 0.995 0.985 0.999

XGBoost Diagnosis 0.985 0.974 0.994

 All-Fields 0.997 0.994 0.999

SVM Diagnosis 0.966 0.954 0.984

 All-Fields 0.977 0.957 0.992

Supplementary Table 7: Confidence intervals of 1000-sample nonparametric bootstrap of area under the receiver operating 
characteristic curve for each algorithm (BERT, XGBoost and SVM) and for each report type (Diagnosis and All-Fields); each 
AUC was averaged across the 5 cross-validation folds with the same random seed set for sampling values within each CV fold 
for each code/group of pathologists; ancillary CPT code and descriptions of codes listed on the left, in addition to the weighted 
AUC across 20 pathologists

AUCs ( ± SE)
BERT XGBoost SVM

Code Description Diagnosis All-Fields Diagnosis All-Fields Diagnosis All-Fields
85060 Blood smear interpretation by physi-

cian with written report
0.998 ± 0.0002 0.9994 ± 0.0001 0.9989 ± 0.0002 0.9996 ± 0.0001 0.9983 ± 0.0002 0.9968 ± 0.0012

85097 Bone marrow, smear interpretation 0.9996 ± 0.0001 0.9994 ± 0.0001 0.9989 ± 0.0005 0.9997 ± 0.0 0.9985 ± 0.0001 0.9941 ± 0.0014

87491 Detection test for chlamydia 0.9905 ± 0.0008 0.9984 ± 0.0008 0.9898 ± 0.001 0.9996 ± 0.0002 0.9872 ± 0.0013 0.9819 ± 0.0042

87591 Detection test for Neisseria gonor-
rhoeae (gonorrhoeae bacteria)

0.9905 ± 0.0008 0.9994 ± 0.0001 0.9898 ± 0.001 0.9996 ± 0.0002 0.9872 ± 0.0013 0.9819 ± 0.0042

87624 Detection test for human papilloma-
virus (hpv)

0.9968 ± 0.0006 0.9973 ± 0.0003 0.9958 ± 0.0004 0.9984 ± 0.0002 0.9778 ± 0.0017 0.988 ± 0.0016

88108 Cell examination of specimen 0.9802 ± 0.0017 0.999 ± 0.0003 0.9808 ± 0.0008 0.9975 ± 0.0015 0.9717 ± 0.0026 0.9989 ± 0.0001

88112 Cell examination of specimen 0.9934 ± 0.0005 0.9991 ± 0.0001 0.9935 ± 0.0002 0.9995 ± 0.0 0.9887 ± 0.0004 0.9959 ± 0.0008

88141 Cytopathology, cervical or vaginal 
(any reporting system), requiring 
interpretation by physician

1.0 ± 0.0 0.9998 ± 0.0001 0.9996 ± 0.0001 0.9999 ± 0.0 0.9988 ± 0.0004 0.9923 ± 0.0014

88142 Pap test (Pap smear) 0.9886 ± 0.0017 0.9938 ± 0.0016 0.9826 ± 0.0017 0.9951 ± 0.0018 0.9663 ± 0.0018 0.9501 ± 0.0131

88172 Evaluation of fine needle aspirate 0.9825 ± 0.0011 0.999 ± 0.0002 0.9837 ± 0.0011 0.999 ± 0.0006 0.9749 ± 0.0015 0.9903 ± 0.001

88173 Evaluation of fine needle aspirate 
with interpretation and report

0.9867 ± 0.0024 0.9988 ± 0.0002 0.9899 ± 0.0005 0.9996 ± 0.0 0.9818 ± 0.001 0.997 ± 0.0006

88175 Pap test 0.998 ± 0.0005 0.9976 ± 0.0003 0.9972 ± 0.0003 0.9981 ± 0.0003 0.9932 ± 0.0009 0.9847 ± 0.002

88177 Pap test 0.9774 ± 0.0023 0.9993 ± 0.0001 0.9783 ± 0.0031 0.9998 ± 0.0 0.9624 ± 0.0044 0.9955 ± 0.0003

88184 Flow cytometry technique for DNA 
or cell analysis

0.9731 ± 0.0082 0.9848 ± 0.0022 0.9738 ± 0.0025 0.9942 ± 0.0012 0.9699 ± 0.0029 0.9708 ± 0.0033

88185 Flow cytometry, cell suXGBace, cyto-
plasmic, or nuclear marker, technical 
component only

0.9629 ± 0.0075 0.9841 ± 0.0022 0.9711 ± 0.0027 0.994 ± 0.0008 0.9594 ± 0.003 0.9692 ± 0.0034

88188 Cytopathology procedures 0.9428 ± 0.0121 0.9773 ± 0.0029 0.9589 ± 0.0041 0.9875 ± 0.0024 0.9593 ± 0.0041 0.9486 ± 0.0029

88189 Flow cytometry technique for DNA 
or cell analysis

0.9043 ± 0.0295 0.9753 ± 0.0052 0.9199 ± 0.0101 0.9785 ± 0.0073 0.9611 ± 0.0074 0.9471 ± 0.0118

88271 FISH DNA probe, each 0.9943 ± 0.002 0.9906 ± 0.0025 0.9735 ± 0.0055 0.995 ± 0.0024 0.9717 ± 0.0062 0.9768 ± 0.0061

88274 Genetic testing 0.9951 ± 0.0011 0.9943 ± 0.003 0.9755 ± 0.0059 0.9941 ± 0.0036 0.9775 ± 0.0058 0.9922 ± 0.0029

88300 Pathology examination of tis-
sue using a microscope, limited 
examination

0.9983 ± 0.0011 0.9969 ± 0.0008 0.9967 ± 0.0012 0.9978 ± 0.0009 0.9846 ± 0.0025 0.9868 ± 0.0023

88302 Pathology examination of tissue 
using a microscope

0.9768 ± 0.0083 0.9824 ± 0.0036 0.9887 ± 0.0028 0.9934 ± 0.0019 0.9581 ± 0.0047 0.9643 ± 0.0042

88304 Pathology examination of tissue 
using a microscope, moderately low 
complexity

0.991 ± 0.0011 0.9877 ± 0.0007 0.987 ± 0.0009 0.9907 ± 0.0006 0.9534 ± 0.0019 0.9509 ± 0.0021



AUCs ( ± SE)
BERT XGBoost SVM

Code Description Diagnosis All-Fields Diagnosis All-Fields Diagnosis All-Fields

88305 Pathology examination of tissue 
using a microscope, intermediate 
complexity

0.9726 ± 0.0012 0.9775 ± 0.0005 0.97 ± 0.0006 0.9889 ± 0.0003 0.1087 ± 0.0012 0.0807 ± 0.001

88307 Pathology examination of tissue 
using a microscope, moderately high 
complexity

0.9942 ± 0.0006 0.9928 ± 0.0004 0.9925 ± 0.0004 0.995 ± 0.0003 0.9614 ± 0.0015 0.968 ± 0.0013

88309 Pathology examination of tissue 
using a microscope, high complexity

0.9966 ± 0.0009 0.9885 ± 0.0021 0.9949 ± 0.0008 0.9967 ± 0.0007 0.9608 ± 0.0034 0.9777 ± 0.0022

88311 Preparation of tissue for examination 
by removing any calcium present

0.9906 ± 0.0033 0.9972 ± 0.0003 0.9943 ± 0.0009 0.9991 ± 0.0002 0.9316 ± 0.0035 0.9741 ± 0.0019

88312 Special stained specimen slides to 
identify organisms, including inter-
pretation and report

0.9766 ± 0.0025 0.9792 ± 0.0012 0.9692 ± 0.0017 0.9972 ± 0.0004 0.8974 ± 0.0038 0.9063 ± 0.0031

88313 Special stained specimen slides to 
examine tissue, including interpreta-
tion and report

0.9577 ± 0.0065 0.9854 ± 0.0013 0.9619 ± 0.0023 0.9953 ± 0.0006 0.9163 ± 0.0039 0.9234 ± 0.0036

88321 Surgical pathology consultation and 
report

0.9945 ± 0.0007 0.998 ± 0.0007 0.9889 ± 0.001 0.9994 ± 0.0001 0.9483 ± 0.0033 0.9931 ± 0.0013

88331 Pathology examination of tissue 
during surgery

0.949 ± 0.0135 0.9958 ± 0.0012 0.9834 ± 0.0019 0.9996 ± 0.0002 0.9465 ± 0.0044 0.9592 ± 0.0024

88332 Pathology examination of specimen 
during surgery

0.8971 ± 0.0485 0.9821 ± 0.0063 0.974 ± 0.0059 0.9972 ± 0.0008 0.9077 ± 0.0186 0.9666 ± 0.0084

88333 Pathology examination of tissue 
specimen during surgery

0.9924 ± 0.0011 0.9963 ± 0.0018 0.9883 ± 0.0027 0.999 ± 0.0008 0.9827 ± 0.0021 0.979 ± 0.0076

88341 Immunohistochemistry or immunocy-
tochemistry, per specimen

0.9353 ± 0.0034 0.96 ± 0.0012 0.9273 ± 0.0017 0.9901 ± 0.0004 0.8514 ± 0.0031 0.9262 ± 0.0022

88342 Immunohistochemistry or immuno-
cytochemistry, per specimen; initial 
single antibody stain procedure

0.9384 ± 0.0024 0.9925 ± 0.0003 0.9319 ± 0.0011 0.9955 ± 0.0002 0.8404 ± 0.0021 0.9471 ± 0.0015

88344 Special stained specimen slides to 
examine tissue

0.9833 ± 0.0117 0.9824 ± 0.0075 0.9747 ± 0.0061 0.9942 ± 0.0028 0.9664 ± 0.0091 0.9627 ± 0.0091

88346 Antibody evaluation 0.9971 ± 0.0028 0.9972 ± 0.0018 0.9966 ± 0.0026 0.9977 ± 0.0023 0.987 ± 0.0045 0.989 ± 0.005

88350 Antibody evaluation 0.9999 ± 0.0001 0.9998 ± 0.0 0.9993 ± 0.0004 0.9999 ± 0.0 0.9852 ± 0.0048 0.9933 ± 0.0037

88360 Microscopic genetic analysis of 
tumor; morphometric analysis, tumor 
immunohistochemistry

0.7182 ± 0.0282 0.9853 ± 0.0022 0.9761 ± 0.0027 0.9944 ± 0.0013 0.9578 ± 0.0042 0.9564 ± 0.0048

 Top 20 pathologists 0.984 ± 0.0002 0.9877 ± 0.0002 0.9823 ± 0.0002 0.99 ± 0.0001 0.3778 ± 0.0007 0.3726 ± 0.0007

Supplementary Table 7: Contd

Supplementary Table 8: Wilcoxon tests for significance of relative performance gains (distribution of paired AUC differences 
for codes between two algorithms/report subfield combinations); all Wilcoxon tests were one-sided (algorithm 1 / selected 
subfields performance greater than algorithm 2 / selected subfields performance) to see which models perform the best for 
CPT code prediction

Algorithm 1 Algorithm 2
Name Report fields Name Report fields P-Value
XGBoost All fields BERT All fields 2.8E-07
XGBoost Diagnosis BERT Diagnosis 6.4E-01

BERT All fields BERT Diagnosis 4.2E-05
XGBoost All fields XGBoost Diagnosis 4.0E-08
BERT All fields SVM All fields 4.0E-08
BERT Diagnosis SVM Diagnosis 6.4E-05
SVM All fields SVM Diagnosis 6.8E-03



Supplementary Table 9: Sensitivity/specificity for each algorithm/report subfield(s), averaged across cross-validation folds for 
each CPT code after optimization of Youden’s index to select the sensitivity/specificity

BERT XGBoost SVM
Diagnosis All fields Diagnosis All fields Diagnosis All fields

Code Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
85060 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

85097 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

87491 0.96 0.98 0.99 1.00 0.99 0.98 1.00 1.00 0.99 0.98 0.99 0.97

87591 0.99 0.98 0.99 1.00 0.99 0.98 1.00 1.00 0.99 0.98 0.99 0.97

87624 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.97 0.97 0.98

88108 0.84 0.95 0.99 0.99 0.99 0.95 0.99 1.00 0.99 0.95 1.00 0.99

88112 0.97 0.96 0.99 0.99 0.99 0.97 1.00 0.99 0.99 0.97 0.99 0.99

88141 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99

88142 0.95 0.89 0.99 0.97 0.99 0.93 0.97 0.97 0.99 0.93 0.94 0.95

88172 0.81 0.96 0.99 0.99 1.00 0.95 0.99 0.99 1.00 0.95 0.99 0.98

88173 1.00 0.97 1.00 0.99 1.00 0.97 1.00 0.99 0.99 0.97 0.99 0.99

88175 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 1.00 0.97 0.98

88177 0.83 0.95 1.00 0.99 0.99 0.95 1.00 1.00 0.98 0.95 1.00 0.99

88184 0.85 0.92 0.95 0.96 0.94 0.93 0.98 0.98 0.96 0.93 0.96 0.94

88185 0.71 0.90 0.95 0.95 0.94 0.93 0.98 0.97 0.96 0.92 0.95 0.95

88188 0.87 0.88 0.95 0.94 0.93 0.91 0.96 0.96 0.96 0.93 0.92 0.93

88189 0.77 0.73 0.94 0.95 0.88 0.88 0.95 0.97 0.95 0.95 0.92 0.95

88271 0.92 0.94 0.95 0.97 0.94 0.95 0.98 0.99 0.96 0.96 0.97 0.98

88274 0.96 0.94 0.97 0.99 0.95 0.95 0.99 0.99 0.97 0.97 0.98 0.99

88300 0.99 0.99 0.98 1.00 0.99 0.99 0.99 0.99 0.97 0.98 0.96 0.98

88302 0.90 0.98 0.94 0.96 0.96 0.97 0.96 0.97 0.95 0.93 0.93 0.92

88304 0.95 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.93 0.93 0.92 0.92

88305 0.94 0.90 0.96 0.92 0.93 0.91 0.95 0.95 0.20 0.68 0.18 0.70

88307 0.97 0.97 0.97 0.96 0.97 0.96 0.98 0.97 0.94 0.94 0.95 0.93

88309 0.96 0.97 0.96 0.97 0.97 0.97 0.98 0.98 0.94 0.95 0.96 0.95

88311 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.89 0.95 0.97 0.95

88312 0.84 0.88 0.93 0.94 0.93 0.92 0.98 0.98 0.85 0.86 0.84 0.84

88313 0.89 0.90 0.94 0.95 0.89 0.91 0.97 0.97 0.87 0.89 0.87 0.90

88321 0.98 0.95 0.99 0.99 0.96 0.95 1.00 1.00 0.91 0.91 0.99 0.99

88331 0.93 0.94 0.98 0.98 0.94 0.96 1.00 1.00 0.92 0.93 0.94 0.92

88332 0.92 0.93 0.96 0.95 0.94 0.94 0.99 0.99 0.87 0.95 0.95 0.96

88333 0.95 0.95 0.98 0.99 0.97 0.96 1.00 1.00 0.98 0.96 0.97 0.99

88341 0.84 0.83 0.91 0.91 0.85 0.85 0.96 0.95 0.80 0.80 0.90 0.89

88342 0.86 0.85 0.97 0.96 0.86 0.84 0.98 0.97 0.80 0.77 0.90 0.93

88344 0.95 0.97 0.96 0.97 0.94 0.94 0.97 0.98 0.95 0.97 0.94 0.98

88346 0.92 0.91 0.99 0.99 0.99 1.00 1.00 1.00 0.98 0.97 0.98 1.00

88350 0.80 0.94 1.00 1.00 0.99 1.00 1.00 1.00 0.97 0.98 0.99 1.00

88360 0.91 0.93 0.95 0.96 0.93 0.93 0.97 0.97 0.92 0.94 0.94 0.94



Supplementary Table 10: Additional performance statistics: First three numerical columns: Averaged sensitivity and specificity 
across the XGBoost and BERT algorithms to denote overall predictive performance for each CPT code; Average Youden 
calculated from the sensitivity and specificity; Final three numerical columns: Changes in sensitivity, specificity, and Youden 
when utilizing all report subfields versus the diagnostic text alone
Code Average sensitivity Average specificity  Average Youden Δ Sensitivity Δ Specificity Δ Youden
85060 1.00 1.00 0.99 0.00 0.00 0.00

85097 0.99 0.99 0.99 0.01 0.01 0.02

87491 0.99 0.99 0.97 0.02 0.02 0.04

87591 0.99 0.99 0.98 0.00 0.02 0.02

87624 0.98 0.99 0.97 0.00 0.00 0.00

88108 0.95 0.97 0.92 0.08 0.04 0.12

88112 0.99 0.98 0.97 0.01 0.02 0.04

88141 1.00 1.00 1.00 0.00 0.00 0.00

88142 0.98 0.94 0.92 0.01 0.06 0.07

88172 0.95 0.97 0.92 0.08 0.04 0.12

88173 1.00 0.98 0.98 0.00 0.03 0.03

88175 0.98 0.99 0.97 0.00 0.00 0.00

88177 0.95 0.97 0.93 0.09 0.05 0.14

88184 0.93 0.95 0.88 0.07 0.04 0.11

88185 0.90 0.94 0.84 0.14 0.05 0.19

88188 0.93 0.92 0.85 0.06 0.05 0.11

88189 0.89 0.88 0.77 0.12 0.16 0.28

88271 0.95 0.96 0.91 0.04 0.04 0.07

88274 0.97 0.97 0.94 0.02 0.04 0.06

88300 0.99 0.99 0.98 0.00 0.00 0.00

88302 0.94 0.97 0.91 0.02 0.00 0.02

88304 0.96 0.96 0.92 0.00 0.00 0.01

88305 0.94 0.92 0.86 0.02 0.03 0.04

88307 0.97 0.97 0.94 0.01 0.00 0.01

88309 0.97 0.97 0.94 0.00 0.00 0.01

88311 0.98 0.98 0.97 0.02 0.01 0.02

88312 0.92 0.93 0.85 0.07 0.07 0.14

88313 0.92 0.93 0.86 0.06 0.05 0.12

88321 0.98 0.97 0.96 0.03 0.04 0.07

88331 0.96 0.97 0.93 0.05 0.04 0.09

88332 0.95 0.95 0.90 0.04 0.03 0.07

88333 0.98 0.98 0.95 0.03 0.03 0.06

88341 0.89 0.88 0.78 0.09 0.09 0.18

88342 0.92 0.91 0.83 0.11 0.12 0.23

88344 0.95 0.97 0.92 0.02 0.02 0.04

88346 0.98 0.97 0.95 0.03 0.04 0.08

88350 0.95 0.98 0.93 0.10 0.03 0.13

88360 0.94 0.95 0.89 0.04 0.03 0.08



Supplementary Table 11: Classification reports for pathologist prediction models (BERT, XGBoost, SVM) for reported subfields 
(diagnostic/all fields)

BERT
Diagnosis All fields

Pathologist Precision Recall F1-Score Pathologist Precision Recall F1-Score
1 0.94 0.94 0.94 1 0.95 0.94 0.94

2 0.49 0.82 0.61 2 0.61 0.84 0.70

3 0.94 0.86 0.89 3 0.99 0.98 0.98

4 0.77 0.76 0.77 4 0.81 0.81 0.81

5 0.80 0.85 0.82 5 0.88 0.88 0.88

6 0.93 0.98 0.95 6 0.96 0.96 0.96

7 0.81 0.82 0.81 7 0.87 0.87 0.87

8 0.36 0.91 0.51 8 0.41 0.80 0.55

9 0.86 0.78 0.82 9 0.86 0.80 0.83

10 0.78 0.61 0.69 10 0.74 0.68 0.71

11 0.67 0.71 0.69 11 0.71 0.73 0.72

12 0.84 0.77 0.80 12 0.87 0.83 0.85

13 0.80 0.91 0.85 13 0.86 0.91 0.88

14 0.72 0.74 0.73 14 0.83 0.85 0.84

15 0.83 0.74 0.78 15 0.84 0.83 0.83

16 0.56 0.25 0.34 16 0.54 0.35 0.42

17 0.89 0.96 0.93 17 0.93 0.96 0.94

18 0.58 0.14 0.22 18 0.45 0.27 0.34

19 0.71 0.72 0.71 19 0.71 0.74 0.72

20 0.84 0.39 0.53 20 0.74 0.43 0.54

Accuracy 0.74 0.74 0.74 Accuracy 0.79 0.79 0.79

Macro Avg 0.76 0.73 0.72 Macro Avg 0.78 0.77 0.77

Weighted Avg 0.77 0.74 0.74 Weighted Avg 0.80 0.79 0.79

XGBoost

Diagnosis All fields

Pathologist Precision Recall F1-Score Pathologist Precision Recall F1-Score

1 0.92 0.88 0.90 1 0.94 0.89 0.91

2 0.67 0.66 0.67 2 0.68 0.76 0.72

3 0.90 0.85 0.88 3 1.00 1.00 1.00

4 0.81 0.76 0.78 4 0.80 0.83 0.81

5 0.74 0.89 0.81 5 0.86 0.91 0.88

6 0.94 0.98 0.96 6 0.97 0.98 0.97

7 0.88 0.77 0.82 7 0.92 0.88 0.90

8 0.36 0.87 0.51 8 0.51 0.73 0.60

9 0.72 0.88 0.79 9 0.79 0.86 0.82

10 0.80 0.62 0.70 10 0.76 0.67 0.72

11 0.75 0.77 0.76 11 0.78 0.76 0.77

12 0.73 0.81 0.77 12 0.79 0.87 0.83

13 0.83 0.76 0.79 13 0.92 0.87 0.90

14 0.78 0.68 0.73 14 0.91 0.83 0.87

15 0.75 0.73 0.74 15 0.83 0.82 0.82

16 0.50 0.32 0.39 16 0.56 0.47 0.51

17 0.69 0.52 0.59 17 0.88 0.76 0.81

18 0.69 0.21 0.32 18 0.58 0.42 0.48

19 0.71 0.74 0.72 19 0.71 0.75 0.73

20 0.83 0.38 0.53 20 0.70 0.51 0.59

Accuracy 0.73 0.73 0.73 Accuracy 0.80 0.80 0.80

Macro Avg 0.75 0.70 0.71 Macro Avg 0.79 0.78 0.78

Weighted Avg 0.75 0.73 0.72 Weighted Avg 0.80 0.80 0.80



BERT
Diagnosis All fields

Pathologist Precision Recall F1-Score Pathologist Precision Recall F1-Score

SVM

Diagnosis All fields

Pathologist Precision Recall F1-Score Pathologist Precision Recall F1-Score

1 0.59 0.62 0.60 1 0.45 0.50 0.47

2 0.38 0.36 0.37 2 0.10 0.00 0.00

3 0.56 0.57 0.56 3 0.86 0.84 0.85

4 0.33 0.16 0.22 4 0.20 0.18 0.19

5 0.39 0.52 0.44 5 0.24 0.73 0.36

6 0.36 0.56 0.44 6 0.34 0.65 0.45

7 0.09 0.04 0.05 7 0.00 0.00 0.00

8 0.36 0.80 0.49 8 0.34 0.92 0.49

9 0.49 0.67 0.57 9 0.28 0.79 0.41

10 0.34 0.09 0.14 10 0.18 0.05 0.07

11 0.44 0.32 0.38 11 0.23 0.32 0.26

12 0.24 0.36 0.29 12 0.21 0.24 0.23

13 0.00 0.00 0.00 13 0.00 0.00 0.00

14 0.00 0.00 0.00 14 0.00 0.00 0.00

15 0.23 0.42 0.30 15 0.26 0.11 0.16

16 0.30 0.18 0.23 16 0.28 0.04 0.07

17 0.00 0.00 0.00 17 0.00 0.00 0.00

18 0.06 0.02 0.02 18 0.18 0.03 0.05

19 0.32 0.49 0.38 19 0.00 0.00 0.00

20 0.07 0.02 0.03 20 0.11 0.00 0.00

Accuracy 0.35 0.35 0.35 Accuracy 0.32 0.32 0.32

Macro Avg 0.28 0.31 0.28 Macro Avg 0.21 0.27 0.20

Weighted Avg 0.29 0.35 0.30 Weighted Avg 0.24 0.32 0.24

Supplementary Table 11: Contd....



Supplementary Table 12: SHAP coefficients depicting relationships between the top 30 words that distinguish the primary CPT 
codes and their related CPT code: Positive value indicates positive association, whereas negative value indicates negative 
association between word and code; top codes determined by summing absolute SHAP value across CPT codes and test cohort

88302 88304 88305 88307 88309
Myocyte    2.337  

Excision pilomatricoma  -1.537 0.006   

Endocervical  -1.515  0.001 0.0

Ureter fresh    1.313  

Left ankle  0.45 -0.813   

Products conception  0.029  -1.161  

Biopsy -0.376 0.054 0.466 0.235 0.045

Specimen cm  -1.059 0.108   

Mesh 0.201 -0.001 -0.929   

Spleen   0.0 -1.085  

Diagnosis skin  0.025 0.006 0.168 -0.836

Reduction   1.081   

Termination  0.234 -0.846   

Toe clinical    -1.044  

Mucocele  1.013 -0.001   

Hemorrhoid  0.818 -0.177   

Fixative pilonidal  0.958 0.0   

Valve  -0.945 0.004   

Irregular 0.217 0.684 -0.048 -0.003  

Representative 0.032 0.259 0.484 0.015 0.148

Metatarsal resection   0.937   

Submitted skin -0.69 0.064 -0.044 -0.118  

Angioleiomyoma  -0.358  0.54  

Ovary serous    0.897  

Foreskin clinical  0.879    

Capsule excision 0.878     

Dcagnosis fibroma    0.874  

Transected 0.658  0.046 -0.159  

Mass provided   -0.756 0.083  

Excision suggestive  -0.819    


