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MOTIVATION Currently available pipelines for the analysis of calcium imaging data are of high quality.
However, most of them have limitations when it comes to selecting regions of interest (ROIs) around den-
drites or axons, use settings and parameters that are not intuitive for the end user and do not enable imme-
diate and extensive quality control of the ROIs. In addition, different packages are required for analyzing
one-photon and multi-photon data. No pipelines enable the identification of the same ROIs through entire
series of chronically recorded calcium imaging datasets. Because these are all important features neces-
sary for the in-depth analyses of calcium imaging data, we developed SpecSeg, a versatile and user-friendly
pipeline for calcium data analysis that encompasses all the features described above.
SUMMARY
Imaging calcium signals in neurons of animals using single- or multi-photon microscopy facilitates the study
of coding in large neural populations. Such experiments produce massive datasets requiring powerful
methods to extract responses from hundreds of neurons. We present SpecSeg, an open-source toolbox
for (1) segmentation of regions of interest (ROIs) representing neuronal structures, (2) inspection and manual
editing of ROIs, (3) neuropil correction and signal extraction, and (4) matching of ROIs in sequential record-
ings. ROI segmentation in SpecSeg is based on temporal cross-correlations of low-frequency components
derived by Fourier analysis of each pixel with its neighbors. The approach is user-friendly, intuitive, and
insightful and enables ROI detection around neurons or neurites. It works for single- (miniscope) and
multi-photon microscopy data, eliminating the need for separate toolboxes. SpecSeg thus provides an effi-
cient and versatile approach for analyzing calcium responses in neuronal structures imaged over prolonged
periods of time.
INTRODUCTION

The advances in in vivo dual-photon fluorescence microscopy

(Engert and Bonhoeffer, 1999; Svoboda et al., 1996) and the

development of genetically encoded fluorescent biosensors

(Chen et al., 2013; Mank et al., 2008) have revolutionized neuro-

biological research over the last two decades. The combination
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of these techniques has enabled the imaging of neuronal activity

in awake behaving animals over timespans up to many months.

This provides combined anatomical and functional information

at the cellular level for hundreds of neurons at the same time,

or at the dendritic, axonal, or synaptic level in more restricted

numbers of neurons (Cichon and Gan, 2015; Gambino et al.,

2014; Iacaruso et al., 2017; Jaepel et al., 2017; Jia et al., 2010;
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Petreanu et al., 2009; Szalay et al., 2016;Wilson et al., 2016;Win-

nubst et al., 2015). More recently, miniaturized single-photon

fluorescencemicroscopes, orminiscopes, are further expanding

the possibilities for analyzing neural activity during behavior in

freely moving animals (Aharoni et al., 2019; Cai et al., 2016;

Ghosh et al., 2011; de Groot et al., 2020; Liberti et al., 2017;

Resendez et al., 2016).

Themost-used approach is the imaging of changes in intracel-

lular calcium levels as a proxy for neuronal activity. This is

achieved by making use of genetically encoded calcium sen-

sors, such as GCaMP6 (Chen et al., 2013), whose fluorescent

properties change upon binding calcium. The mere size of the

obtained datasets, which consist of movies of calcium-indicator

fluorescence images, forms a considerable challenge for data

analysis. An important step in the analysis of calcium imaging

data is the identification of cell bodies or neurites in the image se-

quences. Ideally, one can identify the same structures in record-

ings performed at different days over prolonged periods of time,

enabling the assessment of changes in neuronal responses dur-

ing learning at the single-cell level. Identification of these regions

of interest (ROIs) is preferentially done in an automated fashion,

as manual segmentation is neither reproducible nor scalable.

Moreover, human annotators tend to include non-active ROIs

and miss active ROIs with low background fluorescence (Gio-

vannucci et al., 2019; Pachitariu et al., 2017). Automated ROI

identification requires robust detection algorithms with minimal

assumptions on the properties of ROIs to detect the circumfer-

ences of individual cells and neurites.

Various software packages have been published that accom-

plish this task, using different methods. Cell boundaries may

be detected by multiple coupled active contours (Reynolds

et al., 2017). Matrix factorization approaches (Giovannucci

et al., 2019; Maruyama et al., 2014; Petersen et al., 2018; Pnev-

matikakis et al., 2016; Zhou et al., 2018) determine the activity of

neurons and their delineation by considering fluorescence as a

spatiotemporal pattern that can be expressed as the product

of a matrix encoding location and a matrix encoding time.

Deep learning approaches (Apthorpe et al., 2016; Klibisz et al.,

2017; Mukamel et al., 2009) define ROIs based on neuron fea-

tures learned from data in which cells were manually detected.

Dictionary learning approaches make use of neuron templates

to identify ROIs (Pachitariu et al., 2017). Finally, correlation-

based approaches define ROIs based on activity correlations

between pixels (Kaifosh et al., 2014; Mishne et al., 2018; Smith

and Häusser, 2010; Spaen et al., 2019). All these methods

have their strengths but also some weaknesses. For example,

deep learning approaches that select ROIs based on shapes

must be trained for different types of data and may include neu-

rons fromwhich no signal can be extracted. Identifying ROIs with

highly variable shapes is complicated for most approaches

except those based on activity correlation. For most methods,

it is necessary to introduce significant adaptations to the soft-

ware to make it suitable for specific experimental settings, and

the underlying calculations that define the ROIs can be difficult

or impossible to track, making it difficult to select the optimal set-

tings. Correlation-based approaches are easy to understand and

require few predefined constraints but can be severely limited by

noise in the recordings.
2 Cell Reports Methods 2, 100299, October 24, 2022
In this paper, we describe SpecSeg, an open-source pipeline

(Figure 1) for calcium imaging data analysis. It makes use of an

ROI detection process that is based on cross-correlations of

low-frequency components, derived through Fourier transforms,

of each pixel tracewith its eight adjacent neighbors. It makes use

of our finding that spiking neurons can be identified by low-fre-

quency fluctuations below 0.4 Hz in the calcium signal. Our

approach is insensitive to noise, straightforward, and highly

insightful for the end user as it enables the visualization of the

ROI detection process. It enables the detection of ROIs around

irregular structures, such as dendrites and axons, and the pa-

rameters set by the users are intuitive (e.g., size, roundedness).

The pipeline also includes a user interface for quality control

and the manual splitting, addition, or rejection of ROIs, and a

tool to match ROIs in sequential imaging sessions (Figure 1).

Finally, the pipeline can be used for the analysis of data acquired

using multi-photon microscopes and single-photon miniscopes.

Together, this pipeline provides an efficient and user-friendly

approach for analyzing calcium responses in neuronal structures

imaged over prolonged periods of time.

RESULTS

Pipeline
Figure 1 shows the components of our pipeline for the analysis of

chronic calcium imaging datasets. The pipeline requires calcium

imaging data in SBX (Neurolabware) format. MATLAB functions

to convert series of TIFF or H5 files to SBX format are provided.

We use an adapted version of NoRMCorre (Pnevmatikakis and

Giovannucci, 2017) to motion correct SBX files.

The first step in the pipeline is ROI selection, which involves (1)

reorganization and temporal downsampling of the data to speed

up memory retrieval, (2) extraction of frequency components of

fluorescence traces for each pixel (‘‘pixel trace’’) by Fourier anal-

ysis and the creation of images representing their correlation with

those of neighboring pixels, (3) identification of peaks within the

images and the construction of preliminary contours (ROIs), and

(4) further ROI refinement based on correlations of raw fluores-

cence traceswithin each contour. The second step in the pipeline

is the ROI manager, a user interface for ROI inspection that has

tools for manually rejecting, splitting, or adding ROIs. The third

step is neuropil subtraction and signal extraction, and the final,

fourth, step is deconvolution of the signals, using maximum likeli-

hood spike estimation (MLspike) (Deneux et al., 2016).

In addition, a separate toolbox is included formatching ROIs in

sequential imaging sessions by aligning the images and

measuring the overlap of ROIs between different sessions. The

sensitivity of ROI matching can be changed easily with an over-

lap threshold and matching results can be evaluated and edited.

Below, each step in the pipeline is described in detail.

The MATLAB implementation of the toolbox and instructions

on how to install and use the software can be found at https://

github.com/Leveltlab/SpectralSegmentation.

ROI selection based on cross-spectral power
We established an approach for the automated segmentation

of ROIs in calcium imaging data based on the cross-spectral

power of the pixel trace. To develop the method, we made

https://github.com/Leveltlab/SpectralSegmentation
https://github.com/Leveltlab/SpectralSegmentation


Figure 1. Overview of the pipeline for automated region of interest (ROI) selection and signal extraction

After collection, calcium imaging data need to be motion corrected using NoRMCorre. ROI selection involves data reorganization, extraction of frequency

components of pixel traces, and the drawing and refinement of ROIs around the peaks identified in the images based on the frequency components. A user

interface enables the manual rejection, splitting, or adding of ROIs. Next, the neuropil is subtracted and the signal extracted and deconvolved. A toolbox for

matching of ROIs in repeated recordings is also provided.
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use of calcium imaging data acquired repeatedly using two--

photon microscopy in mice expressing the genetically encoded

calcium indicator GCaMP6f in the primary visual cortex (V1).

The first step (stacktranspose.m) is to transpose the image se-

quences to place time in the first dimension andwidth3 height in

the second, and to down-sample the data in time to approxi-

mately 1 Hz (DecimateTrans.m), using the MATLAB decimate

function (Mathworks). This way, each pixel trace is organized

in sequential order in memory and can be accessed rapidly,

speeding up the next steps in the process.
Next is the cross-spectral power calculation (spectral.m).

Each pixel trace is cut into overlapping 1-min segments, and a

discrete Fourier transformation is applied to each segment to

extract frequency components between 0.013 and 0.5 Hz, with

a bin width of 0.017 Hz. Then we calculate the cross-spectral

density function of each pixel with its eight neighbors, and

average these over all segments. Finally, the average cross-

spectral density functions are normalized with the variances of

each pixel and its neighbors, and the average cross-spectral po-

wer for each frequency component at each pixel is calculated
Cell Reports Methods 2, 100299, October 24, 2022 3
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(this estimate is a measure for how well pixels correlate with their

direct neighbors at each frequency component). This results in a

series of 30 images, each representing a different frequency

component.

These images of spectral components provide a better basis

for ROI selection around active neurons than the fluorescent

signal (Figures 2A and 2B). We find that spectral components

below 0.4 Hz are the most indicative for active neural elements

(Figures 2C–2F) (Chen et al., 2013). When we compose images

by translating the cross-spectral power of a particular low-fre-

quency component into brightness, active elements become

clearly separated from the background (Figures 2C and 2D),

even when their level of fluorescence is low (see the neuron in

the red box).

As a result, neurons may look different in cross-spectral im-

ages and often have a less pronounced dark central nuclear re-

gion. Low-frequency pixel correlations tend to show a central

maximum that declines to the border of a neuron (Figures 2K–

2N). In contrast, non-active neurons with high levels of fluores-

cence, which are visible in the average fluorescence projection

(see the neuron in the cyan box, Figures 2A–2F) and background

fluorescence in the neuropil signal disappear in the spectral im-

ages. ROIs can thus be selected by searching for the largest

local maxima in these spectral images and drawing contours

around them (see STAR Methods for details) (Figures 2K and

2M). Because the images of different frequency components

reveal different neurons and/or neuronal compartments, a com-

plete set of ROIs is created by adding up all ROIs detected in the

spectral images of all low-frequency components (Figure 2D).

The low-frequency components in the fluorescent signal are

due to the exponential decay of GCaMP6f, which, like various

other indicators, has a time constant in the order of 400 ms

(Chen et al., 2013). A theoretical model of the Fourier transform

and spectral power of calcium transients (Figure 2G; see Star

Methods) with a time constant based on this decay half time

make clear that the greatest power is expected to be found for

frequency components below 1 Hz. To illustrate this in more

detail, we simulated video data at a 1-Hz sampling rate. Simple

neurons were simulated with fluorescence spikes that had a

half time of around 500 ms. Noise was added to each pixel in

the simulated video. Power spectra for this video were calcu-
Figure 2. Comparison of fluorescence and spectral power images

(A) Average fluorescence projection. The colored squares indicate regions contai

neuron (green); a hardly recognizable but active neuron (red). Scale bar, 40 mm.

(B) Maximum fluorescence projection. Note that the neuron in the cyan region ca

(C and D) Cross-spectral images. Note that the silent neuron in the cyan region is h

can be easily identified.

(E) The cross-spectral power of the four example areas. Note the logarithmic y a

(F) Pixel traces of the example areas denoted in (A–D).

(G) A simple exponentially decaying signal over time (inset) with a half time of 40

(H) Simulated data are used in the SpecSeg pipeline. The thick black line belongs t

example pixel. A trace containing only noise and no calcium transients does not

(I) A trace with one calcium transient, with a half time around 600 ms, and noise p

pipeline.

(J) More transients produce higher spectral power values, with a different spectr

(K and M) Automatic ROI creation via the spectral image. The contour that is fou

threshold for pixel inclusion was too low, resulting in ROIs that are too large. Thes

(L and N) The pixel correlations of the ROIs displayed in (K andM). The color displa

local maximum. The pixel correlation threshold facilitates ROI refinement. The ne
lated using SpecSeg. ROIs with spikes show low-frequency

components (Figures 2H–2J). Noise in the fluorescence data

(Figure 2H) adds higher frequencies to the power spectra. The

low-frequency components are therefore a signature of spiking

neurons.

Automated ROI refinement
Some contours selected by SpecSeg may contain overlapping

or closely juxtaposed neuronal elements (Figures 2K and 2M),

especially if the density of cell bodies or neurites is high. To pre-

vent this problem, contours are further constrained based on

whether the fluorescence pixel traces (not the Fourier trans-

forms) within the contour are tightly correlated as would be ex-

pected if they are from the same neuron. We calculate this by

taking the median fluorescence trace of the pixel from the local

maximum (seedpoint) and its eight neighboring pixels and corre-

lating this trace with each pixel trace in the preselected contour.

This results in correlation values for every pixel in the ROI (pixel

R). Next, using a threshold set halfway the maximum correlation

strength and the correlation strength in a band of tissue sur-

rounding the ROI (this threshold can be adapted), a new contour

is selected around the best-correlated pixels. To save an esti-

mate of how well the fluorescence pixel traces are correlated in-

side an ROI, we square the pixel correlation values of an ROI and

average them, resulting in the mean R2 (Figures 2L and 2N). The

mean R2 indicates how much of the pixel variance is explained

by a shared signal within an ROI. We assume that this signal is

the actual activity trace of a neuron, possibly including a general

neuropil signal. The remaining variance is due to sources sur-

rounding a neuron influencing individual pixel traces separately.

Versatility of ROI selection approach
Restrictions can be applied to select ROIs around cell bodies,

such as the minimal and maximal surface area of the ROI or its

roundedness. Without these restrictions, thin elongated con-

tours can be easily selected, making it also possible to define

ROIs on dendrites and axons (Figures 3A–3C). We tested the

ROI selection approach on various datasets, obtained by two-

photon calcium imaging using a GRIN-lens in the visual thalamus

(Figure 3D) as well as single-photon miniscope imaging in the

pre-motor cortex (M2) and striatum (Figures 3E and 3F).
ning an easily recognizable active neuron (dark blue); a silent neuron (cyan); no

n be easily detected, while the neuron in the red region is hardly visible.

ardly visible in the cross-spectral images, while the active cell in the red region

xis.

0 ms, produces the highest values in low frequency.

o an ROI consisting of 61 pixels. The thin gray line is the signal belonging to one

contain low-frequency components.

roduces high values in the low-frequency spectral components in the SpecSeg

al profile.

nd around these putative neurons is displayed in red. For these neurons, the

e ROIs are automatically refined based on pixel correlation. Scale bar, 20 mm.

ys the pixel correlation of the signal from each pixel with the signal from the ROI

w contour, shown in white, is determined by the pixel correlation values.
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Figure 3. Examples of fluorescent signals,

cross-spectral power, and ROI selection in

datasets derived from different brain regions

and/or imaging techniques

Left column: maximum fluorescence projections.

Middle column: cross-spectral power, with different

frequency components in different colors. Right

column: cross-spectral power maximum projection,

with contours of ROIs in red.

(A) Two-photon microscopy of layer 5 apical tufts in

mouse V1.

(B) Two-photon microscopy of layer 5 apical trunks

in mouse V1.

(C) Two-photon microscopy of visual lateromedial

area axon projections to V1.

(D) Two-photon microscopy of visual thalamus us-

ing a GRIN-lens.

(E) Single-photon miniscope imaging in mouse

premotor cortex (M2).

(F) Single-photon miniscope imaging in mouse

striatum.
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Single-photon miniscope signals are generally more correlated

and contaminated by out-of-focus signals. Therefore, we

included an additional background correction tool for miniscope

data (BackgroundSubtractSbx.m) (Figures 3E and 3F).
6 Cell Reports Methods 2, 100299, October 24, 2022
We also tested how ROI selection is

influenced by the resolution of the record-

ings by imaging the same part of V1 at

different magnifications (Figure S1). We

found that ROI selection is quite consistent

at different resolutions. Only when ROI

sizes become very small (�25 pixels total,

so�53 5 pixels) does the number of ROIs

start to decrease significantly.

Comparing SpecSeg ROI selection in
two-photon imaging data with other
packages
To compare the efficiency of our method

with other packages, we first made use of

Neurofinder datasets (http://neurofinder.

codeneuro.org/). Our results (SegSpect0,

by Spectral Segmentation) scored in the

mid-range of all tested methods. Because

this seemed a relatively low score consid-

ering the good results we obtained with

SpecSeg on our own datasets, we as-

sessed the Neurofinder results in more

detail. We noticed that, in several Neuro-

finder datasets, SpecSeg missed over

50% of Neurofinder ‘‘ground-truth’’ ROIs

and found additional ROIs that were not

included as ground-truth ROIs, both

contributing to the lower score. To under-

stand why SpecSeg selected different

ROIs than those considered ground truth,

we calculated the mean R2 of the pixels

within the latter ROIs (Figures 4A and 4B)
(see STAR Methods). In the Neurofinder datasets, most

ground-truth ROIs had a mean R2 below 0.15, suggesting that

>85% of their signal variance originated from external sources

or noise. ROIs selected by SpecSeg (Figures 4C–4E) had much

http://neurofinder.codeneuro.org/
http://neurofinder.codeneuro.org/
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higher mean R2 values (Figure 4D). This resulted in only part of

the ROIs defined as ground truth in the Neurofinder datasets to

correspond with those drawn using SpecSeg. Importantly,

SpecSeg missed less than 1% of the ground-truth ROIs with a

mean R2 over 0.3. SpecSeg also selected additional ROIs repre-

senting active neurons that were not identified among the Neuro-

finder ground-truth ROIs. These ROIs had high pixel correlations

and showed clearly defined responses (Figure 4B). This shows

that it is crucial to select ROIs based on activity and not solely

on cell morphology visualized by the baseline fluorescence of

the calcium indicator, as some responsive neurons may be invis-

ible, especially when using calcium indicators with very low cal-

cium-free fluorescence, such as jGCaMP7c (Dana et al., 2019).

We also compared ROIs selected by SpecSeg with those ob-

tained using two frequently used software packages used for

ROI selection: Suite2p (Pachitariu et al., 2017) and CNMF/

CaImAn (Giovannucci et al., 2019). We analyzed the ROIs

selected by Suite2p, CNMF, and SpecSeg in a dataset of a

densely labeled population of cortical neurons in a transgenic

mouse line (Ai93 x G35-3-cre) (Madisen et al., 2015; Sawtell

et al., 2003). In the same dataset, CNMF detected 808 ROIs,

SpecSeg detected 693, and Suite2p detected 468 (Figure 4F).

SpecSeg ROIs that overlapped with CNMF or Suite2p had high

mean R2 values, while those that were selected by Suite2p and

CNMF, but missed by SpecSeg, had low mean R2 values (Fig-

ure 4G). We also compared the raw signal traces of the matching

ROIs (Figures 4H and 4I) that we extracted using all three

methods and calculated the correlation between the raw signals

using SpecSeg with those from CNMF and Suite2p (Figure 4I).

This shows that the signal traces SpecSeg extracts are highly

similar to those extracted with the other methods.

The main limitation in the above approaches to compare the

different methods is that reliable ground-truth data with which

the selected ROIs or extracted signals can be compared is lack-

ing. Therefore, we simulated a calcium imaging dataset using

NAOMi (Song et al., 2021) and tested how the three ROI selection

toolboxes performed at selecting ROIs and extracting the signal.

CNMF detected the highest number of total ROIs (1,079) and

found 238 of all 514 ground-truth somas. Suite2p detected 573

ROIs and identified 171 of the ground-truth somas. SpecSeg
Figure 4. Comparing SpecSeg

(A) Correlation of each pixel trace within an ROI with the median pixel trace at the

example ROIs with decreasing mean R2 from the 03.00 Neurofinder dataset.

(B) Fluorescence traces (blue) plotted against their SEM 3 3 (green) for the four e

non-significant.

(C) The amount of ROIs in a Neurofinder dataset, according to Neurofinder, Spe

(D) Mean R2 for ground truth ROIs in (C).

(E) Spectral image of the Neurofinder dataset, with SpecSeg ROIs encircled by r

(F) A very densely labeled population of cortical neurons in a transgenic mouse line

SpecSeg against those of Suite2p and CNMF. The horizontal line shows the num

(G) Themean R2 of all the ROIs in the dataset. ROIs that were not found by SpecSe

or CNMf, which did have a higher mean R2.

(H) Raw fluorescence traces from an ROI found with all three methods, with aver

(I) Pearson correlation of the raw fluorescence signals between all matched ROIs

(J) Using simulated calcium imaging data with NAOMi, we compared that groun

there were 514 neural somas near the focal plane.

(K) Mean R2 NAOMi ROIs. All methods find somas with high mean R2. The NAOM

(L) Denoised signals from one example ROI that was found by all three methods

(M) The denoised signal correlates to the NAOMi ground truth very well for all thr
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found 352 ROIs, of which 160 were ground-truth somas. This

means that, while CNMF detected most total and ground-truth

ROIs, precision was on the lower side as only 22% of all ROIs

matched ground-truth. Precision of Suite2p was higher, with

30% of ROIs matching ground-truth. SpecSeg detected the

lowest number of ROIs, but of those found 46% matched

ground-truth (Figure 4J). Also, on average, ROIs that SpecSeg

found had highermeanR2 values than those detected by Suite2p

and CNMF. The ground-truth cells that were missed by all

methods had very low mean R2 values (Figure 4K). We conclude

that, in this analysis, CNMF was the most sensitive approach,

while SpecSeg was the most precise.

When we compared the (denoised) signal traces of ROIs de-

tected by all three methods with the ground-truth signal traces

(Figure 4L), we observed that they were all highly correlated (Fig-

ure 4M). This implies that the extracted signals are not strongly

affected by bleed-through or neuropil contamination. The signal

traces from CNMF matched ground-truth data best, probably

because CNMF denoises the signal traces during the same

step as it identifies the ROIs. SpecSeg signal traces correlated

somewhat better than those from Suite2p, although both used

MLspike (Deneux et al., 2016) to denoise the traces. Together,

these results show that SpecSeg is very effective at selecting

ROIs from which a signal can be reliably extracted. This in-

creases the quality of the extracted signal and circumvents the

need for signal demixing, as all pixels included in the ROI are

highly correlated.

A possible caveatmay be that decreasing the size of the ROI to

exclude uncorrelated pixels, as SpecSeg does (as opposed to

signal demixing), could make the signal noisier or less reliable.

Therefore, we tested whether extracting the signals from a

smaller part of a cell would result in a lower signal quality. We

calculated the mean R2 as a proxy for signal quality from a large

set of ROIs from simulated NAOMi data, of which we cut an

increasing number of pixels (Figures S2A–S2C). We found that

signal quality only started to decrease once more than 50% of

the ROI was removed. In this analysis, 50% removal usually re-

sulted in the loss of the original seed point, causing the decline

in signal quality. This will never occur when SpecSeg removes

non-correlated pixels. A similar result was obtained using actual
local maximum of cross-spectral power and its eight neighboring pixels, of four

xample ROIs. Note that around a mean R2 of 0.2 or lower, the signal becomes

cSeg, and how many ROIs of the two were matched together.

ed (overlapping) and yellow (non-overlapping) contours.

is analyzed with SpecSeg, Suite2p, and CNMF.We compared the results from

ber of ROIs found with SpecSeg.

g had a lowmean R2, while there were also ROIs that were not found by Suite2p

age mean R2. The signal correlates well between methods.

.

d-truth dataset with SpecSeg, Suite2p, and CNMF. The horizontal line shows

i ROIs that were not found had a very low mean R2.

.

ee methods.
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calcium imaging data. We quantified this for large numbers of

simulated or real neurons (Figures S2D and S2E). We conclude

that extracting the signal traces from part of an ROI to exclude

contaminated signals does not significantly decrease the quality

of the signal.

Single-photon miniscope data analysis comparison with
CNMF-E
Single-photon miniscope imaging data present additional prob-

lems for ROI selection and signal extraction. Single-photon data

suffer heavily from out-of-focus fluorescence. Background fluo-

rescence can contain fluctuations that are stronger than the

signal from individual neurons themselves. The images also

contain vignetting, meaning they are darker near the edges.

These problems require additional processing. A widely used

single-photon analysis is CNMF-E (Zhou et al., 2018). With this

method, ROIs are initialized based on a heavily filtered image,

which is not suited for signal extraction. Therefore, the ROIs

are refined and the signal estimated by constrained matrix

factorization. SpecSeg uses a different approach, and first re-

moves the out-of-focus fluorescence and vignetting from the

video data itself via background subtraction. The background

subtraction estimates background fluorescence for every frame

individually by filtering each frame with a large disk (�200 mm).

The resulting background fluorescence image is subtracted

from the original frame (see STAR Methods). This approach de-

creases both out-of-focus fluorescence and vignetting, while

small signal sources remain present. The data from Figures 3E

and 3F were analyzed with both CNMF-E and SpecSeg. We

found that 60% of the ROIs had spatial footprints that were

more than 30% overlapping between the CNMF-E and

SpecSeg analysis. Matched ROIs are shown in Figures 5A and

5E. Unlike in the two-photon Neurofinder dataset comparison,

the mean R2 was not significantly higher in the SpecSeg ROIs

(Figures 5B and 5F), probably because CNMF-E also selects

ROIs based on activity, and not predominantly on anatomical

features. The extracted signal traces from ROIs correlated well

with those from corresponding ROIs from CNMF-E after back-

ground correction. Without background correction the signal

traces correlate little with CNMF-E or the SpecSeg corrected

signals (Figures 5C, 2D, 2G, and 2H).
Figure 5. Comparison of CNMF-E and SpecSeg for the analysis of sing

(A) Miniscope calcium-imaging data from premotor cortex (M2) are analyzed usi

shown. Colors indicate whether or not the ROIs identified by the twomethods ove

whose signals are shown in (D).

(B) Mean R2 of ROIs sorted by magnitude. Overlapping CNMF-E and SpecSeg R

different, also resulting in slightly different mean R2. Non-overlapping ROIs do no

(C) Signals extracted by SpecSeg are strongly correlated with the signals extracte

the CNMF-E signal results in lower r values. Background correction of the ROI sig

correlation. Pixel- and frame-wise background correction increases the correlatio

condition ‘‘randomized ROIs’’ is a control and correlates the background correct

(D) Signals from four example neurons, marked in (A), are shown. The r values re

CNMF-E signals. The correlation between the CNMF-E signal and the background

orange, while correlation with the raw SpecSeg signal is indicated in magenta.

(E) Same as (A) but for calcium imaging data from striatum.

(F) Mean R2 of ROIs sorted by magnitude.

(G) For the striatum data, ROI-wise signal correction is more effective than in the M

for more data to be used in the subtraction, making it more similar to the pixel-w

(H) The signal from the four marked ROIs marked in (E).

10 Cell Reports Methods 2, 100299, October 24, 2022
Speed
To test the speed of SpecSeg, we automatically timed the

different components of the pipeline on two different computers

analyzing 16 different datasets, varying in size from 6 to 51 giga-

bytes. Depending on the hardware used and the size of the data-

set, the different components of the analysis pipeline varied in

the time required for completion (Figure S3A). This makes it diffi-

cult to provide hard numbers about the speed at which the

SpecSeg pipeline processes the data. However, a useful indica-

tor is that 1 h of acquired data imaged at 15Hzwas processed by

automated analysis in approximately 5 h, from NoRMCorre mo-

tion correction until signal extraction. More than half of the time

was used by the NoRMCorre motion correction. We also as-

sessed how the dimensions of the video influenced the process-

ing time. We varied the size (from 70 3 70 to 300 3 300 pixels)

and the durations (from 166 to 5,500 s). The time for processing

was approximately linear with the size of the recording

(Figures S3B and S3C). We conclude that the speed of the

SpecSeg pipeline is not a bottleneck, which in most cases per-

forms the analysis overnight.

User interface for rejecting, splitting, or manually
defining ROIs
In the SpecSeg pipeline, we included a graphical user interface to

add, split, or delete ROIs. ROIs are not drawn around neurons that

are silent in the imaging session. Such neurons may need to be

included in certain analyses, for example in chronic experiments

in which these neurons are active in other recording sessions.

The user interface therefore enables adding ROIs of such neurons

(Figure S4A). Sometimes ROIs are created that envelop multiple

neurons (Figure S4B). To visually guide the splitting of these

ROIs, pixel traceswithin the ROI are correlatedwith four reference

points and correlation values are color coded. In the case inwhich

theROI containssignals frommore thanoneneuron, thisbecomes

clearly visible (Figure S4C). The correlation values are then used in

k-means clustering to split the ROI into multiple ROIs, or to delete

parts of the ROI, on the user’s request (Figure S4D). ROIs can also

be deleted entirely or marked to be kept when more stringent

criteria for ROI selection are applied. Finally, ROIs can be drawn

inmanually, or added by the computer, based on the fluorescence

orspectral image (FigureS4A).Any imagewith thesamesizeas the
le-photon miniscope data

ng both SpecSeg and CNMF-E. ROIs identified by SpecSeg and CNMF-E are

rlapped (see (B) for color coding). White numbers, identify the overlapping ROIs

OIs represent the same neurons. However, their spatial footprints are slightly

t have a significantly lower mean R2 than overlapping ROIs.

d by CNMF-E for overlapping ROIs. In contrast, correlating the raw signal with

nal with a surrounding donut ROI, as used for two-photon data, increases the

n even more, illustrating the importance of background correction. The fourth

ed signal from the SpecSeg ROIs with random ROIs from CNMF-E.

present the Spearman correlations between the ROI SpecSeg signals and the

-corrected SpecSeg signal (background-corrected signal in (C)) is indicated in

2 data, because the striatum has a sparser population of neurons. This allows

ise background correction.
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Figure 6. Neuropil estimation from surrounding pixels
(A) Spectral image with an example ROI (blue contour) and surrounding background (red contour). Scale bar, 40 mm.

(B) Fluorescence signal of the example ROI of (A). The neuropil signal is almost non-existent and neuropil correction does not change the ROI signal much.

(C) Correlation of neuropil signal with ROI signal depends on the distance from the ROI. The fluorescence signal was extracted from rings at increasing distances

around the example ROI, excluding other ROIs. Those background signals were correlated with both the raw signal of the ROI (blue line), andwith the ROI neuropil

corrected signal (green line). Neuropil correction slightly decreases the correlation of the background signal.

(D) Spectral image with a different example ROI (blue contour) and surrounding background (red contour).

(E) In this ROI, the neuropil signal caused more contamination than in the example in (A). Neuropil signal was larger because more dendrites are present, and the

ROI itself has a less strong signal. The neuropil correction seems necessary for this ROI.

(F) The neuropil correction decreases the correlation with the surrounding background signal.

(G) Correlation with neuropil signal of multiple ROIs, before and after neuropil correction. The distance between these shows the ‘‘neuropil correction effect.’’

(H) The neuropil correction effect is significantly smaller when an ROI has a stronger mean R2.
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recording can be loaded from the workspace into the user inter-

face and used as a source for ROI creation. During any of these

procedures, the user interface supports the visualization and

exploration of the data in various ways. The calcium trace from

any location can be plotted and immediately compared with cal-

cium traces from other chosen locations. Together, these addi-

tional tools provide themeans to adjust the ROI selection process

in an easy, insightful, and user-friendly way.

Neuropil correction and signal extraction
Once the ROIs are selected, the calcium signals from the cells

can be extracted by averaging all pixel traces within the ROI con-
tours. However, because calcium signals from the neuropil can

contaminate those of the cells, the neuropil signal is first sub-

tracted from the ROIs (Zhou et al., 2018). To achieve this, we

select an area surrounding each ROI, taking care to avoid other

ROIs (Figure 6, see STAR Methods for details). The average of

the pixel traces in this area is used as an estimate of the local

neuropil activity. After multiplying it by 0.7 it is subtracted from

the averaged fluorescence trace of the selected ROI. This

method of neuropil subtraction is widely used (Chen et al.,

2013; Keemink et al., 2018; Khan et al., 2018; Tegtmeier et al.,

2018). To test how neuropil subtraction alters the signal, we

correlated the pixel trace of ROIs with the pixel traces from the
Cell Reports Methods 2, 100299, October 24, 2022 11
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surrounding area (Figures 6A–6F). We found that, in most cases,

neuropil correction barely changed the ROI signal (Figures 6A–

6C). In some cases, however, the signal improved after neuropil

subtraction (Figures 6D–6F). There may be multiple reasons why

neuropil subtraction has less effect in our hands than in studies

by others (Pachitariu et al., 2017). One plausible reason could

be that ROIs with a relatively high mean R2, preferentially

selected by SpecSeg, are less influenced by neuropil contami-

nation. To test this, we plotted the effect of neuropil correction

on the signal extracted from ROIs against their mean R2

(Figures 6G and 6H). This revealed that, indeed, ROIs with higher

mean R2 are barely affected by neuropil correction while those

with low mean R2 are strongly affected. Thus, selection of

ROIs with high mean R2 has the added advantage that it reduces

the need for neuropil subtraction.

Automated retrieval of the same ROIs in chronically
recorded datasets
One major strength of multi-photon microscopy of calcium re-

sponses is that changes in neuronal activity can be followed at

the single-cell level over prolonged periods of time. For this, it is

essential to identify the same ROIs in chronic recordings. In large

datasets containingmany recordings, this is a daunting task to do

by hand, even after automated ROI selection. We therefore devel-

oped a toolbox for automated matching of ROIs in complete se-

ries of chronically recorded datasets. It involves the registration

of the sequential recordings with each other, through translation

and rotation of the spectral images. Next, overlapping ROIs are

searched for in all possible pairs of recordings in the series (i.e.,

each recording is compared with all other recordings). By thresh-

olding for a (user-defined) minimal amount of overlap between

each pair of ROIs in both directions, only ROIs with similar shapes

and sizes are matched. Finally, merging all the matched pairs of

ROIs results in a ‘‘matching matrix’’ containing the matched

ROIs that are found in the series of recordings. This multi-session

ROI matching tool can also be used with ROIs selected using

other tools (instructions can be found in the PDF manual).

An example of ROI matching in three sequential recordings of

V1 neurons, performed with 2–4 weeks in between sessions, is

shown in Figure 7. In these color-coded images, many cells

can be retrieved in all three recordings. However, some neurons

are not retrieved in one or two of the recordings, as indicated by

the triangles. This may be caused by various factors, such as the

precise angle and depth of the recording, changes in viral

expression of the calcium indicator, or the lack of activity of a

neuron during one of the recordings.

Comparing ROIs between recordings
For a quantitative assessment of the number of ROIs that can be

matched between recording sessions we analyzed data from 5

mice that were imaged 7, 8, 12, 13, and 12 times, respectively,

over a period of 2–5 months. This resulted in 21, 28, 66, 78,

and 66 possible pairs of recordings, respectively, in which we

investigated the number of matched ROIs. With all data of the

five mice pooled together, on average 38% of the ROIs were

matched between recordings pairs, corresponding to 94 ± 57

ROIs. The percentage of matched ROIs was calculated as the

percentage of matched ROIs in the recording with the least
12 Cell Reports Methods 2, 100299, October 24, 2022
ROIs per recording-pair. The number of matches was influenced

by the time between two recordings. Figure 7B shows that there

was a significant correlation between the number of matched

neurons and the time between recordings in two of the three

mice (Spearman correlation: for mice 1 and 2, p < 0.005; for

mice 3, 4, and 5, p < 0.0005; r = �0.6, �0.35, �0.66, �093,

and �0.68 for mice 1 to 5, respectively). The fits shown in the

figure are exponential fits (y = a 3 eb 3 x) with the initial value

(a) at 75%, 71%, 53%, 56%, and 61%, and decay rate (b) at

�0.0084, �0.0036, �0.0171, �0.0160, and �0.0123 days for

mice 1 to 5, respectively). This suggests that it is not only varia-

tions in the angle or exact location of the recordings that deter-

mines whether ROIs can be matched, but probably also slower,

biological processes, such as viral expression of the calcium in-

dicator, learning- or age-induced changes in neural activity, cell

death, or anatomical changes of the brain. Indeed, Figure 7C

shows that correlations between the registered spectral images

decreases over time (Spearman correlation: p = 0.0006 for

mouse 1; for all other mice, p < 0.0005, r = �0.68, �0.58,

�0.61, �0.93, and �0.82 for mice 1 to 5, respectively), suggest-

ing that the structure of the imaged location and activity patterns

and GCaMP6f labeling of the neurons alter over a period of

weeks tomonths. Changes inGCaMP6f labeling and/or neuronal

activity is supported by the observation that more ROIs were de-

tected on later imaging sessions for some mice (Spearman cor-

relation: p = 0.2, p = 0.008, p = 0.51, p = 0.97, and p = 0.015, and

r = 0.56, 0.83, �0.21, �0.01, and 0.68 for mice 1 to 5, respec-

tively) (Figure 7E).

We also asked through how many sessions individual ROIs

could be tracked. For this analysis, we pooled the data from

the five imaged mice. We limited the number of sessions to

seven (constrained by the mouse with the fewest recordings),

choosing the sessions of the mice in such a way that the number

of days between the first and last recording was close to 65. We

then calculated in how many imaging sessions the ROIs from

recording 1 were found back in the later sessions (Figure 7D).

These did not need to be consecutive sessions as ROIs could

disappear and reappear (Figure 7). We found that 22% of all

ROIs could be matched in all 7 recordings, averaged over the

5 mice, which corresponded to 213 neurons, or 213 3 7 =

1,491 separate ROIs in total. Twenty-eight percent of ROIs

(354 ROIs) were found only in the first recording.

To understand to what extent ROIs are missed by SpecSeg in

subsequent recordings due to differences in activity or to spe-

cific workings of SpecSeg, it is necessary to exclude changes

caused by human error or biological processes. To achieve

this, we split up an imaging session in two parts, and tested

whether the same ROIs were found (Figure S5). Of 320 ROIs,

247 were found in both the first and the second half, while 13

were only found in the full recording, but not in the first or second

half separately. Twenty-eight ROIs were only found in the first

half, and 32 only in the second. The average mean R2 was

much higher in ROIs found in both halves of the recordings.

ROIs that were missed in one half of the recording had lower

mean R2 values that were even lower in the half in which they

were not detected. Often, this was caused by the absence of

spiking activity in that period. We concluded that the main cause

of not detecting an ROI is a weak signal.
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Figure 7. Chronic ROI matching

(A) An example of matched ROIs in three sequential recordings. An ROI’s center of mass (CoM) is shown with a dot. The dot’s color shows in which recordings

(‘‘rec’’) it was retrieved. The triangles denote the position of some CoMs of ROIs that were present in other recordings, but missed in the recording in which the

triangle is shown. The color denotes in which recording the ROI was present. The right bottom figure shows the three spectral images overlaid with red, green, and

blue, resulting in the same color mixing as the ROI CoM dots. Scale bar, 40 mm.

(B) The number of matches between recordings decreases if there is more time between the recording pairs.

(C) Spectral correlation for each recording pair. Recordings that are recorded closer together in time have better correlation coefficients. This shows that the

imaged brain changes over time.

(D) Checking in how many recordings the ROIs from recording one were found back in all seven recordings. To be able to pool all the mice together, seven

recordings were analyzed per mouse. Recordings were chosen so that the time between the first and last recording was as close to 65 days as possible. The

number of putative neurons in each condition were: 1,146, 792, 606, 516, 421, 319, and 213 for conditions 1 to 7, respectively. Error bar shows standard error of

the mean for the five mice.

(E) The number of ROIs found in the mice recordings did increase significantly for mice 2 and 5 (Spearman correlation: p < 0.05; for mice 1, 3, and 4 the p values

were 0.20, 0.51, and 0.97, respectively).

Cell Reports Methods 2, 100299, October 24, 2022 13

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
DISCUSSION

Here, we describe SpecSeg, an open-source toolbox for auto-

mated ROI selection, ROI editing, neuropil correction, signal

extraction, and chronic matching of ROIs. Like several other ap-

proaches (Kaifosh et al., 2014; Smith and Häusser, 2010; Spaen

et al., 2019), SpecSeg ROI selection is based on correlation of

co-active pixel traces. In SpecSeg, however, the first step of

ROI selection involves calculating the low-frequency (0.013–

0.5 Hz) cross-spectral power components. These spectral com-

ponents can be visualized, yielding exceptionally clear images of

the local functional anatomy that include neuronal cell bodies

and neurites. The low-frequency cross-spectral power results

from the exponential decay of calcium transients. In contrast to

the high-frequency components, the low-frequency compo-

nents are less sensitive to noise. Moreover, activity in neuropil

is less correlated, resulting in reduced low-frequency activity,

thus enabling the efficient separation of neuronal structures

from the background.

This first step of ROI selection requires few initial constraints,

permitting inclusion of ROIs with irregular shapes or sizes. Next,

a threshold is set on the pixel correlations within the ROI, leading

to robust separation of ROIs containing highly correlated pixels

and rejection of overlapping neural elements. Additional filters

for size or roundedness of the ROIs can be included by the

user, allowing ROI selection around cell bodies, dendrites, or

axons. These morphological constraints are intuitive, making

ROI selection versatile and user friendly.

The pipeline also includes a graphical user interface, facili-

tating quality control of the selected ROIs. This interface includes

an alternative method for visualizing pixel correlations, aimed at

detecting whether multiple cells are present within one ROI. This

makes it easy to split or reject ROIs if needed. Also, ROIs can be

added if the experimenter believes that cells are missed, and the

quality of their signal can be assessed immediately.

We employed various methods to compare the efficiency

of SpecSeg with other ROI segmentation packages, such as

Suite2p (Pachitariu et al., 2017) and CNMF/CaImAn (Giovan-

nucci et al., 2019). The first approach was to make use of

NeuroFinder (http://neurofinder.codeneuro.org/), which is based

on calcium imaging datasets with ground-truth ROIs selected by

human annotators. However, we noticed that, within many Neu-

rofinder ground-truth ROIs, pixel traces showed little correlation

(low high mean R2), implying that the signal extracted from such

ROIs was predominantly derived from the surrounding neuropil.

In contrast to human annotators, SpecSeg predominantly

selected ROIs with a relatively high mean R2, even if they were

dim, but missed silent or very noisy ROIs even if they were bright.

We think it is debatable whether silent or noisy ROIs should be

included in the data analysis, as theymay contaminate the actual

neural code of the imaged neurons. Only in some instances it is

useful to include a neuron that does not show any activity in a da-

taset, for example when chronically tracking the activity of indi-

vidual neurons. For such cases, the SpecSeg graphical interface

provides the option to manually include neurons when they are

not detected by the activity-based approach.

We also used two approaches that were independent of hu-

man annotators to compare the performance of SpecSeg with
14 Cell Reports Methods 2, 100299, October 24, 2022
Suite2p and CNMF. The first was to select ROIs using

SpecSeg, CNMF, and Suite2p on a densely labeled dataset

from mouse V1 and compare the number of selected ROIs de-

tected by the different methods and their mean R2. In this anal-

ysis, SpecSeg retrieved slightly fewer ROIs than CNMF but

considerably more than Suite2p. Those found by SpecSeg had

the highest mean R2. Interestingly, SpecSeg ROIs that were

missed by the other approaches had high mean R2 values, while

those found by the other packages but missed by SpecSeg had

low mean R2 values.

The second approach was to simulate calcium imaging data

using NAOMi and test how well SpecSeg, Suite2p, and CNMF

retrieved the ground-truth ROIs. In contrast to the Neurofinder

approach, NAOMi ground-truth ROIs are well defined and the

actual spiking activity of the modelled neurons is known. In this

analysis, SpecSeg found fewer ground-truth ROIs than Suite2p

and CNMF. However, Suite2p and CNMF found considerably

more ROIs that did not match ground-truth ROIs. Moreover,

the mean R2 values of SpecSeg ROIs were higher than those

detected by the other approaches. Signals extracted from corre-

sponding ROIs detected by Suite2p, CNMF, and SpecSeg were

highly correlated. CNMF performed slightly better at denoising

the signal thanMLspike usedwith Suite2p or SpecSeg, probably

because CNMF denoises during the same step as it identifies the

ROIs. The differences were small, however, and future denoising

approaches may further improve signal quality. Taken together,

when comparing SpecSegwith other ROI-selection approaches,

it is highly efficient at selecting ROIs from which a reliable signal

can be extracted and selects few spurious ROIs.

We included a neuropil subtraction approach in SpecSeg that

works by subtracting the signal from a donut-shaped area

around the ROI from the ROI-derived signal, similarly to methods

described previously (Chen et al., 2013; Khan et al., 2018; Tegt-

meier et al., 2018). We noticed that, for most SpecSeg ROIs,

neuropil correction did not significantly improve the neuronal

signal. More thorough analysis revealed that this was mainly

due to the relatively high mean R2 of SpecSeg ROIs: ROIs with

high mean R2 were much less contaminated by the neuropil

signal than those with low mean R2. This observation also con-

firms that mean R2 is a good measure for ROI quality. It should

be noted that in ROIs with low mean R2, neuropil subtraction

may actually introduce an artefact in the signal, again illustrating

the importance of removing such ROIs from the analysis.

We also optimized the pipeline for the analysis of calcium-im-

aging data obtained using single-photon miniscopes. We found

that SpecSeg identified many ROIs overlapping with those de-

tected by CNMF-E, and that signals extracted from the ROIs

selected by both methods were strongly correlated. However,

different ROIs were also detected by both approaches, and

many of these ROIs did actually show partial overlap and identi-

fied (parts of) the same neurons. This is probably caused by the

fact that CNMF-E can create overlapping ROIs around neurons.

The signal extraction procedure then separates these overlap-

ping signals. In contrast, SpecSeg selects ROIs around those

parts of the neurons that do not overlap and then extracts the

signals from these ROIs. This approach does not deteriorate

the quality of the extracted signal unless more than 50% of the

ROI is removed. Removing noisy pixels from the ROI thus

http://neurofinder.codeneuro.org/
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appears to be highly effective and a good alternative to signal

demixing, also for two-photon calcium imaging data. We expect

that, in most cases, results using either method will be very

similar. The main advantage of SpecSeg is its graphical user

interface, which provides extensive insight into the activity pro-

files of the ROIs and facilitates quality control and post-hoc

ROI selection and editing.

It is difficult to compare the speed of our pipeline with other

available software packages. However, we found that motion

correction using NoRMCorre was the slowest step in the pro-

cess, taking up approximately half the time of the ROI selection

process. This implies that the actual ROI selection process is not

a bottleneck. Importantly, the speed of ROI selection was more

than sufficient for all practical purposes except on-line ROI

selection.

One strength of calcium imaging approaches is that one can

follow responses of individual neurons over prolonged periods

of time. To facilitate this approach, we developed a tool for auto-

mated matching of ROIs in series of sequentially recorded cal-

cium imaging sessions. The percentage of ROIs that could be

matched between two randomly selected pairs of recordings

was quite variable, depending on various factors. In some re-

cordings of a series, ROIs were missed due to a low mean R2

during the session. ROIs could also be missed due to slight mis-

alignments of the imaged brain region. Interestingly, we found

that, when the time between two recordings was longer, the

number of matched ROIs was reduced. Most likely, biological

factors cause this reduction. The brain slightly changes its shape

over time, causing loss of some neurons from the field of view.

Moreover, neurons die, or lose or gain expression of the viral

vector. The most interesting cause of missing ROIs in some re-

cordings is that neurons change activity patterns over time, in

line with the finding that, when mice perform the same task

over prolonged periods of time, different sets of neurons are re-

cruited (Driscoll et al., 2017).

In conclusion, SpecSeg is a powerful, complete, and open-

source pipeline for ROI selection, signal extraction, and chronic

ROI matching that can be used on a variety of single- and multi-

photon calcium imaging data. Its main advantages over several

existing calcium imaging toolboxes are the ease of use and

simplicity, the intuitive way ROIs are selected and constrained,

the selection of ROIs that represent neurons whose responses

can be well separated from background noise, the possibility

to select ROIs of various shapes and sizes, its graphical interface

for ROI editing, and its use for analyzing both miniscope and

multi-photon microscope calcium imaging data.

Limitations of the study
While SpecSeg processes datasets without a maximum file size,

recordings do have to be longer than 2 min to calculate all low-

frequency components. Also, SpecSeg cannot be used online

during real-time data acquisition. In SpecSeg, ROI detection is

based on correlated changes in fluorescence. If data contain a

highly correlated fluctuating background signal it can be difficult

to separate neurons from background and thus to extract useful

ROIs. Such a highly correlated background signal may be dimin-

ished by background subtraction, which we provide for minis-

cope imaging. Similarly, it is difficult to detect inactive neurons
that nonetheless have a higher baseline fluorescence than back-

ground. The user can include such ROIs by selecting them

semi-automatically using maximum or average fluorescence

projections in the ROI manager user interface.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Viral vector AAV2/9.syn.GCaMP6f UPenn Vector Core N/A

Viral vector AAVdj.CaMKIIa.GCaMP6s Stanford Neuroscience Gene

Vector and Virus Core

N/A

Chemicals, peptides, and recombinant proteins

Isoflurane Zoetis Isoflo REG NL 10416 UDD

Metacam Boehringer Ingelheim EU/2/97/004/003–005,029

Dexamethasone Alfasan REG NL 1578 UDD

Cavasan eye ointment AST Farma REG NL 4006

Experimental models: Organisms/strains

Mice C57BL/6 Janvier Labs N/A

Ai14 reporter mice Jackson Labs #007908

VIP-cre mice Jackson Labs #010908

SOM-cre mice Jackson Labs #013044

G35-3 Cre mice Sawtell et al., 2003 N/A

Ai93 GCaMP6f mice Jackson Labs #024103

Software and algorithms

MATLAB MathworksTM N/A

NoRMCorre Pnevmatikakis and

Giovannucci, 2017

https://github.com/flatironinstitute/

NoRMCorre

NAOMi Song et al. 2021 https://bitbucket.org/adamshch/

naomi_sim/src/master/

CNMF-E Zhou et al. 2018 https://github.com/zhoupc/CNMF_E

SpecSeg This paper https://doi.org/10.5281/zenodo.6993003

Suite2P Pachitariu et al., 2017 https://github.com/MouseLand/suite2p

Other

Neurolabware standard two-photon

microscope

Neurolabware N/A

GRIN lens (1 mm diameter, 0.5 mmworking

distance)

Grintech N/A

Miniscope v3.2 Cai et al., 2016;

Ghosh et al., 2011

N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Chris-

tiaan N. Levelt (c.levelt@nin.knaw.nl).

Materials availability
d This study did not generate new unique reagents.

Data and code availability
d Calcium imaging data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at Github and is publicly available as of the date of publication and can be downloaded at

https://github.com/Leveltlab/SpectralSegmentation. An archival version is also available at https://doi.org/10.5281/zenodo.

6993003

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse experiments
To develop the ROI selection tools described in this study, wemade use of two-photon imaging data frommale and female mice that

were repeatedly imaged in as yet unpublished behavioral studies. Here we describe the methodology developed for the analysis of

such data. All animal experiments were approved by the institutional animal care and use committees of the Royal Netherlands Acad-

emy of Arts and Sciences. We used male and female mice that were 2–7 months of age. The mice were C57Bl/6 mice, or offspring of

Ai14 mice (Cre-dependent tdTomato reporter mice, strain 007908) crossed with mice expressing Cre in vasoactive intestinal poly-

peptide (VIP)-expressing or somatostatin (SOM)-expressing interneurons (Jackson Laboratories, www.jaxmice.jax.org, strains

010908 and 013044 respectively). However, we did not make use of the calcium signals selectively derived from these interneuron

subsets for this study. We also made use of two-photon imaging data acquired in V1 of Ai93D (cre-dependent CGaMP6f-expressing

strain 024103, Jackson Laboratories) (Madisen et al., 2015) x G35-cre (Sawtell et al., 2003) mice, expressing GCaMP6f in most excit-

atory neurons of the cortex. These strains were kept on a mixed C57Bl/6 x 129S background. All animals were kept in a 12 h reverse

day/night cycle with access to food and water ad libitum. Experiments were carried out during the dark cycle.

METHOD DETAILS

Viral injections for two-photon microscopy experiments
Mice were injected with a viral vector driving expression of the genetically encoded calcium sensor GCaMP6f in neurons (AAV2/

9.syn.GCaMP6f, UPenn Vector Core facility). Anesthesia was induced with 5% isoflurane and maintained at 1.6% isoflurane in Ox-

ygen (0.8 L/min flow rate). Mice were administered Metacam (1 mg/kg subcutaneously (s.c.), for analgesia) and dexamethasone

(8 mg/kg s.c.) to prevent cerebral edema/inflammation after induction of anesthesia. Mice were head-fixed on a stereotax, scalp

and soft tissue overlying the visual cortex were incised and the skull exposed. A small hole was drilled in the skull overlying the center

of primary visual cortex (V1). A pulled capillary with AAV2/9.syn.GCaMP6f or AAVdj.CaMKIIa.GCaMP6s was inserted vertically

through this hole to a depth of 200–400 um from the brain surface. Approximately 20 to 100 nL of virus (titer �10E12 viral genomes

per mL) was injected slowly using a Nanoject and the hole was covered with bone wax. During the surgery, the temperature was

maintained with euthermic pads. Respiration was monitored to adjust depth of anesthesia. Eyes were protected from light and

from drying using Cavasan eye ointment. Once the window was made the exposed dura was continuously kept moist with artificial

aCSF, consisting of a solution of 125 NaCl, 10 Hepes, 5 KCl, 2 MgSO4, 2 CaCl2, and 10 Glucose, in mM. Later the scalp was sutured,

and the animal let to recover from anesthesia.

Handling and habituation
Once an animal recovered from the viral injection, and before window implantation, animals were handled daily for 5 min (or until they

started to groom while being handheld) to reduce handling stress during later training. Next, animals were trained and habituated for

3 days with head-restrainment in the training setup with a running wheel. After habituation, animals were placed in a two-photon mi-

croscopy setup. Once the mice were comfortable with the setup, they performed a visual detection task.

Cranial window surgery for two-photon microscopy
One month after viral vector injection, mice were anesthetized again as described above. Mice were head-fixed on a stereotax and

scalp and soft tissue overlying the visual cortex were incised and the skull exposed. A metal ring (5 mm inner diameter) was fixed on

the skull centered on V1, with dental cement. A cranial window was made inside the ring and the dura was exposed. The cranial win-

dow was then covered with a double coverslip (to reduce brain movements under the microscope) and fixed to the metal ring using

dental cement. Animals were allowed to recover after the dental cement dried. After a minimum of 2 weeks of recovery, mice were

submitted to further handling and training. During the training and recording periods described below, animals were typically in the

setup 5 days per week.

Two-photon imaging
For imaging we used a Neurolabware standard microscope (CA, USA) equipped with a Ti-sapphire laser (Mai-Tai, Spectra-physics,

CA, USA). A black cloth was used to cover the objective in order to prevent light coming from the monitor to the objective. Two-

photon laser scanning microscopy was performed at 920 nm and neurons were imaged with 16x water-immersion objective

(0.8NA) with computer-optimized optics of 1.6x magnification.

Two-photon calcium-imaging sequences were recorded in awake behaving mice and saved in a continuous binary format (sbx,

Neurolabware). The dimensions of the images were 812 by 512 pixels, with 16 bit unsigned integer pixel depth. These files are asso-

ciated with a metadata file (mat, MATLAB) that defines, among other parameters, pixel dimensions, number of channels, number of

sections, and number of frames recorded. For two-photon GRIN lens imaging in the visual thalamus, we used a 4x objective (0.2NA)

with computer-optimized optics with 3.2 magnification. All further processing was done with MATLAB (MathworksTM).
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Visual stimulation during two-photon microscopy
Stimuli were presented on a gamma-corrected Dell-P2314H 23’’ full HD LED monitor, placed 15 cm in front of the mouse. Stimuli

were made with custom-made MATLAB scripts. Receptive field size of each region of interest (ROI) was estimated by reverse cor-

relation after presenting 3 black and 3 white squares (7.5� - size degrees) simultaneously at pseudo random locations on the screen.

The stimuli were repeated for 10–15 times at each location. The duration was 0.5 s, the interstimulus was an isoluminant gray screen,

duration 1.5 s, contrast: 1.0 andmaximum luminance was kept to 20%of screenmax (max luminance). For visual stimulation, various

stimuli were used, depending on the behavioral experiment.

Gradient-index lens surgery
For single-photonminiscope experiments, animals were anaesthetizedwith isoflurane (1.5% inO2 and air) and placed in a stereotaxic

apparatus (David Kopf Instruments) on a heated pad (37�C), injected with Metacam (1 mg/kg subcutaneously) as analgesic, dexa-

methasone (8 mg/kg subcutaneously) to prevent inflammation, and saline (80 mL/kg subcutaneously) to prevent dehydration. A

craniotomy and durotomy were made above the region of interest. To image calcium dynamics in premotor cortex, a total of 500

nL AAVdj.CaMKIIa.GCaMP6s (Titer max. 10E12 genomes per mL, Stanford Neuroscience Gene Vector and Virus Core) was injected

at four locations 100 mm off center of premotor cortex (AP:2.3 ML:0.35 DV: �0.3) using a Hamilton-syringe (100 nL/min). A GRIN

objective lens (1.8 mm diameter, Edmund Optics Ltd.) was placed on top of the brain. To image striatum, a custom-built robotized

stereotaxic arm was used to slowly lower (300 nm/min) a 25G needle to ease lens implantation and reduce tissue damage above the

ventral striatum (AP:1.1 ML:1.1 DV:-4.5). A total of 500 nL AAVdj.hSyn.GCaMP6s was injected at two different location 100 mm off

center of ventral striatum (AP:1.1 ML:1.1 DV:-4.5), followed by lowering (100 nm/min) of a GRIN relay lens (0.6 mmdiameter, Inscopix

Inc.). The gap between lens and skull was covered with cyanoacrylate glue and secured to the skull using Superbond dental cement

(Sun Medical Company Ltd.). Using dental acrylic cement, a head bar was placed further caudal and skin was glued to the cement

headcap. The lens was protected by a layer of Twinsil Speed (Picodent GmbH) silicon.

For two-photon imaging in the visual thalamus, animals were anesthetized as described above and injected with a total of 100 nL

AAVdj-hSyn.GCaMP6s (Titer�10E12 genomes permL, Stanford Neuroscience Gene Vector and Virus Core) at two locations (AP:2.2

& 2.4, ML:2.1) and three depths per location (DV:2.35, 10 nL; 2.5; 20 nL, 2.7; 20 nL). A doublet GRIN lens (1 mm diameter, 0.5 mm

working distance, GRINTECH) was implanted right above the visual thalamus as described above for striatum, centered in between

the two injection locations (AP:2.3, ML:2.1, DV:2.1) and fixed on the skull using Superbond dental cement. A custom-made head re-

striction ring was placed around the GRIN lens and fixed on the skull using Superbond and Tetric EvoFlow� (A1). The GRIN lens was

protected by a custom-made 3D-printed cap that could be screwed on the head restriction ring.

Baseplating and miniscope imaging
Four to eight weeks after virus injection and GRIN lens placement, mice were head restricted using a custom-built device (that

included a running belt to allow for locomotion) and fluorescent signal was assessed. The miniscope (Miniscope v3.2) (Cai et al.,

2016; Ghosh et al., 2011) was lowered above the implanted GRIN lens and, once individual cells were detectable in the field of

view, a baseplate was secured to the cement head cap using dental acrylic cement (coated with black nail polish). Recording imaging

sessions were performed in an open-field arena (30 cm3 30 cm). Prior to each imaging session, mice were head restricted, and the

miniscope was attached to the baseplate. Calcium dynamics were recorded with a frame-rate acquisition of 15 Hz, and data was

stored in videos files with a resolution of 752 (width) x 480 (height) pixels (AVI format).

Miniscope recording and preprocessing
Raw AVI files were spatially down sampled by a factor four (reducing frames to 3763 240 pixels) and stored as TIFF files. Rigid and

non-rigid motion in imaging data was corrected using NoRMCorre (Pnevmatikakis and Giovannucci, 2017), followed by neuron and

signal extraction using either SpecSeg or CNMF-E (Zhou et al., 2018). Every cell included in the analyses was verified by visual in-

spection. CNMF-E output was manually cleaned using a custom-written GUI in MATLAB (2019b). Components with non-circular

contours, spatial contours smaller than neuron size, or artifacts in temporal traces were excluded. Duplicate copies of individual cells

were identified by overlapping contours and temporal activity was subsequently merged.

NAOMi simulated data
For comparing SpecSeg, CNMF and Suite2p wemade use of previously published data produced by NAOMi (Song et al., 2021). The

NAOMi dataset consisted of 20,000 frames simulated froma 5003 5003 100 mmvolumewith 1 mmsampling at 30Hz scanning using

a 0.6-NA Gaussian excitation numerical aperture (NA) at 40 mW average power. The ROI sets for Suite2p and CNMF were also pub-

lished (Song et al., 2021). The ROI sets were created in the MATLAB 2017 versions of the software. Parameters were adjustedmanu-

ally for each algorithm to optimize the output.

For CNMF the following parameters were used: fr = 30, tsub = 5, patch_size = [40, 40], overlap = [8,8], K = 7, tau = 6, p = 0, and

num_bg = 1. For Suite2P the following parameters were used: diameter = 12, DeleteBin = 1, sig = 0.5, nSVDforROI = 1000,

NavgFramesSVD = 5,000, signalExtraction = ’surround’, innerNeuropil = 1, outerNeuropil = Inf, minNeuropilPixels = 400, ratioNeur-

opil = 5, imageRate = 30, sensorTau = 0.5, maxNeurop = 1, sensorTau = 0.5, and redmax = 1. For SpecSeg ROIs we used cutOffHz-

Min = 0, cutOffHzMax = 0.44, areasz = [45, 300], roundedness = 0.666, voxel = 50, cutOffCor = 0.05, useFluorescenceImg = true.
e3 Cell Reports Methods 2, 100299, October 24, 2022
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To calculate which ROIs matched with NAOMi, the ROI masks of each method were flattened into a 2D mask, like SpecSeg uses.

The ROIs were matched to the NAOMi ground truth somas that were present in the volume present 8 mm around the focal plane. To

match to a NAOMi ROI, the pixel overlap between ROIs had to be more than 45%.

SpecSeg data analysis code
The code for all data analysis procedures described below is available at Github: (https://github.com/Leveltlab/SpectralSegmentation).

A flowchart of the analysis pipeline is shown in Figure 1 and is also present in the Github repository.

ROI selection based on cross-spectral power
We developed a pipeline for ROI extraction that works as follows: First, the images are cropped to remove border artifacts before

being aligned using rigid registration with NoRMCorre (https://github.com/flatironinstitute/NoRMCorre), a toolbox provided by the

Simons Foundation (Pnevmatikakis and Giovannucci, 2017). We adapted the entry function of this toolbox in order for it to work

with files in .sbx format, produced by the Neurolabware microscope that we used, and integrated it in the pipeline. After visual in-

spection to ascertain that the images are well aligned, the image sequences are transposed to place time in the first dimension

and width * height in the second dimension (StackTranspose.m). This makes the processing of pixel traces much more efficient in

the time domain. This data is saved in binary format for later usewith ‘‘_Trans.dat’’ as extension. In addition, we also save a temporally

downsampled version of this file with ‘‘_DecTrans.dat’’ as extension. Temporal downsampling is perfomed with ‘‘decimate’’

(MATLAB) to a sampling rate of ±1 Hz.

Next, the cross-spectral power of the fluorescent signal betweenneighboring pixels over time is calculated. To achieve this, thedata

is first detrended and for each half-overlapping timewindow (60 s) the data is convolvedwith a hammingwindow.Cross-spectral den-

sity functions are calculated from the discrete Fourier transforms of these pixel-trace segments for each pixel with its eight neighbors

and averaged over all time windows. Additionally, the total variance is calculated for each pixel from their average auto-spectral den-

sity function. Then, the cross-spectral power functions are normalized with their respective variances according to the formula:

PxyðfÞ =

��GxyðfÞ
��2

VxVy

Where Pxy (f) is the average normalized cross-spectral power, Gxy (f) is the cross spectral density between x and y for frequency

component f, and Vx and Vy the average variance of x and y respectively.

Finally, the normalized cross-spectral power functions of a pixel with its eight neighbors are averaged. The result is a 2D matrix

representing cross-spectral power at each frequency component for all pixels. We used this to generate an image for each spectral

component. This data is saved in a separate file with ‘‘SPSIG.mat’’ as extension.

Cross-spectral images are generated for spectral components between 0.017 Hz to 0.5 Hz, from image sequences recorded at a

sampling rate between 10 and 30 Hz (Figure 2).

Given a general model of calcium responses to spikes characterized as a convolution between the fluorescence impulse response

function and spikes as a series of onset times (Jo et al., 2004):

cðtÞ = hðtÞ � sðtÞ+ eðtÞ

=
XN
n = 1

hðt � tnÞ+ eðtÞ

where c(t) is the calcium trace, s(t) is the spiking events, h(t) is the calcium response and e(t) is the independent noise, and tn is the

spike time, the Fourier transform is:

F½cðtÞ�ðuÞ =
XN
n = 1

F½hðt � tnÞ�ðuÞ+EðuÞ

=
XN
n = 1

e� jutn HðuÞ+EðuÞ

= HðuÞ
"XN

n = 1

e� jutn

#
+EðuÞ

where E(w) is independent noise in frequency w, and H (u) is the Fourier transform of the calcium response. Since the calcium

response: h(t) = e-at, approximated a one-sided decaying exponential function, it follows that the Fourier transform H(u) is 1/(j u + a),

Magnitude, jHðuÞj = 1ffiffiffiffiffiffiffiffiffiffiffi
a2 +u2

p ; for all u

The number of spikes and their position in time is encoded in the height and phase of the Fourier transform.

For all calcium indicators the decay half time has been shown to be in the order of 400ms (Chen et al., 2013), this approximates to a

time constant of a = - ln(0.5)/0.4z 1.73 1/s, since 0.5 = e-at, at t = 0.4s. The power spectrum of an exponential function based on this

time constant can be shown to contain the highest power in frequency components below 1 Hz (Figure 2G).
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This explains the observation that pixels within active neurons display strong cross-spectral power below 0.4 Hz. Background neu-

ropil is usually non correlated making neurons clearly visible in these images (Figures 2 and 3). The images for cross-spectral com-

ponents between 0.017 and 0.4 Hz are therefore used to extract an initial estimation of the ROIs (spectral.m).

For each cross-spectral image in the selected frequency range, a series of morphological constraints are applied to find as many

non-overlapping ROIs as possible (getSpectrois.m). First, all maxima (cross-spectral peaks) in the image are detected and sorted

according to magnitude. A fraction (0.25–0.4) of these peaks with the highest values are selected and sorted in decreasing order.

Based on this selection, a square area of pixels (Voxel; 50x50 pixels) is sampled for each peak, centered on the peak and contours

are detected using contourc (MATLAB) (Figures 2L and 2N). Closed contours containing the selected peak are selected and con-

strained by a set of criteria:

1. To avoid that multiple peaks from the same neuron are selected, the minimal distance between peaks in each ROI should be

greater than a defined threshold (20 pixels).

2. To ensure that the magnitude of the peak is well above background level, the peak should be greater than (95%) of the pixel

range within a voxel.

3. Given the expected size range of cell bodies, the minimum and maximum area (number of pixels) should be between 40 and

400 pixels (a pixel is ±1.5 mm2 within our field of view: ±1 mm).

4. Roundedness; The relationship between the area of a contour and the length of its circumference (4*Pi* Area / Circumferencê 2)

should be greater than 0.6 (1 = completely round, 0 = any shape), These parameters can be adapted depending on the type of

ROI that a user is interested in and themagnification of the images. To select cell bodies, for example, the roundedness should

be greater than 0.6 and the number of pixels should bewithin a constrained range based on the expected size of the cell bodies.

Because the criteria are simple and self-evident, optimal values can easily be established with some experimentation.

Depending on the density of active neurons and their processes in an image sequence, contours around correlated pixels may still

represent overlapping or adjacent neural elements. Therefore, the ROIs are further restrained based on the assumption that pixels in

adjacent cell bodies are not highly correlated. To achieve this, all pixel traces within the original ROI are correlated with the averaged

down-sampled trace of eight neighboring pixels at the original local maximum. Based on this calculation, the ROI is constrained to an

area containing pixels with correlations over a threshold set halfway the maximum correlation strength and the correlation strength in

a band of tissue surrounding the ROI (this threshold can be adapted) (Figures 2L and 2N). In principle, this is a computationally expen-

sive approach, but it is feasible because the numbers of pixel traces in a preselected ROI are limited in number and the traces are

decimated to 1 Hz. For analysis and selection purposes we also saved the mean R2 of an ROI. To calculate this we averaged the

squared pixel correlations within the final ROI.

Miniscope background correction
We included a background correction tool (BackgroundSubtractSbx.m) for miniscope calcium imaging data, which is applied after

the motion correction step. A unique background estimation image is created for every frame by filtering a padded version of that

frame. This background estimation is subtracted from the frame. Before subtraction, the values of the background estimation are

lowered by a fixed amount to prevent underexposure of the data in the final result. There are three different filter kernels to choose

from: a Gaussian, a disk, or a donut. A disk of 111x111 pixels (�200um) was chosen in the example data (Figures 3E, 3F and 5). The

gap in the donut filter prevents the background estimation from containing signal of a neuron at the position of the filter. We found,

however, that the difference in results compared to a circular filter was very small. A Gaussian filter provides very similar results to a

smaller disk filter, and much of the miniscope data is already out of focus in a way that resembles a Gaussian kernel. This is why the

circular kernel is preferred over the Gaussian. The size of the filter can be edited by the user, based on the data’s scale. When select-

ing the donut-shaped filter, both the gap size and outer radius of the filter can be adjusted. Background subtraction takes more pro-

cessing time to calculate with larger filters or larger datasets. To diminish processing time, the background can be calculated using a

downscaled version of each frame. An optional feature in the background subtraction process is data smoothing. To decrease sensor

banding noise and increase correlation between neighboring pixels, data can be smoothed with a Gaussian in either the vertical, hor-

izontal or both directions. When the correlation between neighboring pixels is increased, it becomes easier to detect ROIs with low

mean R2. This smoothing was not used in the example data. All filtering parameters can first be tested on a small subset of the data

with the BackgroundSubtractSbxExampleFrame.m script.

User interface for ROI refinement
To give users control over the selected ROIs, we developed a graphical user interface to reject ROIs outside a preferred range of

properties (RoiManagerGUI.m). Additionally, the user interface allows the user to manually delete or keep ROIs. In rare cases,

some ROIs have areas with pixels that have low or negative correlations. This may indicate that the ROI contains signals frommultiple

neuronal sources, or that registration was suboptimal and the neuron was not located at the ROI during the entire recording. We

therefore developed the option to split these ROIs (Figures S4B–S4E). The user interface creates four reference points at the distal

edges of the ROI. The fluorescence signal from these reference points is then correlated with the signal of each pixel in the ROI. This

creates four correlation values per pixel of the ROI. These are used to create a color-coded image in the user interface, indicating the
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location of different signal sources in the ROI. The pixels in the ROI can then be subjected to k-means clustering. After setting the

number of clusters the user can decide to split such an ROI in two or more ROIs or to delete part of the ROI. The user can also

add more reference points if clustering needs to be improved.

We also included the option to create new ROIs in the user interface, for example when neurons were missed by the automated

analysis. These newROIs can be added in two different ways. One option is tomanually draw the contour of the ROI. The other option

is to let the computer draw the ROI, based on the cross-spectral image (or any other user-defined background image, such as the

fluorescent image) and a threshold set by the user (Figure S4A).

Signal extraction and neuropil subtraction
To extract the calcium signals for each ROI (retrievesignals.m), all pixel traces within the ROI contour are averaged. The signals are

neuropil corrected by subtracting the averaged signal of a neuropil area from the ROI signal. A donut-shaped neuropil area is created

for each ROI. To achieve this, a small buffer area with a width of 2 pixels (�2 mm) is first added around each ROI. The neuropil area is

defined by first enlarging the ROI by 20 pixels (�20 mm) using a circular filter, after which the central and adjacent ROIs and their buffer

areas are excluded from this area. To prevent overcorrection, the neuropil signal is multiplied by 0.7, in accordance with previous

studies (Chen et al., 2013; Khan et al., 2018; Tegtmeier et al., 2018).

Spike estimation
The extracted ROI signal can be converted into an estimate of a spike train (DeconvolveSignals.m) with theMLspike toolbox (Deneux

et al., 2016), which has to be downloaded via their github link (https://github.com/MLspike). The spike train is then saved in the same

format as the regular calcium signals.

Identification of the same ROIs in chronically recorded datasets
Finally, we include a toolbox to identify the same ROIs in chronic recordings of the same brain region (ChronicMatching.m). It first

registers the spectral images of the recordings to ensure that each ROI will be located at exactly the same position in all recordings.

To achieve this, the spectral images are normalized so that all values are in the range from�1 to 1. Next, the registration of the spec-

tral images is done by repeated translation and rotation. Each recording is registered to a reference recording chosen by the user.

Preferentially, one of the middle recordings is used as a reference in order to minimize the difference between the reference and the

recordings to be registered.

The distance over which recordings need to be translated is calculated by doing a 2D cross-correlation between the reference im-

age and the spectral images of the other recordings. The cross-correlation is calculated with xcorr2_fft (Masullo, 2020), which is

much faster than theMATLAB built-in cross-correlation function. After the translations are applied, the images are padded with zeros

to maintain the same dimensions between recordings.

To correct the rotation, each recording is rotated using nearest-neighbor interpolation over a range of different angles, from 1�

clockwise to 1� counterclockwise in steps of 0.05�. Each rotation is compared to the reference image with a 2D correlation and

the best fit is applied. Several rounds of translation and rotation can be applied until no significant further improvement is achieved.

After registration, ROIs between all chronic recordings within an experiment are matched. A minimum percentage of overlap

threshold is set. In the example presented here, we chose 67.5% based on the best balance between false positives and false neg-

atives as determined by inspection with the chronic viewer user interface. The ROImatching is represented in a 2Dmatrix (the ‘‘match

matrix’’), consisting of a column for each recording and rows with the ROI numbers in each recording that are matched to each other.

If no match for a particular ROI is found in a recording, the cell is kept blank.

To create the match matrix, the following three steps are taken:

1. For each ROI in each recording, the overlapping ROIs from all other recordings are identified. The percentage of the reference

ROI that is covered by each overlapping ROI of other recordings is calculated (‘‘overlap’’) and saved as a putative match if it is

above the overlap threshold.

2. Next, the overlap for each pair of putatively matched ROIs is calculated in the opposite direction (i.e. the percentage of over-

lapping ROI that is covered by the reference ROI). The two overlap values are averaged, and putative matches whose average

overlap is below the overlap threshold (in our example 67.5%) are discarded. Calculating the overlap in these two simple steps

automatically takes many parameters of the neurons into account: if the sizes, shapes or positions of two ROIs differ signifi-

cantly the overlap value will always be small.

3. To obtain the final matching matrix, the data needs to be merged in order to match the same ROIs in all recordings, not just in

pairs of recordings. The merging process includes ‘mutual linking’: if an ROI from recording A is matched only to recording B,

but that ROI from recording B has matches to A and C, it is implied that the ROI from recording A is also matched to the ROI in

recording C. This mutual linking increases the number of matched ROIs.

The results can be checked in a user interface (ChronicViewer.m). The matches can be verified by selecting a cell in the match

matrix, which will light up the ROI contours of the match. Clicking on ROIs in the main image will show the ROI numbers and match

information in a table. Matches can be added, edited or removed if necessary.
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Quantification and statistical analysis
All bar graphs show the mean of the data, with error bars showing the standard error of the mean (Figures 7A and S3A). All statistical

tests were done using MATLAB built-in functions. Data was tested for normality using the Shapiro-Wilk test (swtest). Correlations

were tested using corr with Spearman’s correlation.
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