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A convolutional neural network highlights
mutations relevant to antimicrobial resistance in
Mycobacterium tuberculosis
Anna G. Green 1,7, Chang Ho Yoon 1,2,7, Michael L. Chen1,3, Yasha Ektefaie1, Mack Fina4, Luca Freschi1,

Matthias I. Gröschel 1, Isaac Kohane1, Andrew Beam1,5,7✉ & Maha Farhat 1,6,7✉

Long diagnostic wait times hinder international efforts to address antibiotic resistance in M.

tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine

learning models, offers a promising solution. However, generalizability and clinical adoption

have been limited by a lack of interpretability, especially in deep learning methods. Here, we

present two deep convolutional neural networks that predict antibiotic resistance phenotypes

of M. tuberculosis isolates: a multi-drug CNN (MD-CNN), that predicts resistance to 13

antibiotics based on 18 genomic loci, with AUCs 82.6-99.5% and higher sensitivity than

state-of-the-art methods; and a set of 13 single-drug CNNs (SD-CNN) with AUCs 80.1-97.1%

and higher specificity than the previous state-of-the-art. Using saliency methods to evaluate

the contribution of input sequence features to the SD-CNN predictions, we identify 18 sites in

the genome not previously associated with resistance. The CNN models permit functional

variant discovery, biologically meaningful interpretation, and clinical applicability.
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Tuberculosis is a leading cause of death worldwide from an
infectious pathogen, with more than 1.5 million people
succumbing to the disease annually1. Rates of antibiotic-

resistant Mycobacterium tuberculosis, the causative agent of
tuberculosis, continue to rise, posing a threat to public health2. A
major challenge in combatting antibiotic-resistant tuberculosis is
the timely selection of appropriate treatments for each patient,
particularly when growth-based drug susceptibility testing takes
weeks1.

Molecular diagnostic tests for M. tuberculosis antimicrobial
resistance reduce diagnostic wait times to hours or days, but only
target a small number of loci relevant to a few antibiotics, and
cannot detect most rare genetic variants3. Although whole gen-
ome sequencing-related diagnostic tests offer the promise of
testing many loci and inferring resistance to any drug, statistical
association techniques have seen limited success, hindered by
their inability to assess newly observed variants and epistatic
effects3–7. More complex models such as deep learning provide
promising flexibility but are often uninterpretable, making them
difficult to audit for safety purposes8,9. Moreover, interrogating
black box models offers the opportunity for hypothesis generation
which can be later validated, potentially improving scientific
understanding of the underlying phenomenon10. An ideal
sequencing-based diagnostic method would predict resistance to
any drug based on the entire genome, and rapidly provide
interpretable outputs about which loci contributed to resistance
predictions, allowing for such a method to greatly augment cur-
rent molecular diagnostics with expanded catalogs of resistance-
conferring loci, or supersede those diagnostics entirely.

A recent “wide-and-deep” neural network applied to M.
tuberculosis genomic data outperformed previous methods to
predict antimicrobial resistance to 10 antibiotics11; however, like
most deep learning methods, the logic behind its predictions was
indiscernible. Although more interpretable, rule-based classifiers
of antimicrobial resistance in M. tuberculosis have been
developed12,13, these rely on predetermined, single-nucleotide
polymorphisms or k-mers, hindering their flexibility to generalize
to newly observed mutations, and universally ignore genomic
context. Deep convolutional neural networks (CNNs), which
greatly reduce the number of required parameters compared to
traditional neural networks, could be used to consider multiple
complete genomic loci with the ultimate goal of incorporating the
whole genome. This would allow the model to assess mutations in
their genetic context by capturing the order and distance between
resistance mutations of the same locus, allowing a better incor-
poration of rare or newly observed variations. Deep CNNs, when
paired with attribution methods that highlight the most salient
features informing the model predictions, are a promising means
of harnessing the predictive power of deep neural networks in
genomics for biological discovery and interpretation14. The extent
to which we may trust these highlighted features remains the
subject of ongoing scientific exploration8,15,16. CNNs also have
the added advantage of minimizing the preprocessing needed of
genomic variant data.

Here, we show that CNNs perform on a par with the state-of-
the-art in predicting antimicrobial resistance in M. tuberculosis
and provide biological interpretability through saliency map-
ping. We train two models: one designed for accuracy that
incorporates genetic and phenotypic information about all
drugs; and a second designed for interpretability that forces the
model to only consider putatively causal regions for a particular
drug. Our models are trained on the entire genetic sequence of
18 regions of the genome known or predicted to influence
antibiotic resistance, using data collected from over 20,000 M.
tuberculosis strains spanning the four major global lineages.
Across each locus, we calculate genomic positions that most

influence the prediction of resistance for each drug, validating
our method by recapitulating known positions and providing
predictions of new positions potentially involved in drug
resistance. Given the growing movement towards greater
interpretability in machine learning methods16,17, we expect
this model to have implications for hypothesis generation about
molecular mechanisms of antimicrobial resistance through
genotype–phenotype association.

Results
Training dataset characteristics. We train and cross-validate our
models using 10,201 M. tuberculosis isolates from the ReSeqTB
and the WHO Supranational Reference Laboratory Network
(sources detailed in the “Methods” section). Each isolate is phe-
notyped for resistance to at least one of 13 antitubercular drugs:
the four first-line drugs isoniazid, rifampicin, ethambutol, and
pyrazinamide, and nine additional second-line drugs (Tables 1
and 2). All drugs are represented by at least 250 phenotyped
isolates.

Table 1 Training set isolate phenotypes.

Drug Resistant
(n)

Susceptible
(n)

Total
(n)

Resistant
proportion

Isoniazid 4232 5723 9955 0.425
Rifampicin 3472 6428 9900 0.351
Ethambutol 2273 6390 8663 0.262
Pyrazinamide 1505 5393 6898 0.218
Streptomycin 2643 4362 7005 0.377
Amikacin 773 2632 3405 0.227
Capreomycin 737 2838 3575 0.206
Kanamycin 796 2502 3298 0.241
Ciprofloxacin 118 388 506 0.233
Ofloxacin 912 2246 3158 0.289
Moxifloxacin 398 1941 2339 0.170
Levofloxacin 66 189 255 0.259
Ethionamide 791 1647 2438 0.324
Total isolates 10,201

Phenotypic summary of the 10,201 isolates used to train and cross-validate the models: the
numbers of resistant isolates, susceptible isolates, the total tested (sum of the numbers of
resistant and susceptible isolates), and the resistant proportion, with respect to each of the 13
anti-TB drugs.

Table 2 Test set isolate phenotypes.

Drug Resistant
(n)

Susceptible
(n)

Total
(n)

Resistant
proportion

Isoniazid 3384 8870 12,254 0.276
Rifampicin 3007 9708 12,715 0.236
Ethambutol 1498 7853 9351 0.160
Pyrazinamide 1211 7490 8701 0.139
Streptomycin 382 1756 2138 0.179
Amikacin 93 1481 1574 0.059
Capreomycin 61 1652 1713 0.036
Kanamycin 83 2202 2285 0.036
Ofloxacin 230 2897 3127 0.074
Moxifloxacin 103 2495 2598 0.040
Levofloxacin 85 49 134 0.634
Total isolates 12,848

Phenotypic summary of the 12,848 isolates used to test the models: the numbers of resistant
isolates, susceptible isolates, the total tested (sum of the numbers of resistant and susceptible
isolates), and the resistant proportion, with respect to each of the 11 anti-TB drugs. Ciprofloxacin
and ethionamide are excluded from the test dataset due to having fewer than 50 resistant
isolates (0/2 resistant to ciprofloxacin; 12/25 resistant to ethionamide).
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Model design. We build two models to predict antibiotic resis-
tance phenotypes from genome sequences. The first is a multi-
drug convolutional neural network (MD-CNN), designed to
predict resistance phenotypes to all 13 drugs at once. The model
inputs are the full sequences of 18 loci in the M. tuberculosis
genome, selected based on known or putative roles in antibiotic
resistance (Table 3). We choose the final MD-CNN architecture to
maximize performance in cross-validation (Fig. 1, Supplementary
Fig. 1). As superior performance of multi-task over single-task
models has been demonstrated with convolutional neural networks
in computer vision18–20, the MD-CNN is designed to optimize
performance by combining all genetic information and relating it
to the full, drug-resistance profile. We compare the MD-CNN with
13 single-drug convolutional neural networks (SD-CNN), each of
which has a single-task, single-label architecture, where only loci
with previously known causal associations for any given drug are
incorporated (Supplementary Fig. 2). Because the MD-CNN has
access to all 18 loci related to any drug resistance, differences in
performance may be attributable to the fact that certain resistance
phenotypes share underlying genetic mechanisms, and/or to the
presence of loci not causally related to but correlated with the drug
resistance in question.

We benchmark both types of CNNs against an existing, state-
of-the-art, multi-drug, wide-and-deep neural network (WDNN),
and a logistic regression with L2 regularization, as these methods
were found to perform similarly and outperform a random forest
classifier11. The WDNN was also found to have higher sensitivity
than existing catalog-based methods (Mykrobe and TB-Profiler)
in a recent comparative study21.

Benchmarking CNN models against state-of-the-art. We use
5-fold cross-validation to compare the performance of the four
architectures (MD-CNN, SD-CNN, L2 regression, and WDNN11)
on the training dataset (N= 10,201 isolates, Supplementary
Table 1, Supplementary Data 1).

The mean MD-CNN AUC of 0.912 for second-line drugs is
significantly higher than the mean 0.860 for L2 regression
(Welch’s t-test with Benjamini–Hochberg FDR q < 0.05), but the
mean AUCs for first-line drugs (0.948 vs. 0.923) are not
significantly different (Benjamini–Hochberg q= 0.059). The
mean SD-CNN AUCs of 0.938 (first-line drugs) and 0.888

(second-line drugs) are not significantly different than for L2
regression (first-line q= 0.18, second-line q= 0.12). However, L2
regression demonstrates much wider confidence intervals than
the CNN models (median 0.037 versus 0.010, IQR 0.035 versus
0.014), indicating a lack of reliability as the performance depends
on the particulars of the cross-validation split (Fig. 2).

Against the state-of-the-art WDNN, the AUCs, sensitivities,
and specificities of the MD-CNN are comparable: the MD-CNN’s
mean AUC is 0.948 (vs. 0.960 for the WDNN, q= 0.13) for first-
line drugs, and 0.912 (vs. 0.924 for the WDNN, q= 0.18) for
second-line drugs. The SD-CNN is less accurate than the WDNN
for both first-line (Benjamini–Hochberg q= 0.004) and second-
line drugs (q= 0.004, Supplementary Table 1, Fig. 2).

The SD-CNN (mean AUC of 0.938 for first-line drugs; mean
AUC of 0.888 for second-line drugs) performs comparably to the
MD-CNN for both first-line (q= 0.18) and second-line drugs
(q= 0.059).

CNN models generalize well on hold-out test data. We test the
generalizability and real-world applicability of our CNN models
on a hold-out dataset of 12,848 isolates, which were curated on a
rolling basis during our study (Table 2, see the “Methods” sec-
tion). Rolling curation provides a more realistic test of general-
izability to newly produced datasets. Due to rolling curation and
source differences, the test dataset exhibits different proportions
of resistance to the 13 drugs (e.g., isoniazid resistance in 28% vs.
43% in the training dataset). We assess generalizability of the
models using phenotype data for 11 drugs in the hold-out test
dataset, since it contains low resistance counts for ciprofloxacin
and ethionamide.

We find that the MD-CNN generalizes well to never-before-
seen data for first-line antibiotic resistance prediction, achieving
mean AUCs of 0.965 (95% confidence interval [CI] 0.948–0.982)
on both training and hold-out test sets for first-line drugs (Fig. 3).
However, generalization for second-line drugs is mixed: for the
drugs streptomycin, amikacin, ofloxacin, and moxifloxacin, the
model generalizes well, achieving mean AUCs of 0.939 (CI
0.928–0.949) on the test data, compared with 0.939 (CI
0.929–0.949) on the training data. For the second-line drugs
capreomycin, kanamycin, and levofloxacin, the model general-
ization is reduced, achieving mean AUCs of 0.831 (CI

Table 3 Loci included in the MD-CNN and SD-CNN models.

Locus Start End Drug(s) Length (in H37Rv)

acpM-kasA 2,517,695 2,519,365 Isoniazid 1670
gid 4,407,528 4,408,334 Streptomycin 806
rpsA 1,833,378 1,834,987 Pyrazinamide 1609
clpC 4,036,731 4,040,937 Pyrazinamide 4206
embCAB 4,239,663 4,249,810 Ethambutol 10,147
aftB-ubiA 4,266,953 4,269,833 Ethambutol 2880
rrs-rrl 1,471,576 1,477,013 Streptomycin, Amikacin, Capreomycin, Kanamycin 5437
ethAR 4,326,004 4,328,199 Ethionamide 2195
oxyR-ahpC 2,725,477 2,726,780 Isoniazid 1303
tlyA 1,917,755 1,918,746 Capreomycin 991
katG 2,153,235 2,156,706 Isoniazid 3471
rpsL 781,311 781,934 Streptomycin 623
rpoBC 759,609 767,320 Rifampicin 7711
fabG1-inhA 1,672,457 1,675,011 Isoniazid, Ethionamide 2554
eis 2,713,783 2,716,314 Kanamycin, Amikacin 2531
gyrBA 4997 9818 Ciprofloxacin, Levofloxacin, Moxifloxacin, Ofloxacin 4821
panD 4,043,041 4,045,210 Pyrazinamide 2169
pncA 2,287,883 2,289,599 Pyrazinamide 1716

The 18 loci included in the MD-CNN and their start and end coordinates (in H37Rv numbering). Each locus is designated as putatively involved in resistance to at least one drug. To construct the 13 SD-
CNN models, the relevant loci for each drug are combined—for example, the isoniazid (INH) model contains the acpM-kasA, oxyR-ahpC, katG, and fabG1-inhA loci.
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0.824–0.838) on the test data, compared with 0.955 (CI
0.931–0.978) on the training data. We find that the SD-CNN
generalizes well on first-line drug resistance for hold-out test data,
with a mean AUC of 0.956 (CI 0.929–0.974). The SD-CNN also
generalizes well for second-line drugs, with a mean AUC of 0.862
(CI 0.830–0.894).

We test the hypothesis that missed resistance (false negatives)
in the SD-CNNs is due to mutations affecting phenotype found
outside of the incorporated loci. To achieve this, we compute the
number of mutations in the incorporated loci that separate each
test isolate from the nearest isolate(s) in the training set and the
corresponding phenotype of the nearest isolates (see the
“Methods” section). We find that many of the false negatives
have a genomically identical yet sensitive isolate in the training
set, ranging from a minimum of 34% for pyrazinamide to a
maximum of 86% for kanamycin, and suggesting that additional
mutations outside of the examined loci may influence the
resistance phenotype. Indeed, when considering the entire
genome, almost no false negative test isolates are identical to a
sensitive isolate in the training set (<6% of isolates for all drugs),
indicating that additional genetic variation does exist and may
lead to the currently unexplained resistance.

MD-CNN model has improved sensitivity compared to WHO
catalog. An important feature of the CNN models is the ability to

tune the model threshold to optimize sensitivity or specificity,
depending on the application. We choose a threshold for all of
our machine learning models (MD-CNN, SD-CNN, logistic
regression+ L2, and WDNN) that maximizes the sum of sen-
sitivity and specificity. We find that the MD-CNN has the
highest sensitivity of the four models for first-line (mean sen-
sitivity 91.9%) and second-line drugs (mean sensitivity 91.1%)
except ethambutol, for which the WDNN exhibits the highest
sensitivity (Supplementary Table 2). The SD-CNN demon-
strates the greatest specificity for first-line drugs (mean speci-
ficity 94.1%) except ethambutol where the MD-CNN has the
highest; the SD-CNN demonstrates the highest specificity for
second-line drugs (mean specificity 94.3%) except ethionamide
and ciprofloxacin where the MD-CNN is highest (Supplemen-
tary Table 2).

Using both training and hold-out test data, we then compare
the sensitivity and specificity of the MD-CNN to the field-
standard WHO catalog of known, resistance-conferring variants
(see the “Methods” section). In general, we find higher sensitivity
for the MD-CNN model versus the WHO catalog (mean
sensitivity 91.9% for first-line drugs [MD-CNN] vs. 80.4%
[WHO catalog]; 91.1% for second-line drugs [MD-CNN] vs.
73.1% [WHO catalog]) at the expense of lower specificity (92.3%
for first-line drugs [MD-CNN] vs. 94.8% [WHO catalog]; 85.9%
for second-line drugs [MD-CNN] vs. 93.6% [WHO catalog])
(Supplementary Table 3).

Fig. 1 Schematic diagram and table of the multi-drug convolutional neural network (MD-CNN). In the output layer, each of the 13 nodes is composed of a
sigmoid function to compute a probability of resistance for their respective anti-TB drug (13 anti-TB drugs in total). The input consists of 10,201 isolates (TB
strains) for which there is resistance phenotype data for at least 1 anti-TB drug; 5 for one-hot encoding of each nucleotide (5 dimensions, one for each
nucleotide—adenine, thymine, guanine, cytosine –– plus a gap character); 10,291 being the number of nucleotides of the longest locus (embC-embA-embB);
18 loci of interest are incorporated as detailed in the “Methods” section.
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CNN models generalize on new data with realistic resistance
proportions. Datasets of drug resistance phenotypes in M.
tuberculosis are enriched in resistant isolates compared to real
global resistance frequencies. To assess the generalizability of our
methods in a more “realistic” setting, we generate down-sampled,
hold-out test data from the CRyPTIC database22 with 95% pan-
susceptible isolates and 5% rifampicin-resistant isolates to
approximate the global prevalence23 (see the “Methods” section).
CRyPTIC provides genotype and phenotype data for the first-line
drugs rifampicin, isoniazid, and ethambutol; and for the second-
line drugs levofloxacin, amikacin, moxifloxacin, kanamycin, and
ethionamide.

On the down-sampled CRyPTIC dataset, the MD-CNN
produces mean sensitivities of 97.6% (95% confidence interval,
CI, 97.3–97.8) [first-line drugs], and 86.6% (CI 85.7–87.6)
[second-line drugs]; and mean specificities of 97.4% (CI
97.2–97.7) [first-line drugs], and 98.5% (CI 97.5–99.4) [second-
line drugs]. For the SD-CNN, mean sensitivities are 96.2% (CI
95.9–96.5) [first-line drugs], and 87.7% (CI 86.8–88.5) [second-
line drugs]; mean specificities are 97.5% (CI 97.2–97.8) [first-line

drugs], and 98.9% (CI 98.1–99.7) [second-line drugs] (Supple-
mentary Table 4).

When applied to the whole, hold-out test CRyPTIC data, the
models have lower performance, particularly specificity: the MD-
CNN’s mean sensitivities are 96.4% (CI 96.36–96.44) [first-line
drugs] and 83.3% (CI 83.2–83.5) [second-line drugs]; mean
specificities are 92.7% (CI 92.66–92.75) [first-line drugs] and
92.6% (CI 92.5–92.8) [second-line drugs]. For the SD-CNN,
mean sensitivities are 95.3% (CI 95.24–95.34) [first-line drugs]
and 85.4% (CI 85.2–85.5) [second-line drugs]; mean specificities
are 94.9% (CI 94.83–94.92) [first-line drugs] and 96.9% (CI
96.8–97.1) [second-line drugs] (Supplementary Table 4).

MD-CNN achieves accuracy by learning dependency structure
of drug resistances. Because the inputs to the CNN models are
the complete sequence of 18 genetic loci involved in drug resis-
tance, we are able to assess the contribution of every site, in its
neighboring genetic context, to the prediction of antibiotic
resistance phenotypes. We do this by calculating a saliency score

First line
drugs

Second line
drugs

Second line drugsFirst line drugs

Mean AUC

a

b

Fig. 2 MD-CNN performs comparably to state-of-art WDNN for both first- and second-line drugs. Results of five-fold cross validation on the training
dataset (N= 10,201 isolates) for the four models: WDNN, logistic regression+ L2 benchmark, SD-CNN, and MD-CNN. a Data are presented as pooled
mean AUCs ± 95% confidence intervals for first-line (5 AUC values per drug, 4 drugs) and second-line drugs (5 AUC values per drug, 9 drugs). b data are
presented as individual AUC values for each cross-validation split. The WDNN was not initially trained on levofloxacin or ethionamide and thus was not
evaluated for these drugs.
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for each nucleotide site in each input sequence using DeepLIFT24.
For any input, DeepLIFT calculates the change in predicted
resistance relative to a reference input, and then backpropagates
that difference through all neurons in the network to attribute the
change in output to changes in the input variable. We use the
pan-susceptible H37Rv genome as the reference input25. We take
the highest magnitude (positive or negative) saliency score for
each nucleotide across all isolates in the training set (see the
“Methods” section).

We find evidence that the MD-CNN achieves high perfor-
mance by relying on drug–drug resistance correlations. Due to
the global standard therapeutic regimen for tuberculosis,
resistances to first-line drugs almost always evolve before
resistances to second-line drugs, and frequently evolve in a
particular order26 (Fig. 4a, b). When considering the top 0.01%
(N= 17) of positions with the highest DeepLIFT saliency scores
for each drug, we observe that an average of 85.0% are known to
confer resistance to any drug27, but only a mean of 24.0% are
known to confer resistance to the particular drug being
investigated. For example, the top three hits for the antibiotic
kanamycin are, in order, a causal hit to the rrs gene, an
ethambutol-resistance-causing hit to the embB gene, and a
fluoroquinolone-resistance-causing hit to the gyrA gene (Supple-
mentary Data 2).

To probe this further, we introduce mutations that confer
resistance to the first-line drugs rifampicin and isoniazid into a
pan-susceptible genomic sequence background, in silico, and
assess the model predictions for these mutated isolates. The
mutations increase the MD-CNN predicted resistance probabil-
ities of pyrazinamide, streptomycin, amikacin, moxifloxacin and
ofloxacin resistance (Fig. 5a). The MD-CNN model generalizes
well for all five of these drugs: AUC of 0.939 for these drugs,
versus 0.831 for the remaining second-line drugs. Taken together,
these observations show that the MD-CNN benefits from the
correlation structure of antibiotic resistance.

SD-CNN saliencies highlight known and new potential pre-
dictors of resistance. We assess whether the DeepLIFT saliency
scores for the SD-CNN models are able to capture known causal,
resistance-conferring variants by cross-referencing the WHO
catalog of established resistance-conferring mutations27 (Sup-
plementary Data 3). We find that, of the 0.1% of sites with the
largest absolute DeepLIFT saliencies in each model, a large pro-
portion are in the WHO catalog of known, resistance-conferring
positions (ranging from 44.4% for isoniazid to 100% for oflox-
acin, see the “Methods” section, Supplementary Table 5). In total,
we identify 18 SNP sites in the top 0.1% of sites that are not

First line
drugs

Second line
drugs

Second line drugsFirst line drugs

Mean AUC

a

b

Fig. 3 MD-CNN and SD-CNN model generalize well on held-out test data. Performance of CNN models trained on the entire training dataset evaluated on
either the entire training dataset or the entire hold-out test dataset (N= 12,848 isolates). a data are presented as mean AUCs ± 95% confidence intervals
for first-line (4 drugs) and second-line drugs (7 drugs). b AUC for each drug evaluated on either the entire training or entire hold-out test dataset.
Ciprofloxacin and ethionamide (both second-line drugs) were not assessed due to low numbers of resistant isolates.
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previously known to cause resistance, or are classified by the
WHO as of “uncertain significance” (Supplementary Table 6).

We then determine whether the high saliency positions may be
indicative of M. tuberculosis population structure using pre-
determined sets of 62 and 95 lineage-defining genetic
variants28,29, respectively, and variants in perfect linkage with a
lineage-defining variant (see the “Methods” section). Lineage or
lineage-linked variants comprise only a small proportion of the
most salient positions, ranging from 0% to 8% of the top 0.1% of
hits for each locus (Supplementary Table 7).

We examine the distribution of saliency scores closely for two
drugs with well understood resistance mechanisms: rifampicin
and isoniazid; and for pyrazinamide, a drug for which elucidating
resistance mechanisms has been more challenging.

Rifampicin. Positions in the rpoB gene known to cause rifampicin
resistance27 constitute 86% of the top 0.1% and 55% of the top 1%
of importance scores (Supplementary Fig. 4). Four of the five
highest-scoring variants that have not been previously identified
as resistance-causing are located in three-dimensional proximity
(minimum atom distance < 8 Å) to resistance-conferring variants
in the RpoB protein structure, demonstrating the biological
plausibility for these newly identified sites to confer resistance
(Supplementary Fig. 4). We identify a three-base-pair insertion at
position 761095, RpoB codon L430, as among the top 1% of
importance scores. Substitutions at this position, L430P and
L430R, are recognized as resistance conferring27 but insertions
are not well characterized.

Isoniazid. The common causal site KatG S315 has the highest
maximum saliency in the isoniazid SD-CNN (Fig. 5a). We
observe several high saliency peaks in the promoter region of the

ahpC gene, which are currently designated as of uncertain sig-
nificance to isoniazid resistance by the WHO30. We observe three
saliency peaks in the InhA protein, the mycolic acid biosynthesis
enzyme targeted by isoniazid. One peak was at the known
resistance-conferring mutation S94, and two at positions I21 and
I194, of uncertain significance in the WHO catalog. All three of
these positions are close in 3D structure (minimum atom distance
<8 Å) to the bound isoniazid molecule31 (Fig. 5b).

Pyrazinamide. Of the top 1% of high saliency positions, 85% are
known to be resistance-conferring, and an additional 9% are in
pncA, but not previously known to cause resistance. The top three
of these unknown pncA mutations are physically adjacent to
known resistance-conferring mutations (Fig. 5c, d). The top 1% of
salient positions also includes positions in clpC1, a gene recently
implicated in pyrazinamide resistance, but mutations thereof are
not yet recognized to be useful for resistance prediction32,33

(Supplementary Data 3).

New potential predictors segregate between resistant and sen-
sitive isolates. To further validate the 18 high-saliency positions
not previously designated as resistance-conferring, we ask whether
they are unevenly distributed between resistant and sensitive iso-
lates using the hold-out CRyPTIC dataset. Indeed, 13 of 18 posi-
tions have minor alleles that segregate between resistant and
sensitive isolates (defined as >80% resistant isolates among isolates
with the minor allele). In particular, of all occurrences of minor
alleles in the previously highlighted InhA I21 and I194 positions,
100% and 91%, respectively, are found in resistant strains. Of the
top three unknown mutations in pncA, G78, T100, and R140, 94%,
90%, and 88%, respectively, are found in resistant strains.
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Fig. 4 MD-CNN learns dependency structure of antibiotic resistance. a Introduction of single resistance-conferring mutations into pan-susceptible wild-
type background (H37Rv, “WT”) is sufficient to cause the MD-CNN model to predict false positive resistances. A single isoniazid-resistance conferring
mutation (2155168G, “INH”) or one isoniazid- and one rifampicin-resistance conferring mutations (2155168G and 761155T, “INH+RIF”) are introduced in
silico into the wild-type background sequence and resistances are predicted using the MD-CNN model. b Dependency heatmaps of drug resistance for
training isolates. The horizontal axis represents the drugs to which isolates exhibit resistance. Based on this condition of resistance, the proportions of
resistance to other drugs (vertical axis) are computed.
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Discussion
In summary, we find that the CNNs offer similar AUCs to the
state-of-art WDNN while also being able to discover new loci
implicated in resistance, and to visualize them in their genomic
context. Although the CNNs have comparable AUCs to the
WDNN, the MD-CNN achieves highest sensitivity and the SD-
CNN achieves highest specificity for resistance diagnosis. A major
advantage of the CNNs is that they predict directly from align-
ments of genomic loci, allowing the models to consider not only
single-nucleotide polymorphisms but also sequence features such
as insertions and deletions. They also circumvent challenges
arising from differing variant-naming conventions, and recon-
ciling variant features across datasets and time. In addition,
applying sequence filters in the convolutional layers allows for
pooling of variant effects, such that any deviation from wild-type
sequence structure can be more directly associated with resistance
even when individual variants are rare. Deep learning methods
can also theoretically learn arbitrary interaction terms between
input genetic variants and this may further explain performance
gains over simpler models like logistic regression. Further study,
perhaps using in silico mutagenesis, is required to determine
which, if any, epistatic interactions are captured by these models.
In this study the detection of epistasis is limited by the use of

binary resistance phenotype data, which masks any epistatic effect
that further increases resistance of an already resistant strain. It is
hence possible that deep learning models may show further
performance improvements over regression methods when
applied to quantitative resistance data, where epistatic relation-
ships between variants may be more apparent.

Examining performance by drug, we find the MD-CNN’s
AUCs to be similar to those of the drug-specific SD-CNNs for
first-line drugs, and significantly higher for second-line drugs.
CNNs generalize well to the hold-out test isolates for these first-
line antibiotics, a promising aspect if they are to be deployed in
clinical practice. By contrast, there are more mixed results and
generally lower hold-out test AUCs for second-line drugs. For
both first-line and second-line drugs, we observe that false
negative isolates are often genetically identical at the considered
loci to their drug-sensitive counterparts in the training dataset,
indicating that additional genetic information is needed to
accurately predict the phenotype for certain isolates.

We compare the sensitivity and specificity of our deep learning
methods to the current WHO catalog-based method, and find
that the catalog method has lower sensitivity. This is not sur-
prising as the catalog was designed to be very selective about
which variants are labeled as resistance-conferring, and hence is

Fig. 5 SD-CNN saliency scores highlight known and plausible new resistance-conferring loci. Variants not known to cause resistance according to the
WHO27 are shown in purple. a Maximum of absolute value DeepLIFT saliency scores for the isoniazid SD-CNN across all isoniazid-resistant loci. b High-
importance variants in the InhA protein mapped to its crystal structure72. c High-importance variants in the PncA protein mapped to its crystal structure73.
d Maxima of absolute value DeepLIFT saliency scores for the pyrazinamide SD-CNN in the pncA locus.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31236-0

8 NATURE COMMUNICATIONS |         (2022) 13:3817 | https://doi.org/10.1038/s41467-022-31236-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


much more conservative in calling resistance, highlighting the
need for machine learning methods. Machine learning methods
also have tunable thresholds that can be optimized to favor
sensitivity or specificity depending on the application, a feature
that is absent in catalog-based methods.

Our analysis of sensitivity and specificity shows that the MD-
CNN has the highest sensitivity of any model analyzed, but that
the sensitivity comes at the expense of lowered specificity. This
suggests that the MD-CNN, while highly sensitive, has a higher
rate of false positive resistance calls, possibly due to the use of the
drug–drug correlation structure by the model. In contrast, the
SD-CNN has no access to the drug–drug correlation structure
and demonstrates the greatest specificity. It may be useful to use
both types of CNNs sequentially in clinical settings: if the MD-
CNN predicts susceptibility to a drug, the SD-CNN is not con-
sulted; if the MD-CNN predicts resistance to a drug, resistance
can be confirmed or disputed through a second prediction from
the SD-CNN.

To investigate whether the correlation structure of drug resis-
tance would limit generalizability of the MD-CNN, we generate a
dataset with realistic resistance proportions by down-sampling
the hold-out CRyPTIC dataset. We find that both deep learning
models perform as well or better with samples of realistic resis-
tance proportions, compared to the entire CRyPTIC dataset,
particularly in terms of specificity. We propose that the correla-
tion structure of drug resistance is a useful feature for achieving
high sensitivity models, and is not problematic in datasets with
lower resistance rates. However, should antibiotic usage guide-
lines change or isolates with unusual resistance patterns be
sequenced, the models will require revisiting to ensure that cor-
relation structure does not become a hindrance.

Though neural networks are often criticized for lack of inter-
pretability, we undertake in-silico mutagenesis experiments to
understand the behavior of our network. By computationally
introducing resistance-conferring mutations into known suscep-
tible sequences, we discover that the MD-CNN’s predictions for
second-line drugs rely on the correlation structure of drug
resistance, which is present in both the training and test sets. Such
correlations have been previously observed and shown to improve
molecular diagnostic accuracy in M. tuberculosis34. Indeed, these
correlations appear to improve the MD-CNN’s sensitivity when
predicting resistance to second-line drugs.

We further interpret the behavior of our neural network by
assessing DeepLIFT importance scores for every input site. In
addition to highlighting known resistance-conferring mutations,
our model discovers 18 resistance variants previously unknown or
of “uncertain significance” based on the WHO catalog27.
Including these mutations in resistance prediction may be useful
for clinical diagnosis of antibiotic resistance—for example, 6% of
isoniazid-resistant strains contain at least one mutation of
uncertain significance, and 2.4% contain only mutations of
uncertain significance and no canonical resistance variants. The
interpretable, nucleotide-level saliency scores permit the protein
contextualization of mutations and offer the prospect of modeling
how certain mutations would impact protein structure, and drug
binding. This can allow for prioritization of putative mutations
for further experimental validation.

Limitations of this study include: first, the genomic variants
highlighted by saliency analysis and protein contextualization
require in silico and in vitro corroboration, although further
validation in independent CRyPTIC data supports a causal role.
Second, traditional laboratory-based susceptibility testing can
have high variance, especially for second-line drugs, introducing a
potential source of error. Third, there is insufficient phenotypic
data for certain anti-TB drugs (e.g., second-line agents like
ethionamide). Finally, additional computational resources would

allow the inclusion of more loci of interest, likely augmenting the
performance of the MD-CNN and SD-CNNs.

This study demonstrates the feasibility of interpretable, con-
volutional neural networks for prediction of antibiotic resistance
in M. tuberculosis. Greater interpretability, reliability, and accu-
racy make this model more clinically applicable than existing
benchmarks and other deep learning approaches. Mapping sal-
iency scores and protein contextualization also offer the possi-
bility of creating hypotheses on mechanisms of anti-TB drug
resistance to focus further research. Along with increasingly
accessible WGS-capable infrastructure globally, machine-
learning-based diagnostics may support faster initialization of
appropriate treatment for multi-drug-resistant TB, reducing
morbidity and mortality, and improving health economic
endpoints1,35.

Methods
Sequence data. The training, cross-validation, and test datasets consist of a
combined 23,049 M. tuberculosis isolates for which whole genome sequence data
and antibiotic resistance phenotype data are available. The sequencing data are
obtained through the National Center for Biotechnology Information database,
PATRIC, and published literature,: 10,201 strains are in the “train” dataset (for
training and cross-validation)6,36–48, 7537 are in the hold-out “test_1” dataset (for
hold-out testing)37,49–53, and the remaining 5312 are in the hold-out “test_GenTB”
dataset (for hold-out testing)37,49–53. Isolates were added to the “test_1” and
“test_GenTB” datasets on a rolling basis—i.e., as the sequencing data became
available gradually over time.

We process sequences in the train and test_1 datasets using a previously
validated pipeline as described by Ezewudo et al. (2018), with modifications as
elaborated by Freschi et al. (2021)48,54. Reads are trimmed and filtered using
PRINSEQ55, contaminated isolates are removed using Kraken56, and aligned to the
reference genome H37Rv using BWA-MEM25,57. Duplicate reads are removed
using Picard58, and we drop isolates with <95% coverage of the reference genome
at 10× coverage.

For the “test_GenTB” dataset, we use the sequencing data prepared by Groschel
et al.21, which employs a different variant of the Ezewudo et al. pipeline. The
differences between these two pipelines (most notably the use of minimap-2
instead of BWA-MEM) make a negligible difference on final variant calls59.

With regard to curated genetic variants, the predictor sets of features for the
multi-drug wide and deep neural network (WDNN, see the section “Machine
learning models” below) are processed as described by Chen et al. (2019)11.
Conversely, for the single-drug and multi-drug convolutional neural networks (SD-
CNN and MD-CNN, see the section “Machine learning models” below), only the
FASTA files for the loci of interest are necessary.

Antimicrobial resistance phenotype data. Culture-based antimicrobial drug
susceptibilities to at least one of 13 anti-TB drugs are available for all 23,049 isolates
in the combined training, cross-validation, and test dataset. Phenotypes (drug
susceptibility test results) for isolates in the training and cross-validation dataset
are from the ReSeqTB data portal, the PATRIC database, and manual curation of
phenotypic data available in the literature3,6,36–48,60. Phenotypes for the test dataset
isolates are from data available in the literature37,49–53. Each isolate’s phenotype is
classified as resistant, susceptible, or unavailable, with respect to a combination of
13 possible first-line (rifampicin, isoniazid, pyrazinamide, ethambutol) and second-
line drugs (streptomycin, ciprofloxacin, levofloxacin, moxifloxacin, ofloxacin,
capreomycin, amikacin, kanamycin, ethionamide). (Table 1). In the hold-out test
dataset, ethionamide and ciprofloxacin are excluded due to having fewer than 50
phenotyped resistant isolates (0/2 resistant to ciprofloxacin; 12/25 resistant to
ethionamide) (Table 2).

Selecting input loci. The loci of the isolate sequences are selected from genes
known or suspected to cause resistance based on previous models and experiments
(Table 3). In order to incorporate any possible regulatory sequences from the
immediate genetic neighborhood, the entire upstream and downstream region of
each gene or operon is included (upstream region: from the beginning of the
relevant gene to the end of the previous gene on the genome; downstream region:
from the end of the relevant gene to the beginning of the next gene on the genome).
Loci are aligned to the H37Rv reference genome for comparison of coordinates and
genome annotations are based on H37Rv coordinates from Mycobrowser61.

Machine learning models. The multi-drug (multi-task) wide-and-deep neural
network (WDNN) is described by Chen et al. (2019), and involves three hidden
layers (256 ReLU), dropout, and batch normalization11

The multi-drug convolutional neural network (MD-CNN) comprises two
convolution layers (with filter size 12 nucleotides in length), one max-pooling layer,
two convolution layers, one max-pooling layer, followed by two fully connected
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hidden layers each with 256 rectified linear units (ReLU) (Fig. 1). This architecture
is selected based on its performance, as defined by area under the receiver operator
characteristic curve (AUC), compared to other architectures with fewer
convolutional layers and different filter sizes (Supplementary Fig. 1). Neither
random nor cartesian grid search of optimal hyperparameters is conducted.

The MD-CNN is trained for 250 epochs via stochastic gradient descent and the
Adam optimizer (learning rate of e–9). We select an optimal number of epochs
based on minimizing validation loss (Supplementary Fig. 5). The training is
performed simultaneously using the resistance phenotype for all 13 drugs, hence
the 13 nodes in the final output layer, the output of each node corresponding to the
sigmoid probability of the strain being resistant to the respective drug.

The MD-CNN’s loss function is adapted from the masked, class-weighted
binary cross-entropy function described by Chen et al. (2019)11. This function
addresses the dataset imbalance (missing resistance phenotypes for a varying
number of drugs in any given isolate) by upweighting the sparser of the susceptible
and resistant classes for each drug, and masking outputs where resistance status
was completely missing.

The single-drug convolutional neural networks (SD-CNNs) are 13 individually
trained convolutional neural networks, each trained to predict for only one drug,
hence the output layer having size one instead of 13. Each SD-CNN is given only
the input loci relevant to its particular antibiotic, resulting in different input sizes
depending on the longest locus for each drug. The architecture for the SD-CNNs is
otherwise identical to that of the MD-CNN. The SD-CNNs are initially trained for
150 epochs using stochastic gradient descent and the Adam optimizer (learning
rate of e–9), and an optimal number of epochs for each SD-CNN is selected to
minimize the validation loss.

Logistic regression benchmark. We build a logistic regression benchmark to
evaluate the performance of our neural network models. For each of the 18 input
loci used in the MD-CNN and SD-CNNs, we select all sites with a minor allele
frequency of at least 0.1%, resulting in 3011 sites across 23,049 genomes. Sites are
then encoded using a major/minor allele encoding.

Using the same train/test partitioning as for the neural network models, we use
GridSearchCV in Scikit-learn v.0.23.262 to select the optimal L2 penalty weight for
a Logistic Regression classifier with balanced class weights. Hyperparameter search
is performed for each drug independently, testing the values C= [0.0001, 0.001,
0.01, 0.1, 1]. After selecting the optimal L2 weight, we use five-fold cross-validation
on the training set to assess the AUC, specificity, and sensitivity, selecting a model
threshold that maximizes the sum of specificity and sensitivity.

Training and model evaluation. Five-fold cross-validation is performed five times
to obtain the performance metrics—area under the receiver operator characteristic
curve (AUC), sensitivity, specificity, and probability threshold (to maximize the
sum of sensitivity and specificity)—and the 95% confidence intervals of the AUC
values between the models.

Model performance on the hold-out test sets is evaluated using the probability
threshold selected during training.

Computational details. The MD-CNN is developed and implemented using
TensorFlow 2.3.0 in Python 3.7.9 with CUDA 10.163–65. Model training is per-
formed on an NVIDIA GeForce GTX Titan X graphics processing unit (GPU).

Evaluation on CRyPTIC isolates. Binary phenotype data is downloaded from the
CRyPTIC study22. CRyPTIC has phenotype data for the following drugs predicted
by the CNN: isoniazid, rifampicin, ethambutol, amikacin, kanamycin, moxi-
floxacin, levofloxacin, ethionamide. Phenotypes whose quality is not “high” are
masked. We filter isolates that do not have a phenotype for any of the drugs of
interest, for a total of 9498 isolates.

Isolates from the dataset of 9498 are analyzed using a variant of the Ezewudo
et al. pipeline, with modifications as elaborated by Freschi et al. (2021)48,54,
additionally using minimap2-2.24 for read mapping, SPAdes v 3.15.4 for assembly,
and trimmomatic v. 0.40 for read trimming66–68. Nucleotide sequences for the
designated genomic loci are extracted and aligned against the previous input
sequence alignments using MAFFT v7.490 with the --add and --keeplength
options69.

Confidence intervals for sensitivity and specificity on the full CRyPTIC dataset
are generated by sampling 80% of the dataset 100 times.

Analysis of mis-predicted isolates. For each SD-CNN model, we compute the
genetic distance (number of different sites) between all isolates in the training and
test sets. Following Vargas et al., 202170, to compute the genetic distance for the
entire genome, we process the VCF files output by our pipeline described above,
and take all sites that meet the following criteria: mean Base Quality > 20, mean
Mapping Quality > 30, no reads supporting insertions or deletions, number of high
quality reads ≥ 20, and at least 75% support for a non-reference allele. Sites falling
between 25% and 75% support for non-reference alleles are labeled as uncertain
and do not contribute to distance calculation. We further remove sites with an
empirical base pair recall score < 90%59 and sites where at least 10% of the isolates

have uncertain calls. We then compute the number of differences between pairs of
isolates.

For computing the number of differences from the perspective of the SD-CNN
model, only sites found in the loci used in each SD-CNN model are included, and
each site with a confident insertion or deletion contributes one to the
difference score.

Designation of known resistance variants from WHO catalog. A list of known
resistance-conferring variants is extracted from the WHO catalog27. Only variants
with a Final Confidence Grading of “Category 1: Associated with resistance” or
“Category 2: Associated with resistance—interim” are taken to be known
resistance-conferring variants.

For prediction of resistance with the WHO catalog, isolates are assumed to be
sensitive unless they have one or more of the known resistance-conferring variants
for a particular drug.

Saliency calculation. Saliencies are calculated using DeepLIFT v. 0.6.12.0, using
the recommended defaults for genomics: “rescale” rule applied to convolutional
layers, and “reveal-cancel” rule applied to fully connected layers. We use the H37Rv
reference genome, which is sensitive to all antibiotics, as the baseline25.

Saliency scores for each isolate sequence are calculated relative to the H37Rv
baseline. For our analysis of positions influencing antibiotic resistance prediction,
we take the maximum of the absolute value of the scores at each position across all
resistant isolates.

Lineage variant analysis. We define lineage variants as those found in the Coll
et al. or Freschi et al. barcode of lineage-defining variants28,29. We further annotate
any position in our 18 loci as lineage-associated if that position has an identical
distribution of major/minor alleles to any position in the Freschi et al. barcode,
excluding the position 1,137,518 which defines lineage 7 (not present in our
dataset).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All code, processed input data, and saved model files are available on github, https://
github.com/aggreen/MTB-CNN: v1.071. The processed strain phenotype data used in this
study are available in MTB-CNN/input_data/master_table_resistance.csv and MTB-
CNN/input_data/cryptic_phenotype_data.csv. The raw read data are publicly available
for download from the NCBI using accession codes found in the processed strain
phenotype data files. The processed FASTA files used as input to the CNNs are available
in MTB-CNN/input_data/fasta_files and MTB-CNN/input_data/cryptic. The in silico
mutagenized strains are available in MTB-CNN/input_data/dummy_strain_fasta_files.
The trained MD-CNN and SD-CNN models are available in MTB-CNN/saved_models.
The model evaluation statistics generated in this study are provided in Supplementary
Tables 1–4. The saliency score data generated in this study are provided in
Supplementary Data 2 (MD-CNN) and Supplementary Data 3 (SD-CNNs). Summaries
and analysis of the saliency score data generated in this study are available in
Supplementary Tables 5–7.

Code availability
Implementation of all models and data analysis can be found at: https://github.com/
aggreen/MTB-CNN: v1.071.

Received: 13 December 2021; Accepted: 10 June 2022;

References
1. WHO. Global tuberculosis report 2018 (World Health Organization, 2018).
2. Lange, C. et al. Drug-resistant tuberculosis: an update on disease burden,

diagnosis and treatment. Respirology 23, 656–673 (2018).
3. Farhat, M. R. et al. Genetic determinants of drug resistance in Mycobacterium

tuberculosis and their diagnostic value. Am. J. Respir. Crit. Care Med. 194,
621–630 (2016).

4. Allix-Beguec, C. et al. Prediction of susceptibility to first-line tuberculosis
drugs by DNA sequencing. N. Engl. J. Med. 379, 1403–1415 (2018).

5. Hunt, M. et al. Antibiotic resistance prediction forMycobacterium tuberculosis
from genome sequence data with Mykrobe. Wellcome Open Res. 4, 191 (2019).

6. Walker, T. M. et al. Whole-genome sequencing for prediction of
Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective
cohort study. Lancet Infect. Dis. 15, 1193–1202 (2015).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31236-0

10 NATURE COMMUNICATIONS |         (2022) 13:3817 | https://doi.org/10.1038/s41467-022-31236-0 | www.nature.com/naturecommunications

https://github.com/aggreen/MTB-CNN
https://github.com/aggreen/MTB-CNN
https://github.com/aggreen/MTB-CNN
https://github.com/aggreen/MTB-CNN
www.nature.com/naturecommunications


7. Yang, Y. et al. Machine learning for classifying tuberculosis drug-resistance
from DNA sequencing data. Bioinformatics 34, 1666–1671 (2018).

8. Ghassemi, M., Oakden-Rayner, L. & Beam, A. L. The false hope of current
approaches to explainable artificial intelligence in health care. Lancet Digit.
Health 3, e745–e750 (2021).

9. Raji, I. D. et al. in Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, FAT* ’20, (eds Hildebrandt, M. & Castillo,
C.) 33–44 (Association for Computing Machinery, New York, NY, USA,
2020).

10. Libbrecht, M. W. & Noble, W. S. Machine learning applications in genetics
and genomics. Nat. Rev. Genet. 16, 321–332 (2015).

11. Chen, M. L. et al. Beyond multidrug resistance: leveraging rare variants with
machine and statistical learning models in Mycobacterium tuberculosis
resistance prediction. EBioMedicine 43, 356–369 (2019).

12. Zabeti, H. et al. INGOT-DR: an interpretable classifier for predicting drug
resistance in M. tuberculosis. Algorithms Mol. Biol. 16, 17 (2021).

13. Drouin, A. et al. Interpretable genotype-to-phenotype classifiers with
performance guarantees. Sci. Rep. 9, 1–13 (2019).

14. Koo, P. K. & Eddy, S. R. Representation learning of genomic sequence
motifs with convolutional neural networks. PLoS Comput. Biol. 15, e1007560
(2019).

15. Adebayo, J. et al. Sanity checks for saliency maps. arXiv [cs.CV] http://arxiv.
org/abs/1810.03292 (2018).

16. Koo, P. K., Qian, S., Kaplun, G., Volf, V. & Kalimeris, D. Robust neural
networks are more interpretable for genomics. bioRxiv https://doi.org/10.
1101/657437 (2019).

17. Yoon, C. H., Torrance, R. & Scheinerman, N. Machine learning in medicine:
should the pursuit of enhanced interpretability be abandoned? J. Med. Eth.
https://doi.org/10.1136/medethics-2020-107102 (2021).

18. Dobrescu, A., Giuffrida, M. V. & Tsaftaris, S. A. Doing more with less: a
multitask deep learning approach in plant phenotyping. Front. Plant Sci. 11,
141 (2020).

19. Zhang, C. & Zhang, Z. in IEEE Winter Conference on Applications of
Computer Vision, 1036–1041 (IEEE, 2014).

20. Caruana, R. Multitask learning. Mach. Learn. 28, 41–75 (1997).
21. Gröschel, M. I. et al. GenTB: a user-friendly genome-based predictor for

tuberculosis resistance powered by machine learning. Genome Med. 13, 138
(2021).

22. Brankin, A. et al. A data compendium of Mycobacterium tuberculosis
antibiotic resistance. Preprint at bioRxiv https://doi.org/10.1101/2021.09.14.
460274 (2021).

23. World health Organization. Global Tuberculosis Report 2021 (World health
Organization, 2021).

24. Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features
through propagating activation differences. arXiv https://doi.org/10.48550/
arXiv.1704.02685 (2017).

25. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from
the complete genome sequence. Nature 393, 537–544 (1998).

26. Ektefaie, Y., Dixit, A., Freschi, L. & Farhat, M. R. Globally diverse
Mycobacterium tuberculosis resistance acquisition: a retrospective
geographical and temporal analysis of whole genome sequences. Lancet
Microbe 2, e96–e104 (2021).

27. Walker, T. M. et al. The 2021 WHO catalogue of Mycobacterium tuberculosis
complex mutations associated with drug resistance: A genotypic analysis.
Lancet Microbe 3, e265–e273 (2022).

28. Coll, F. et al. A robust SNP barcode for typing Mycobacterium tuberculosis
complex strains. Nat. Commun. 5, 4812 (2014).

29. Freschi, L. et al. Population structure, biogeography and transmissibility of
Mycobacterium tuberculosis. Nat. Commun. 12, 6099 (2021).

30. Wilson, T. M. & Collins, D. M. ahpC, a gene involved in isoniazid resistance of
the Mycobacterium tuberculosis complex. Mol. Microbiol. 19, 1025–1034
(1996).

31. Vilchèze, C. et al. Transfer of a point mutation in Mycobacterium tuberculosis
inhA resolves the target of isoniazid. Nat. Med. 12, 1027–1029 (2006).

32. Lamont, E. A., Dillon, N. A. & Baughn, A. D. The bewildering antitubercular
action of pyrazinamide. Microbiol. Mol. Biol. Rev. 84, https://doi.org/10.1128/
MMBR.00070-19 (2020).

33. Gopal, P. et al. Pyrazinamide triggers degradation of its target aspartate
decarboxylase. Nat. Commun. 11, 1661 (2020).

34. Manson, A. L. et al. Genomic analysis of globally diverse Mycobacterium
tuberculosis strains provides insights into the emergence and spread of
multidrug resistance. Nat. Genet. 49, 395–402 (2017).

35. Chen, Y. et al. Time to multidrug-resistant tuberculosis treatment initiation in
association with treatment outcomes in Shanghai, China. Antimicrob. Agents
Chemother. 62, e02259–17 (2018).

36. Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial
Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 45,
D535–D542 (2017).

37. Coll, F. et al. Genome-wide analysis of multi- and extensively drug-resistant
Mycobacterium tuberculosis. Nat. Genet. 50, 307–316 (2018).

38. Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium
tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis.
13, 137–146 (2013).

39. Zhang, H. et al. Genome sequencing of 161 Mycobacterium tuberculosis
isolates from China identifies genes and intergenic regions associated with
drug resistance. Nat. Genet. 45, 1255–1260 (2013).

40. Cohen, K. A. et al. Evolution of extensively drug-resistant tuberculosis over
four decades: whole genome sequencing and dating analysis ofMycobacterium
tuberculosis isolates from KwaZulu-Natal. PLoS Med. 12, e1001880 (2015).

41. Blouin, Y. et al. Significance of the identification in the horn of Africa of an
exceptionally deep branching Mycobacterium tuberculosis clade. PLoS ONE 7,
e52841 (2012).

42. Clark, T. G. et al. Elucidating emergence and transmission of multidrug-
resistant tuberculosis in treatment experienced patients by whole genome
sequencing. PLoS ONE 8, e83012 (2013).

43. Bryant, J. M. et al. Inferring patient to patient transmission of Mycobacterium
tuberculosis from whole genome sequencing data. BMC Infect. Dis. 13, 110
(2013).

44. Chatterjee, A., Nilgiriwala, K., Saranath, D., Rodrigues, C. & Mistry, N. Whole
genome sequencing of clinical strains of Mycobacterium tuberculosis from
Mumbai, India: a potential tool for determining drug-resistance and strain
lineage. Kekkaku 107, 63–72 (2017).

45. Merker, M. et al. Evolutionary history and global spread of theMycobacterium
tuberculosis Beijing lineage. Nat. Genet. 47, 242–249 (2015).

46. Gardy, J. L. et al. Whole-genome sequencing and social-network analysis of a
tuberculosis outbreak. N. Engl. J. Med. 364, 730–739 (2011).

47. Davis, J. J. et al. The PATRIC Bioinformatics Resource Center: expanding data
and analysis capabilities. Nucleic Acids Res. 48, D606–D612 (2020).

48. Ezewudo, M. et al. Integrating standardized whole genome sequence analysis
with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase.
Sci. Rep. 8, 15382 (2018).

49. Zignol, M. et al. Genetic sequencing for surveillance of drug resistance in
tuberculosis in highly endemic countries: a multi-country population-based
surveillance study. Lancet Infect. Dis. 18, 675–683 (2018).

50. Wollenberg, K. R. et al. Whole-genome sequencing of Mycobacterium
tuberculosis provides insight into the evolution and genetic composition of
drug-resistant tuberculosis in Belarus. J. Clin. Microbiol. 55, 457–469 (2017).

51. Phelan, J. E. et al. Mycobacterium tuberculosis whole genome sequencing
provides insights into the Manila strain and drug-resistance mutations in the
Philippines. Sci. Rep. 9, 9305 (2019).

52. Hicks, N. D. et al. Clinically prevalent mutations in Mycobacterium
tuberculosis alter propionate metabolism and mediate multidrug tolerance.
Nat. Microbiol. 3, 1032–1042 (2018).

53. Dheda, K. et al. Outcomes, infectiousness, and transmission dynamics of
patients with extensively drug-resistant tuberculosis and home-discharged
patients with programmatically incurable tuberculosis: a prospective cohort
study. Lancet Respir. Med. 5, 269–281 (2017).

54. Freschi, L. et al. Population structure, biogeography and transmissibility of
Mycobacterium tuberculosis. Nat. Commun. 12, 1–11 (2021).

55. Schmieder, R. & Edwards, R. Quality control and preprocessing of
metagenomic datasets. Bioinformatics 27, 863–864 (2011).

56. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 15, R46 (2014).

57. Li, H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv [q-bio.GN] http://arxiv.org/abs/1303.3997 (2013).

58. http://broadinstitute.github.io/picard/.
59. Marin, M. et al. Benchmarking the empirical accuracy of short-read

sequencing across the M. tuberculosis genome. Bioinformatics https://doi.org/
10.1093/bioinformatics/btac023 (2022).

60. Vincent, V. et al. The TDR Tuberculosis Strain Bank: a resource for basic
science, tool development and diagnostic services. Int. J. Tuberc. Lung Dis. 16,
24–31 (2012).

61. Kapopoulou, A., Lew, J. M. & Cole, S. T. The MycoBrowser portal: a
comprehensive and manually annotated resource for mycobacterial genomes.
Tuberculosis 91, 8–13 (2011).

62. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011).

63. Abadi, M. et al. in 12th ${USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI}$ 16) (eds Keeton, K. & Roscoe, T.) 265–283
(usenix.org, 2016).

64. Van Rossum, G. & Drake, F. L. Python 3 Reference Manual: (Python
Documentation Manual Part 2) (CreateSpace Independent Publishing
Platform, 2009).

65. Nickolls, J., Buck, I., Garland, M. & Skadron, K. Scalable Parallel
Programming with CUDA: is CUDA the parallel programming model that
application developers have been waiting for? Queueing Syst. 6, 40–53 (2008).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31236-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3817 | https://doi.org/10.1038/s41467-022-31236-0 | www.nature.com/naturecommunications 11

http://arxiv.org/abs/1810.03292
http://arxiv.org/abs/1810.03292
https://doi.org/10.1101/657437
https://doi.org/10.1101/657437
https://doi.org/10.1136/medethics-2020-107102
https://doi.org/10.1101/2021.09.14.460274
https://doi.org/10.1101/2021.09.14.460274
https://doi.org/10.48550/arXiv.1704.02685
https://doi.org/10.48550/arXiv.1704.02685
https://doi.org/10.1128/MMBR.00070-19
https://doi.org/10.1128/MMBR.00070-19
http://arxiv.org/abs/1303.3997
http://broadinstitute.github.io/picard/
https://doi.org/10.1093/bioinformatics/btac023
https://doi.org/10.1093/bioinformatics/btac023
www.nature.com/naturecommunications
www.nature.com/naturecommunications


66. Li, H. New strategies to improve minimap2 alignment accuracy.
Bioinformatics https://doi.org/10.1093/bioinformatics/btab705 (2021).

67. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A.
Using SPAdes De Novo Assembler. Curr. Protoc. Bioinforma. 70, e102 (2020).

68. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

69. Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Res. 30, 3059–3066 (2002).

70. Vargas, R. et al. In-host population dynamics of Mycobacterium tuberculosis
complex during active disease. Elife 10, https://doi.org/10.7554/eLife.61805
(2021).

71. Green, A. et al. aggreen/MTB-CNN: v1.0 https://zenodo.org/record/6585243
(2022).

72. Manjunatha, U. H. et al. Direct inhibitors of InhA are active against
Mycobacterium tuberculosis. Sci. Transl. Med. 7, 269ra3 (2015).

73. Petrella, S. et al. Crystal structure of the pyrazinamidase of Mycobacterium
tuberculosis: insights into natural and acquired resistance to pyrazinamide.
PLoS ONE 6, e15785 (2011).

Acknowledgements
We thank members of the Farhat lab for discussion and input. We are grateful to Dr.
Peter Koo, Dr. Avika Dixit, Dr. Payman Yadollahpour, Greg Raskind, and Jiqing Zhu for
discussions regarding saliency score calculation, validation analyses on the WDNN, CNN
codebase proofreading, and CRyPTIC isolate phenotypes. Computational resources and
support were provided by the Orchestra High Performance Compute Cluster at Harvard
Medical School, which is funded by the NIH (NCRR 1S10RR028832-01). A.G.G. was
supported by a National Institutes of Health NLM Training Grant T15LM007092 and
NIH/NIAID F32AI161793. C.H.Y. was supported by the US–UK Fulbright Commission
(USA/UK), the BUNAC Educational Scholarship Trust (UK), the Gavin and Ann
Kellaway Research Fellowship (Auckland Medical Research Foundation, New Zealand),
and the Royal Australasian College of Physicians Rowden White Fellowship (Aus-
tralasia). M.I.G. was supported by the German Research Foundation (GR5643/1-1). M.F.
is supported by NIH/NIAID R01AI155765.

Author contributions
M.R.F., A.B., A.G.G., C.H.Y., and M.L.C. conceived the study and designed the analyses.
A.G.G, C.H.Y., and M.L.C. implemented the CNN code. A.G.G. and C.H.Y. performed

the analyses. M.R.F. and A.B. supervised the research. A.G.G., C.H.Y., M.R.F., and A.B.
wrote the manuscript. Y.E., M.F., L.F., and M.I.G. contributed data and discussed data
processing. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-31236-0.

Correspondence and requests for materials should be addressed to Andrew Beam or
Maha Farhat.

Peer review information Nature Communications thanks Amalio Telenti and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31236-0

12 NATURE COMMUNICATIONS |         (2022) 13:3817 | https://doi.org/10.1038/s41467-022-31236-0 | www.nature.com/naturecommunications

https://doi.org/10.1093/bioinformatics/btab705
https://doi.org/10.7554/eLife.61805
https://zenodo.org/record/6585243
https://doi.org/10.1038/s41467-022-31236-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
	Results
	Training dataset characteristics
	Model design
	Benchmarking CNN models against state-of-the-art
	CNN models generalize well on hold-out test data
	MD-CNN model has improved sensitivity compared to WHO catalog
	CNN models generalize on new data with realistic resistance proportions
	MD-CNN achieves accuracy by learning dependency structure of drug resistances
	SD-CNN saliencies highlight known and new potential predictors of resistance
	Rifampicin
	Isoniazid
	Pyrazinamide
	New potential predictors segregate between resistant and sensitive isolates

	Discussion
	Methods
	Sequence data
	Antimicrobial resistance phenotype data
	Selecting input loci
	Machine learning models
	Logistic regression benchmark
	Training and model evaluation
	Computational details
	Evaluation on CRyPTIC isolates
	Analysis of mis-predicted isolates
	Designation of known resistance variants from WHO catalog
	Saliency calculation
	Lineage variant analysis

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




