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Many efforts have been made to image the spatiotemporal electrical activity of the brain
with the purpose of mapping its function and dysfunction as well as aiding the manage-
ment of brain disorders. Here, we propose a non-conventional deep learning–based
source imaging framework (DeepSIF) that provides robust and precise spatiotemporal
estimates of underlying brain dynamics from noninvasive high-density electroencephalog-
raphy (EEG) recordings. DeepSIF employs synthetic training data generated by biophysi-
cal models capable of modeling mesoscale brain dynamics. The rich characteristics of
underlying brain sources are embedded in the realistic training data and implicitly
learned by DeepSIF networks, avoiding complications associated with explicitly formulat-
ing and tuning priors in an optimization problem, as often is the case in conventional
source imaging approaches. The performance of DeepSIF is evaluated by 1) a series of
numerical experiments, 2) imaging sensory and cognitive brain responses in a total of 20
healthy subjects from three public datasets, and 3) rigorously validating DeepSIF’s capa-
bility in identifying epileptogenic regions in a cohort of 20 drug-resistant epilepsy
patients by comparing DeepSIF results with invasive measurements and surgical resection
outcomes. DeepSIF demonstrates robust and excellent performance, producing results
that are concordant with common neuroscience knowledge about sensory and cognitive
information processing as well as clinical findings about the location and extent of the
epileptogenic tissue and outperforming conventional source imaging methods. The
DeepSIF method, as a data-driven imaging framework, enables efficient and effective
high-resolution functional imaging of spatiotemporal brain dynamics, suggesting its wide
applicability and value to neuroscience research and clinical applications.
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Imaging complex and distributed brain activity is crucial for advancing our understand-
ing of brain function and dysfunction and for clinical management of a variety of brain
disorders. Developing noninvasive brain imaging techniques that provide high spatial
resolution, high temporal resolution, and whole-brain coverage is of utmost impor-
tance. Hemodynamic imaging modalities, such as functional MRI (fMRI), can map
brain activities within millimeter spatial resolution but have poor temporal resolution
due to the hemodynamic response (1). Electromagnetic recording modalities, such as
electroencephalography (EEG) and magnetoencephalography (MEG), have been widely
used for a broad range of applications, such as studying cognitive function (2), diagno-
sis of psychiatric disorders (3), peri- or intraoperative monitoring of patients’ level of con-
sciousness (4), or delineation and mapping of the epileptogenic zone in epilepsy patients
(5) to name a few. EEG and MEG are the only noninvasive techniques that offer
millisecond-scale temporal resolution and whole-brain coverage, making them suitable for
studying brain dynamics from transient or oscillatory activities (6, 7). For instance, EEG
and MEG are commonly used to analyze the oscillatory activity and functional connectiv-
ity of the brain during interictal and ictal periods (5, 8) for assisting in the diagnosis and
treatment planning of intractable epilepsy, which affects about a third of the more than 65
million people suffering from epilepsy worldwide (9). However, compared with other
imaging modalities, such as fMRI, the scalp EEG/MEG measurements are limited in their
spatial resolution due to the volume conduction effect (10, 11) and low signal-to-noise
ratio (SNR), especially for deeper sources (12, 13).
Many efforts have been made toward boosting the spatial resolution of EEG/MEG

by means of electrophysiological source imaging (ESI) (10, 14). ESI is the process of
estimating the underlying brain electrical activity by solving an optimization problem
aimed at finding the brain sources that best fit the measured EEG/MEG. It has been
used in basic neuroscience research and clinical applications, such as mapping brain
functions and networks (15–17), brain–computer interfacing (18), and aiding with the
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diagnosis and surgical planning in epilepsy (19–22). However,
due to the ill-posed nature of the problem, current ESI meth-
ods require a priori assumptions to limit the solution space
either to model brain activity using equivalent current dipole
models with only a few dipoles (23, 24) or to determine regu-
larization terms in the distributed source models based on a pri-
ori knowledge about brain activities (25–29). Considering the
complexity of brain sources and networks, it is challenging to
choose, formulate, and customize the correct regularization pri-
ors that fully represent the properties of underlying sources.
The complications associated with selecting and tunning regu-
larization terms limit the positive impact of conventional ESI
methods on neuroscience research and clinical applications
from the following aspects. First, the ESI performance would
suffer if improper regularizations were chosen due to inaccurate
or incomplete modeling of the underlying sources (30). Second,
the accessibility of ESI is reduced since hyperparameters in the
priors need to be tuned manually or via data-driven approaches
for almost every given optimization problem (for any new
instance of data), which could prove difficult for end users of
such ESI systems (31). Lastly, reproducibility is not guaranteed,
as different choices of the hyperparameters will lead to varying
source imaging results on the same data (32).
A limitation of conventional ESI methods also manifests

itself in that such methods mainly utilize physical modeling of
electrical sources, such as regional equivalent current dipoles,
without leveraging advanced computational brain dynamics
models. Computational methods, such as neural mass models
(NMMs) (33, 34), have been shown to model brain dynamics
using biophysical characteristics of neural excitation and inhibi-
tion. NMMs are capable of modeling various kinds of neuronal
activities, such as the human alpha rhythm (35), evoked poten-
tials (36), or epileptiform activities (37), through nonlinear sys-
tems of differential equations. It is not straightforward to explicitly
formulate the knowledge arising from these mesoscale dynamic
models into regularization terms within the conventional ESI
framework, even though such neuronal models provide an impor-
tant mathematical and biophysical tool to summarize our under-
standing of the brain dynamics and could potentially alleviate the
ill posedness of the ESI problem by providing a more realistic
source model to constrain the space of possible imaging solutions.
In light of the current challenges and opportunities in the ESI

field, we propose a deep learning–based source imaging framework
(DeepSIF), incorporating biophysically inspired computational
neuronal models into the source imaging pipeline to provide an
accurate, easily accessible, and objective ESI solver. Ideally, ade-
quate real data from underlying brain sources with simultaneous
scalp recordings are needed to train a neural network for the ESI
problem. However, real scalp data in which the location, extent,
and dynamics of the underlying brain sources are known and
labeled correctly, are extremely difficult to come by due to techni-
cal difficulties of simultaneously recording invasive intracranial
and noninvasive scalp signals. Large-scale computational brain
models (33, 34), could fill this gap by generating synthetic brain-
like data in both spatial and temporal domains to be used as the
training data for the DeepSIF model.
Compared with conventional ESI methods, our framework

circumvents the challenges caused by explicitly defining regular-
ization terms, providing a new perspective to formulate the ESI
problem. The advantages of using the DeepSIF method are
threefold. First, complex brain dynamics can be embedded in
the training data and will be implicitly manifested as the
weights and nonlinear connections in the trained neural net-
works without explicitly defining a regularization term. Second,

after the time-consuming training process, the evaluation of the
neural network is efficient when applied to new instances of
data, sparing the need to search for the hyperparameters for
each new instance of EEG/MEG measurement. This will also
increase the reproducibility of the ESI results without the ambi-
guity of choosing hyperparameters. Third, computational mod-
els provide access to a large amount of data covering brain
sources with different characteristics (different noise levels,
depth from scalp electrodes, etc.). The trained DeepSIF model
is expected to have robust performance for sources with various
signal properties and under different conditions.

In this work, a deep neural network (DNN) was trained using
synthetic training data generated by a large-scale brain dynamics
model consisting of interconnected NMMs, resembling realistic
mesoscale neuronal activity, which via biophysical volume con-
duction modeling, was transformed to macroscale scalp electro-
magnetic signals (Fig. 1). Once trained, the DeepSIF algorithm
can provide estimates of spatiotemporally distributed brain activ-
ities given noninvasive scalp electrophysiological measurements.
We demonstrated in a series of numerical experiments that the
trained DNN is capable of accurately and reliably reconstructing
the location, extent, and temporal dynamics of the sources.
Additionally, we empirically demonstrated the generalizability of
DeepSIF by imaging the epileptogenic brain tissue in a cohort of
20 drug-resistant focal epilepsy patients. The sources of the epi-
leptiform discharges recorded from the preoperative scalp EEG
were imaged and validated against clinical findings derived from
the intracranial electroencephalography (iEEG) recordings and
resection volumes in these patients. We further showed the
applicability of the DeepSIF algorithm in imaging cortical sen-
sory and cognitive processing evoked by visual and somatosen-
sory stimuli in a total of 20 healthy human subjects. Through
rigorous validations, we successfully demonstrated that DeepSIF
can return robust and accurate imaging results concordant with
the “ground truth” in human subjects.

Results

Model Training and Evaluation. In the proposed DeepSIF model,
the source space was segmented into 994 regions, and brain sour-
ces with various locations, sizes, and shapes were generated by
randomly selecting a seed region and subsequently grouping
neighboring regions to form patches of activity on the cortex.
The time course of activity within all these 994 regions, whether
that region was designated as either an active region (i.e., nonzero
activation, such as spikes or evoked potentials) or a noisy back-
ground region, was generated by interconnected NMMs. The
76-channel EEG signals were generated by solving the EEG for-
ward problem, with additive noise added to the scalp signal. The
input of the DeepSIF model is the normalized noisy EEG signal,
and the network is trained with the synthetic scalp–source pairs
to provide the corresponding source activity for each spatiotem-
poral scalp pattern. The DeepSIF model contains a spatial module
consisting of multilayer perceptrons to process and partially delin-
eate the spatial information in the scalp data distorted by the vol-
ume conduction and a temporal module consisting of recurrent
layers to process the spatiotemporal activities projected to the
source space to ultimately provide the time course of activity of
every brain region as the final source estimation (Fig. 2). Detailed
data generation and network training procedures are described in
Methods and SI Appendix, Supplementary Notes 1 and 2.

Following the aforementioned procedure, a realistic training
dataset containing two simultaneously active brain sources was
generated and used to train a DeepSIF model. Three testing

2 of 12 https://doi.org/10.1073/pnas.2201128119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201128119/-/DCSupplemental


datasets containing one to three extended sources from random
locations were generated separately, with different levels of
white Gaussian noise added to the scalp signals to simulate
noise-contaminated data (SNRs of 5, 10, 15, and 20 dB). The
trained DeepSIF model is evaluated using metrics (Fig. 3A)
quantifying its performance in localizing activity (Fig. 3D), esti-
mating the extent (Fig. 3C), and delineating the temporal evo-
lution (Fig. 3B) of underlying sources, with examples shown in

Fig. 3E. The DeepSIF approach demonstrated excellent perfor-
mance across all three datasets, with little performance degrada-
tion for the three-source dataset in all evaluation metrics, even
though it was only trained on the two-source dataset, indicating
its robustness and generalizability.

To investigate the efficacy of the trained DeepSIF model in
estimating underlying source extents, the estimated sources’
area as a function of the simulated area is shown in Fig. 3C.

Fig. 1. The concept of the proposed DeepSIF. Brain activities are modeled by the spatiotemporal source model consisting of interconnected NMMs. Realis-
tic synthetic EEG and the corresponding brain activities are generated and used to train a DNN for spatiotemporal source imaging. The trained model can
be directly used to estimate physiological and pathological brain activities. In this study, using high-density interictal EEG data recorded from drug-resistant
epilepsy patients and evoked EEG data recorded in healthy human subjects, we validated the accuracy and robustness of the DeepSIF approach in estimat-
ing underlying brain sources from scalp electrophysiological measurements.
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High precision (0.81 ± 0.17) and recall (0.85 ± 0.18) are
achieved across the one-, two-, and three-source scenarios for
all SNR levels. A significant Pearson’s correlation of 0.83 is
achieved (P < 0.001) between the simulated source areas and
estimated source areas. The DeepSIF model also provides a low
average localization error (LE; 1.41 ± 1.87 mm) for all source
configurations across different SNR levels and source depth
(defined as the distance of the source location to the closest
EEG electrode). As shown in the LE cortical maps (Fig. 3D),
the DeepSIF maintains a consistently low LE in almost all
brain areas, including deep sources, where an average LE of 6
mm is reached. It can also provide robust estimates when a
combination of deep and superficial sources is simultaneously
coactivated (SI Appendix, Fig. S6). The DeepSIF estimates the
temporal evolution of the source activities and the relative ampli-
tudes among multiple sources with high accuracy (Fig. 3B,
Movie S1, and SI Appendix, Fig. S11). Source magnitudes in
their physical unit (nanoampere.meter, nA:m) can also be recon-
structed from the DeepSIF output post hoc within a reasonable
scale of what is expected and reported on current dipole magni-
tudes in the literature (SI Appendix, Supplementary Note 3). The
consistent and robust performance of the DeepSIF approach gives
it an advantage over conventional methods (SI Appendix, Fig.
S12) in noninvasively imaging distributed brain sources. DeepSIF
was further examined in two-source configuration tests where
DeepSIF’s performance is depicted as the intersource distance (SI
Appendix, Fig. S4) or the temporal correlation between sources (SI
Appendix, Fig. S5) varies. Our results indicate robust performance
regardless of distances or correlations among simultaneously
active sources, indicating DeepSIF’s capability in distinguishing
multiple closely located or correlated sources. These results show
that DeepSIF can precisely estimate the location, extent, and
temporal dynamics of brain sources under challenging condi-
tions, such as low SNR, and deeply or closely located sources,
which are highly desirable features for ESI applications (30, 38).
The impact of discrepancies between the training data and test-

ing data was also evaluated to further investigate the generalizability

of the trained DeepSIF model. Different noise types, source model-
ing protocols, head–brain boundary element models (BEMs),
electrode locations, and temporal profiles for source activities
(signal with different morphology) as well as various spectral pro-
files were used to generate various test conditions. Detailed infor-
mation is described in SI Appendix, Supplementary Note 4 and
Figs. S7–S10. The overall performance for all these test condi-
tions is on par with the original test data, showing a superior
imaging performance with at most a 1-mm increase in median
LE, even though these test datasets were generated following
different protocols. This demonstrates that the trained DeepSIF
model is not overfitted to certain design choices in the training
data and can provide excellent imaging results dealing with var-
iations in the test data, which is of the utmost importance for
deep learning (DL)–based ESI since the real data will not nec-
essarily be identical to the synthetic training data.

Validation of DeepSIF in Epilepsy Patients. The trained Deep-
SIF model was rigorously validated in a cohort of 20 patients suf-
fering from drug-resistant focal epilepsy who underwent resective
surgery with seizure-free outcomes for at least a year following the
surgery. Fourteen patients underwent iEEG study, and the intrao-
perative computer tomography (CT) images from which electrode
locations were quantitatively determined were only available in
six of these patients. High-density 76-channel preoperative scalp
EEG recordings were acquired, and 18 ± 20 interictal spikes
were identified for each patient. Averaged spikes in each patient
were used as the input to the DeepSIF model, and the recon-
structed activity from the segmented brain regions was mapped
onto the patients’ cortical surface by matching the output of each
region to its corresponding segmented region on an individual
patient’s cortex using the individual subject’s MRI (Fig. 4A).

We compared the interictal spike imaging results with the
resection area to calculate the precision, recall (as well as the
harmonic and geometric means of the precision and recall),
and spatial dispersion (Fig. 4B). A high precision value with a
median of 0.93 is achieved, which means that the noninvasive
DeepSIF source imaging results from epileptiform spikes are in

Fig. 2. The proposed neural network structure. The spatial module consists of fully connected layers to process the spatial information at each time step,
and the temporal module consists of recurrent layers to model the temporal dynamics of the brain sources. W, the weights of fully connected layers; LSTM,
long short term memory.
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Fig. 3. Model performance evaluation on the synthetic test datasets. (A) Metric definitions. Precision examines the false positives in the reconstruction, and
it is defined as the ratio between the overlap and the reconstruction, where the overlap refers to the common area of the reconstruction and the ground
truth. Recall, which can also be called true-positive rate or sensitivity, evaluates the model’s ability to detect all the true sources and is defined as the ratio
between the overlap and the ground truth. High precision and recall values mean there are few spurious sources in the reconstruction, and the model can
recover most true sources. For each region in the reconstructed source, the LE is defined as the minimum distance to the ground truth regions. One test
sample consists of multiple cortical regions, and the LE for one test sample is the mean LE for all regions in the reconstructed source. Linear correlation is
the correlation between the solution’s reconstructed waveform and the simulated waveform. (B) Temporal estimation. (Left) The linear correlation between
ground truth and reconstruction for all three datasets (n = 47,712; one source: 0.99 ± 0.02; two sources: 0.91 ± 0.16; three sources: 0.85 ± 0.19). (Right) The
mean correlation for all source locations displayed on a cortex. (C) Extent estimation. (Left) The precision (n = 47,712; one source: 0.88 ± 0.15; two sources:
0.79 ± 0.18; three sources: 0.76 ± 0.17) and recall (n = 47,712; one source: 0.95 ± 0.07; two sources: 0.83 ± 0.18; three sources: 0.75 ± 0.19) of three test data-
sets with one, two, and three sources. The distributions are demarcated within the 10th to 90th percentiles. The gray bars span the 25th to 75th percentiles,
the white circles are the medians, and the colored horizontal bars are the means of the distribution. (Center) Simulated source area vs. estimated source area
for three datasets combined. Data points show 5% of all the test samples in the datasets (n = 13,424 samples). The black line is the identity line provided for
reference. (Right) The mean precision/recall for all source locations displayed on a cortex. (D) LE analysis. The LE distributions for all three datasets (n = 47,712;
one source: 1.12 ± 2.14 mm; two sources: 1.55 ± 1.74 mm; three sources: 1.56 ± 1.66 mm). LE vs. SNR (n = 35,784; SNR = 5dB: 1.65 ± 2.12 mm; SNR = 10dB:
1.43 ± 1.95 mm; SNR = 15dB: 1.29 ± 1.67 mm; SNR = 20dB: 1.26 ± 1.67 mm). The error bar shows the standard deviation (Std). LE vs. depth. The plot shows the
average LE for all sources within a particular depth. The error bar shows the standard error of mean (SEM). The mean LE for all source locations displayed on a
cortex. (E) Imaging examples. Source locations and waveforms of ground truth and reconstructed activities for three sources (Left) and a single source (Right).
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good concordance with the clinical ground truth defined by the
resection region without having nuisance spurious activities
extended outside the epileptogenic region. The spatial disper-
sion of the imaging results compared with the resection is
3.87 ± 7.92 mm. Examples of spike imaging are shown in Fig.
4C, indicating the excellent performance of the DeepSIF as
compared with the surgical resection outcome and iEEG-
defined seizure onset zone (SOZ). The interictal spikes from
iEEG recordings and the spike waveform estimated by DeepSIF
are compared for two patients in Fig. 5, and a high correlation of
∼0.95 between the two waveforms was achieved for both patients.
Examples of the estimated source distributions over time are pre-
sented in Movies S2 and S3 and SI Appendix, Fig. S13, where the
evolution of source activities as reconstructed by the DeepSIF
model are also depicted. Note that even though the iEEG spikes
are not recorded simultaneously with scalp spikes, they still serve
as empirical evidence to indicate the efficacy of DeepSIF in esti-
mating the temporal dynamics of the signal given that epileptic
biomarkers have major similarities over time due to the same
underlying pathology giving rise to these signals at different times.

Fig. 6 shows the comparison of DeepSIF with other bench-
mark ESI methods: standardized low-resolution brain electromag-
netic tomography (sLORETA) (26), unit–noise–gain minimum
variance Beamformer (39), coherent maximum entropy on the
mean (CMEM) (40), and fast spatiotemporal iteratively reweighted
edge sparsity (FAST-IRES) (5). DeepSIF performs better com-
pared with sLORETA and Beamformer in terms of localization
(statistically significant). As to extent estimation, DeepSIF has
larger precision and recall values compared with CMEM (statisti-
cally significant) and is on par with FAST-IRES. However,
DeepSIF has the advantage of fast inference time over the two
methods, providing a speedup factor of several thousands (SI
Appendix, Supplementary Note 5). These validation results dem-
onstrated the validity and excellent performance of the proposed
DeepSIF approach to reliably image and localize the epilepto-
genic tissue.

Source Imaging of Cortical Sensory and Cognitive Processing
in Healthy Humans. To further test the applicability of the pro-
posed DeepSIF to image brain activation in healthy human
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Fig. 4. Clinical validation in drug-resistant
epilepsy patients in comparison with surgical
resection and iEEG-defined SOZ. (A) The study
design. The interictal spikes were exacted and
used as the input for the trained DeepSIF
model. Each output waveform corresponds to
one segmented region in the source space.
The reconstructed waveform was compared
with the clinical findings (resection region and
iEEG SOZ electrodes) extracted from postop-
erational MRI and CT images. (B) Quantitative
spike imaging results. The horizontal solid
lines show the means, the dashed lines show
the medians, the boxes span the 25th to 75th
percentiles of the data, the vertical bars span
the 10th to 90th percentiles of the data, and
circles represents individual patients. The
overlap area between the reconstructed sour-
ces and the resection area was calculated.
The precision or recall is defined as the ratio
between the overlap and the reconstruction
or the resection region. The harmonic and
geometric means of the precision and recall
are also included. The spatial dispersion is
defined as the mean distance of each recon-
structed region to the resection area weighted
by the reconstructed source map. Extent esti-
mation and spatial dispersion with respect to
resection regions are calculated for all 20
patients (precision: n = 20, 0.79 ± 0.31; recall:
n = 20, 0.49 ± 0.25; harmonic mean: n = 20,
0.53 ± 0.23; geometric mean: n = 20, 0.58 ±
0.21; SD: n = 20, 3.87 ± 7.92 mm); the SOZ LE
is calculated as the average distance between
every SOZ electrode and the solution bound-
ary for six patients with CT images of the iEEG
electrode available (LE: n = 6, 7.45 ± 8.91 mm).
Equations to calculate the metrics are described
in SI Appendix, Supplementary Note 6. Gmtc, geo-
metric; Hrmc, harmonic; PRC, precision; RCL,
recall. (C) Examples of spike imaging results
along with the surgical resection outcome and
iEEG-defined SOZ.
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subjects, we evaluated a trained DeepSIF model on three pub-
licly available datasets: 1) a visual evoked potential dataset avail-
able from the MNE-Python toolbox (59-channel EEG) (41),
2) a somatosensory evoked potential dataset (60-channel EEG)

(42), and 3) a visual two-stimulus oddball dataset (64-channel
EEG) (43). A DeepSIF model was trained with the same syn-
thetic source activity (as in the clinical validation study), but
the lead-field matrix was derived from a 64-channel Biosemi
EEG configuration with the same template MRI used through-
out the study. The evoked potential data were mapped to the
64-channel montage through spherical spline interpolation (44),
and these interpolated data were provided as the input to the
trained DeepSIF model.

In the visual evoked potential experiment, checkerboard pat-
terns were presented into the right visual field (41); 56 events
were averaged, and the P100 component was identified at 93 ms
after the stimulus. The source location provided by the DeepSIF
model shows that the source of P100 lies in Brodmann area 17
(BA17) and BA18, the primary and secondary visual areas, as indi-
cated by the green shading in Fig. 7. The source of the early P100
component is usually believed to be generated by the lateral extras-
triate cortex (45), which is consistent with our DeepSIF result.

In the somatosensory evoked potential experiment, electric
stimuli were delivered to the little finger. Five hundred events
were averaged, and a P30 component was identified at 29 ms
(42). The postcentral gyrus (primary somatosensory cortex;
BA1-3) is generally believed to be the region that responds to
the electric finger stimulation with a latency in the 20- to 35-ms
range (46). The DeepSIF localizes the source to the primary
somatosensory cortex, indicating its ability to correctly identify
physiological signals involved with cortical sensory processing.
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Fig. 5. Comparing estimated source time courses from EEG with iEEG
recordings. (A) DeepSIF spike imaging results and iEEG electrodes (in red)
from which the interictal spike activities were selected are plotted in two
patients. (B) DeepSIF output waveform in the source regions (orange) and
the averaged iEEG spikes (blue) for the two patients in A. Procedures for
generating the iEEG waveform are described in Methods. Patient numbers
correspond to the numbers in SI Appendix, Table S1.
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Fig. 6. Interictal spike imaging results in 20 drug-resistant focal epilepsy patients using DeepSIF, sLORETA, Beamformer, CMEM, and FAST-IRES. (A) Quantita-
tive results. The horizontal solid lines show the means, the dashed lines show the medians, the boxes span the 25th to 75th percentiles of the data, the
vertical bars span the 10th to 90th percentiles of the data, and circles represent individual patients. Extent estimation and spatial dispersion with respect
to resection regions are calculated for all 20 patients (n = 20; [precision] DeepSIF: 0.79 ± 0.31; sLORETA: 0.31 ± 0.16; Beamformer: 0.17 ± 0.09; CMEM:
0.65 ± 0.32; FAST-IRES: 0.65 ± 0.40; [recall] DeepSIF: 0.49 ± 0.26; sLORETA: 0.84 ± 0.17; Beamformer: 0.86 ± 0.25; CMEM: 0.24 ± 0.17; FAST-IRES: 0.60 ± 0.33;
[spatial dispersion] DeepSIF: 3.87 ± 7.72 mm; sLORETA: 14.50 ± 6.28 mm; Beamformer: 24.76 ± 9.90 mm; CMEM: 4.30 ± 6.39 mm; FAST-IRES: 4.16 ±
7.51 mm). The SOZ LE is defined as the average distance between every SOZ electrode and the solution boundary. On the other hand, we also calculated
the averaged distance of every reconstructed source region to the closest SOZ. The averaged value of these two (which we call SOZ avg LE) is calculated for
the six patients with CT images of the iEEG implantations (n = 6; DeepSIF: 12.33 ± 7.44 mm; sLORETA: 15.58 ± 6.41 mm; Beamformer: 20.66 ± 7.78 mm;
CMEM: 17.78 ± 7.75 mm; FAST-IRES: 10.48 ± 8.01 mm). The paired one-sided Wilcoxon signed rank test was used with statistical significance cutoffs. SD, spa-
tial dispersion. *P < 0.05; **P < 0.005. (B) Examples of interictal spike imaging results along with the clinical findings. The color bar refers to reconstructed
sources. The green color depicts resective areas, and the red dots illustrate iEEG-defined SOZ.
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In the visual two-stimulus oddball experiment, around 270
images were presented to 18 subjects. Around one of seven of
the images was an oddball image, and subjects were instructed
to identify the oddball images with a button press (43). The
largest positive peak between 250 and 600 ms, in channel Cz,
was identified for each subject. The source imaging results at
the peak were averaged and plotted in Fig. 7C. The most
prominent activity identified by the DeepSIF model lies in the
posterior parietal cortex (PPC), which has been shown to par-
ticipate in behaviors like decision-making, movement planning,
and higher-order cognitive processing (47). Activities in other
regions, including inferior temporal (IT) cortex and sup-
plementary motor area (SMA), were also identified, which is
consistent with fMRI and intracranial studies of the P300
components (48, 49). Note that the training dataset for the
clinical data in epilepsy patients and the evoked potential data
in healthy subjects is the same, indicating the generalizability of
the proposed DeepSIF model in processing different types of
signals even when trained on a different type of synthetic train-
ing data from the testing dataset.

Discussion

We have proposed DeepSIF, which combines mesoscale neuro-
physiology knowledge, captured by the synthetic training data
generated by interconnected NMMs, with highly effective com-
putational structures, DNNs with recurrent layers, to enable
spatiotemporal imaging of brain dynamics from noninvasive
electromagnetic scalp measurements. The trained DeepSIF model
demonstrates superior performance for estimating the location,
extent, and temporal activities of the brain sources and can
reliably and robustly localize and image physiological or patho-
physiological signals across different subjects, outperforming the
conventional benchmark methods. The generalizability of the
model on real data is a crucial advancement for DL-based ESI
methods, demonstrating its potential in being applied to various
applications, including presurgical planning for epilepsy patients
(19–21) or real-time ESI studies (18, 50).

Due to the ill-posed nature of the ESI problem, a wide
majority of the ESI methods explicitly define regularization
terms as part of the optimization objective, including imposing
constraints on solutions’ energy (26, 51), covariance (27), or
sparsity levels (52). While these methods have demonstrated
success in many applications, formulating and optimizing the
proper priors are challenging (30). For instance, Euclidean
norm based methods, such as sLORETA, are widely employed
due to their effectiveness and simple closed-form solutions, but
their estimates tend to be overly diffused. On the other hand,
sparsity-inducing methods provide accurately localized but
extremely focal solutions, losing information about the extent
of the underlying brain activity. Formulating the proper and
easy to use priors that reflect all characteristics of underlying
sources is not a trivial task. Improper priors hugely affect the sol-
utions’ quality and what can be subsequently inferred from such
estimates. On the other hand, many state-of-the-art biophysical
models incorporate recent advances in our understanding of the
brain dynamics and brain functions, but it is challenging to for-
mulate these into explicit mathematical terms as a more detailed
prior in current ESI frameworks. Deep learning approaches can
provide an alternative for solving ill-posed source imaging prob-
lems by incorporating biophysical models into ESI solutions.

The proposed DeepSIF method is a fully data-driven approach,
in which by training a DNN with a large amount of sensor-
source mapping examples, the essence and implicit characteristics
of the brain activity distributions are learned to circumvent the
need for explicitly defining priors for the ESI optimization prob-
lem. The distribution of the training dataset must reflect that of
the real signals the network will encounter at its intended applica-
tion. As such, it can be said that while the researchers do not
explicitly design priors in predefined mathematical formulas, they
implicitly provide them to the algorithm by ensuring a diverse
training dataset. Once the DeepSIF model is trained, it can be
directly applied to real test data with minimal user intervention as
the prior information is “remembered” in the weights of the
trained network. This increases the reproducibility and accessibil-
ity of the ESI technology since expert knowledge in parameter
selection or model tunning represents a bottleneck for the wide
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Fig. 7. DeepSIF imaging results for cortical
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DeepSIF model. (A) Visual evoked potential for
one subject. (B) Somatosensory evoked poten-
tial for one subject. Green areas show BA17
and 18 in A and BA1 to 3 in B. (C) Event-related
potential evoked by visual oddball stimuli for
18 subjects. The averaged waveform for all sub-
jects is shown in black, the gray shade shows
the SEM, and the orange dots indicate the P300
peak latency for each subject. Expected P300-
related source regions are labeled as PPC, IT,
and SMA.

8 of 12 https://doi.org/10.1073/pnas.2201128119 pnas.org



adoption of ESI imaging, making it easier to translate source
imaging assessment as a standard tool in various clinical settings
(8, 31). Furthermore, the trained neural network is efficient and
fast to execute (SI Appendix, Supplementary Note 5) (i.e., to solve
the ESI problem), making the proposed approach appropriate for
real-time applications, such as brain–computer interface applica-
tions (18).
There have been few attempts to solve the dipole fitting

problem using artificial neural network approaches (53, 54),
where a few dipoles were modeled and localized, not fully rep-
resenting the spatiotemporal distribution of brain activation.
To properly model the complex brain activities using neural
networks, it is critically important to have big-enough labeled
datasets, with enough variations of the source and scalp data.
Due to practical limitations in acquiring simultaneous brain
and scalp measurements from all possible source locations in
the brain (55), a synthetic dataset is a natural alternative. A
recent study (56) that attempted to solve the distributed ESI
problem using neural networks focused on imaging the source
variations in the spatial domain with biophysical patch–source
models and merely tested the model on real recordings from a
single subject. Since the neural network learns to perform the
ESI task based on the properties of the training data, simplified
source models, because of limited or incomplete modeling of
the underlying brain sources, could be one of the reasons that
hinder the performance of DL-based ESI methods when
applied to real data recorded from different subjects.
Recent advances in biophysical modeling of brain dynamics

provide us the opportunity to incorporate neuroscience knowl-
edge about the brain into the ESI problem as well as realistic
training data for the DL-based ESI. The source model for
DeepSIF is a large-scale brain network model consisting of bio-
physically inspired interconnected mesoscale NMMs. Com-
pared with the physical source models that most source imaging
approaches utilize, an NMM models neuronal activation by
describing the local interactions among neuronal subpopula-
tions within an ensemble (i.e., primary neurons and neuron
subpopulations for excitatory or inhibitory feedbacks) through
a set of nonlinear differential equations based on physiologically
meaningful parameters. Once the equation parameters are set,
NMMs will dynamically generate signal dynamics with no fur-
ther user input (SI Appendix, Supplementary Note 1 and Fig. S1
have more details). They are capable of providing various
dynamics that manifest different temporal, spectral, and higher-
order statistical features (33), which are expected to better
resemble spatiotemporal brain activities, such as interictal epi-
leptiform discharges, ictal activities, and alpha oscillations to
name a few (35, 37, 57). It has even been suggested that such
models are useful in determining stimulation or intervention
sites (58). The large-scale modeling capability and realistic neu-
ronal temporal dynamics make such models a suitable simulator
to generate synthetic labeled training data for ESI tasks (34).
While various studies showed the strength and capability of
such models to capture realistic brain dynamics, no prior work
has employed these models to develop a noninvasive imaging
and modeling framework and rigorously validated the results
using ground truth, such as intracranial recordings and surgical
resection outcomes in epilepsy patients. Our proposed deep
learning framework (59) represents an effort at integrating bio-
physically inspired mesoscale models of neuronal activation, as
embodied by NMMs, into DL-based ESI for distributed source
imaging. The use of biophysically inspired brain network mod-
els for generating big training data represents an important
undertaking as the performance, usability, and robustness of a

neural network are based upon and bounded by the quality and
nature of its training examples.

With this newly proposed training framework and training
in a big synthetic dataset consisting of ∼300 million scalp top-
ographies, we demonstrated that the DeepSIF model has a
superior performance by producing smaller LEs and higher pre-
cision and recall. The DeepSIF model also shows robustness for
challenging conditions, such as localizing noisy signals, deep
sources, and closely located or correlated sources. It is worth
noting that DeepSIF takes normalized EEG signals as input
and outputs normalized estimates of source activity during the
training; therefore, DeepSIF cannot directly provide the physi-
cal magnitude of the estimated sources. However, DeepSIF can
provide reasonable estimates consistent with empirical values
reported in the literature after a simple postprocessing step (SI
Appendix, Supplementary Note 3). In many applications, an accu-
rate estimate of the location, extent, relative amplitudes of differ-
ent sources, and time course of sources’ activity should be what
is needed without necessarily having to estimate actual source
magnitudes in physical units.

Although advanced source modeling provided ample varia-
tions of sources compared with physical patch models, the real
testing scenario will not share the exact same distribution as the
synthetic training data. Some discrepancies are expected, and
we substantially modified the forward modeling protocol to
simulate testing conditions that one might encounter in real
applications that are not included in the training data (details
are in SI Appendix, Supplementary Note 4), such as different
head geometries, temporal waveforms for the signal, tissue con-
ductivity ratios, sensor locations, noise types, etc. The trained
DeepSIF model demonstrates a high level of robustness dealing
with these mismatches. Although a limited amount of perfor-
mance decrease is expected and observed, the overall perfor-
mance remains at a superior level across all test conditions. This
is because the realistic training datasets have provided enough
spatial and temporal features about the key features of underly-
ing sources to the neural network during the training phase that
the network’s performance is consistently satisfactory for condi-
tions that might be challenging for conventional methods.

This generalizability and robustness are also reflected in the real
data evaluation. DeepSIF trained on a generic head/brain model
can be successfully applied to real data from a cohort of focal epi-
lepsy patients with certain spatiotemporal robustness. The solution
can then be warped to the individual anatomical space to coregis-
ter with other anatomical or functional information, including
the resection region or the SOZ electrodes. Note that most of the
patients included in the current study are temporal lobe epilepsy
(TLE) cases. TLE surgery often follows standard procedures,
where selected regions of the temporal lobe are removed, and up
to 70% of TLE surgeries can achieve seizure freedom outcome
(60). However, there is always a trade-off between an aggressive
resection to guarantee the removal of all epileptogenic tissue and a
conservative resection to preserve more cognitive functions with
the risk of residual epileptogenic tissue (61). The final resection
region is not solely dependent upon electrophysiological signals
recorded or inferred at the brain level. Multiple factors, includ-
ing the patient’s preferences, are taken into consideration; thus,
the resection region is not the ground truth for the epileptogenic
areas. However, since our patient cohort achieves seizure-free
outcome, it is reasonable to assume that the resection region is a
valid benchmark to validate our imaging results, with the possi-
bility of it being larger than the actual epileptogenic areas. We
have demonstrated quantitatively that the DeepSIF spike imag-
ing coincides well with the resection region, with a high precision
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value of 0.79 (which translates to low false positives). DeepSIF
also shows significantly superior performance compared with
most of the benchmark methods. Although no statistically signif-
icant differences were observed between DeepSIF and FAST-
IRES (Wilcoxon rank sum test), DeepSIF can provide the spike
imaging results in tens of milliseconds without the need to tune
its parameters for every new instance of data it encounters. On
the other hand, FAST-IRES is formulated within the optimiza-
tion framework, which requires hyperparameter selection and
tuning for instances of new data and component selection for
the purpose of identifying the time basis function for each
patient individually, and it takes minutes to generate one solu-
tion. DeepSIF as a fast and effective source imaging pipeline
could make a significant impact on the presurgical planning in
drug-resistant epilepsy patients by providing a high-resolution
map of the epileptic activities from noninvasive scalp EEG.
Moreover, we cross-validated DeepSIF on three types of

evoked potentials in a total of 20 healthy human subjects from
three public datasets. Even though it is not trained with evoked
potential data, the DeepSIF provides concordant results with
neuroscience understandings, demonstrating the generalizability
of the framework on different subjects as well as different signal
types. The consistent performance on various real datasets is a
cornerstone for DL-based ESI imaging based on realistic
NMM training datasets, indicating its potential in various ESI
applications. Special attention, however, has to be paid to
interpreting the visual oddball results. Note that frontal
regions and the cingulate cortex are also believed to be associ-
ated with the generation of P300, while DeepSIF only identi-
fied a limited involvement of the cingulate cortex. Studies have
shown that the frontal lobe signal is weaker in the two-
stimulus paradigm compared with the three-stimulus paradigm
(49), and it is more easily evoked by auditory stimuli (62).
Studies also found that parietal areas and the IT cortex gener-
ated the scalp visual P300 component, whereas the prefrontal
cortex and cingulate gyrus sources make little to no contribu-
tion to the scalp potential (48, 63). Nevertheless, it is possible
that DeepSIF might have missed a weak frontal source in the
two-stimulus visual oddball experiment or underestimated the
involvement of the cingulate cortex. Future investigation with
different event related potential (ERP) datasets or training a
network specifically for ERP responses could potentially help
explain the current DeepSIF results, providing better insight
into the problem.
Although a high level of generalizability and robustness was

shown in our test results, there are cases in real applications
that call for more careful consideration before using the current
approach. For instance, patients with prior resections or large
brain lesions or neonatal patients with possibly significantly
different head shapes will introduce significant anatomical
differences in the forward modeling, in which case, DeepSIF
imaging results from general head models might have a larger
deviation, needing further tuning or retraining. Note that the
proposed framework does not limit the source model and the
network architecture to NMMs and recurrent neural networks.
The framework can implicitly incorporate arbitrary prior
knowledge into the solution through complex source models,
providing the potential to include the most advanced forward
models in the field as they are developed and validated. We
have demonstrated one feasible implementation of the frame-
work using NMM networks and tested it on scalp EEG data.
The DeepSIF is a versatile framework that can incorporate vari-
ous source models and network designs and be applied to both
EEG and MEG data with careful modifications.

To conclude, we have proposed a non-conventional data-
driven dynamic functional source imaging framework by means
of DNNs constrained with biophysically inspired brain network
modeling. The present results demonstrate the superior perfor-
mance of DeepSIF over conventional methods in a series of
numerical experiments and real data analysis in a sizeable cohort
of human subjects, including healthy subjects and patients with
drug-resistant epilepsy, with robustness and generalizability. The
DeepSIF promises to establish ESI as a widely adopted approach
for spatiotemporal dynamic human brain imaging, aiding clinical
diagnosis and treatment of a variety of neurological and mental
diseases.

Methods

DeepSIF Outline. The distributed source imaging problem can be formulated
mathematically as an optimization problem. For this underdetermined optimi-
zation problem to be solvable, regularization terms or prior assumptions are
necessary. Typically, assumptions about the spatial distribution or characteris-
tics of underlying sources as well as their temporal dynamics need to be
made. Naturally, this translates to solving optimization problems of the follow-
ing form:

1̂ ¼ argminh∥ϕ�Kj∥22 þ ℛsðjÞ þ ℛTðjÞ: [1]

In Eq. 1, ϕ is a matrix of EEG (or MEG) recordings over a certain time interval;
K is the lead-field matrix that models how current densities, j, are related to
scalp recordings;Rs is a regularization term that captures spatial priors; andRT

is a regularization term that expresses temporal priors. Implementing Eq. 1
using a DNN has the advantage that we do not have to explicitly express the reg-
ularization terms,Rs andRT, and we can let DNN structures learn these priors
from training examples. Our proposed structure, as depicted in Fig. 2, consists
of a spatial module to process and prefilter the spatial distribution of the scalp
data and a temporal module to model the temporal relationship of the sources
to ultimately provide the time course of activity of every brain region as the
final source estimation. To train a neural network, a large amount of training
data must be available. An aspect of the proposed approach is to use a bio-
physically inspired spatiotemporal brain network model for generating the
training data that describes both the spatial and temporal features of the brain
activity.

Simulating Synthetic Dataset. The template T1-weighted MRI (fsaverage5)
was used to get the segmentation of the cortical surface, the skull, and the
scalp. The cortical surface was segmented into 994 similarly sized regions in
Freesurfer (64). To simulate sources with enough spatial variations, a region-
based growing procedure was used for each source. One of the parcellated
brain regions was randomly chosen as the seed, and its neighboring regions
were randomly selected and grouped with the seed region, forming patches of
activation in the source space (details are in SI Appendix, Supplementary Note 1
and Fig. S2).

The time course of activity within all 994 regions was generated by coupled
Jansen–Rit models. The model can simulate brain signals similar to resting-state
brain activity with default parameters (36); when the average excitatory synaptic
gain (defined as A) is increased, it can generate spike-like activities (37). We
assigned the seed region to have an increased excitatory synaptic gain (A) value
(from the default 3.25 to 3.5, 3.55, or 3.6) and kept the NMM parameters of the
other regions as the default. Example outputs of the NMM models from the
active source region (increased A value) and nonactive source region (default
NMM parameters) are shown in SI Appendix, Fig. S1C. The brain network model-
ing was conducted in The Virtual Brain simulator (34). The details of the
Jansen–Rit model and brain network simulation are described in SI Appendix,
Supplementary Note 1.

The 76-channel electrode layout (5, 51) based on a 10-10 montage was used
for the EEG electrode configuration. The lead-field matrix was calculated using
the three-shell BEM model with openMEEG (65, 66) in Brainstorm with default
settings (67). To enable imaging multiple activated sources, a two-source train-
ing dataset was generated, and scalp signals were simulated based on the
superposition principle. The NMM signal from each region was scaled so that
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the ratio between the activity signal and the background signal (from other
regions) was scaled to a random number between 10 and 20 dB. There are
two reasons behind this step. First, the NMM models the temporal dynamics
of the cortical regions by generating the mean postsynaptic potentials of the
pyramidal cells in the unit of V. Assuming current dipole strength to be
roughly proportional to the average membrane potential of the excitatory pop-
ulation (68), a scaling process is needed to transform the NMM output to the
correct unit for the forward calculation (SI Appendix, Supplementary Note 3).
Second, by following such a procedure, we can be certain that sources with dif-
ferent magnitudes and levels of SNR will be present in scalp recordings to
cover various source distributions in the training and testing datasets. After-
ward, different levels of Gaussian white noise were added to the scalp poten-
tial to simulate noise-contaminated EEG measurements, so that the SNR level
of 5, 10, 15, or 20 dB was obtained. Both the source and sensor space signals
were scaled by their maximum absolute value to have a maximum or mini-
mum of 1 or �1 (depending on the polarity of the signal). In total, the train-
ing dataset contained 620,256 spatiotemporal samples consisting of over 300
million spatial topographical distributions. The test data were separately gener-
ated following the same protocol. Datasets containing one to three sources
were generated with 47,712 samples in each dataset. Examples of the wave-
form and the topological maps of the synthetic EEG data are shown in SI
Appendix, Fig. S3.

Training the DNN. The spatial module was composed of residual network
(ResNet) architecture (69) composed of fully connected layers, which process the
spatial information at each time point separately. One ResNet block (ResBlock)
was composed of two fully connected layers with a skip connection, and expo-
nential linear unit (ELU) activation function (70) was used. For the ResBlock with
different input and output dimensions (ResBlock as shown in Fig. 2) (dimension
increased from 64 to 500), the skip connection was another fully connected layer
to account for the dimension change. Another fully connected layer with ELU acti-
vation function and output dimension 500 followed ResBlock. The temporal
module aggregated the output from the spatial module over time and finally,
provided the spatiotemporal activity of the source. It had three hidden layers
and employs long short-term memory (LSTM) (71) with hyperbolic tangent acti-
vation units. The first LSTM layer had an input size of 500 and output size of
994, and the other two layers had the same input and output dimension of 994
(SI Appendix, Supplementary Note 2).

During training, the loss function is the mean square error loss between the
model output and the ground truth source activity. The Adam optimizer (72) was
used for the training with a weight decay of 1e-6. The initial learning rate was
3e-4 and decreased by a factor of 10 for every 10 epochs. The batch size was 64.
The whole network was implemented in PyTorch and trained on one NVIDIA
Telsa V100 graphics processing unit (73).

Ethics Statement. Our clinical study, including data collection and data
analysis, was approved by and performed in accordance with the regulations
of the institutional review boards of Carnegie Mellon University and the
Mayo Clinic, Rochester. Patients gave their informed consent to participate
in this study. The evoked EEG data were obtained from anonymous open-
source datasets freely available online that complied with institutional ethical
standards.

Patient Information. A total of 20 patients (14 females; ages 34 ± 14 y)
were included in this study. All patients suffered from drug-resistant focal epi-
lepsy and underwent surgical treatment at Mayo Clinic, Rochester. The resection
region was determined by coregistering the pre- and postsurgical MRI images in
Curry (Compumedics). Fourteen patients underwent iEEG study, and six of them
had CT images to quantitatively determine the electrode locations. The outcome
of the surgical intervention was scored based on the International League
Against Epilepsy (ILAE) system by the physicians during the follow-up period (20
± 9 mo). Eighteen patients were scored as ILAE 1, and two were scored as ILAE
2 (SI Appendix, Table S1).

High-density EEG electrodes (76 in total) were glued individually based
on a 10-10 montage with the reference electrode at CPz. The EEG signals
were recorded with a sampling rate of 500 Hz using the Xltek EEG amplifier
(Natus Medical Incorporated). Interictal spikes were extracted from the EEG
recordings and band-pass filtered between 0.5 and 40 Hz.

Patient Analysis. The interictal spikes were averaged for each patient and
scaled by the maximum of the absolute value. The output source reconstruction
was averaged for a 100-ms window around the peak of the spike, and a thresh-
old was determined using Otsu’s (74) thresholding technique. Note that from
the reconstruction examples (Figs.4 and 6), the activities in the identified source
regions had a much larger magnitude compared with other regions, such that
the threshold value has a relatively small impact on the evaluation metrics. The
obtained results were then warped to each subject’s brain by segmenting the
brain following the same segmentation atlas as used in the generic brain model
in Freesurfer, mapping the network output for each region on the generic cortex
to the regions in the patient’s individualized cortical space. A similar approach,
warping a spherical general model to a patient’s individual geometry (75), has
been shown to be robust and consistent in the conventional source imaging lit-
erature (76).

The data analysis results for sLORETA and unit–noise–gain minimum variance
Beamformer were calculated using MNE-Python (version 0.22.0) (41); CMEM
was calculated using the BrainEntropy plug-in (version 2.7.3) in Brainstorm, and
FAST-IRES was calculated using the published code.* Otsu’s (74) method was
used to find the extent of the imaging solution when calculating the precision
and recall for all methods except FAST-IRES, which does not need thresholding
to identify the source.

In two TLE patients, iEEG interictal spikes were extracted by the researcher
and clustered using the k-means algorithm into spike clusters. The scalp
EEG channel with the maximum magnitude was extracted, and the linear
correlation between the time course extracted from this channel with the
centers of the iEEG interictal spike clusters was calculated. Since iEEG spikes
may contain different spike types from the spikes observed in EEG, this cor-
relation was used to select the iEEG cluster spike type that is most similar to
the morphological features of the scalp EEG spikes. The iEEG spikes in the
selected cluster were averaged and compared with the DeepSIF imaging
result in Fig. 5.

Sensory and Cognitive Data Analyses. In the visual evoked potential analy-
sis, the EEG data were initially filtered between 0 and 40 Hz for the subsequent
analysis. In the somatosensory evoked potential analysis, data were filtered
between 1 and 250 Hz in Brainstorm. In the visual oddball dataset analysis, the
cleaned EEG data (line noise removal, interpolate bad channels, and indepen-
dent component analysis-based artifact removal) provided by ref. 43 were used
for the analysis with band-pass filtering at 0.5 to 30 Hz. Only the epochs with
the correct button-press responses were selected and averaged for each subject.
There are 27 ± 3 epochs in the target (oddball) group. Difference waveforms
between the target and nontarget groups were calculated and used for imaging
analysis (48).

Data Availability. Custom codes and EEG data on 20 epilepsy patients have
been deposited in GitHub (https://github.com/bfinl/DeepSIF) (77) and Figshare
(https://doi.org/10.6084/m9.figshare.19688043) (78). All other study data are
included in the article and/or SI Appendix.
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