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As ovarian tumors progress, they undergo a process of dedifferentiation, allowing adap-
tive changes in growth and morphology that promote metastasis and chemoresistance.
Herein, we outline a hypothesis that TATA-box binding protein associated factors (TAFs),
which compose the RNA Polymerase II initiation factor, TFIID, contribute to regulation of
dedifferentiation states in ovarian cancer. Numerous studies demonstrate that TAFs regu-
late differentiation and proliferation states; their expression is typically high in pluripotent
cells and reduced upon differentiation. Strikingly, TAF2 exhibits copy number increases
or mRNA overexpression in 73% of high-grade serous ovarian cancers (HGSC). At the
biochemical level, TAF2 directs TFIID to TATA-less promoters by contact with an Initiator
element, which may lead to the deregulation of the transcriptional output of these tumor
cells.TAF4, which is altered in 66% of HGSC, is crucial for the stability of theTFIID complex
and helps drive dedifferentiation of mouse embryonic fibroblasts to induced pluripotent
stem cells. Its ovary-enriched paralog, TAF4B, is altered in 26% of HGSC. Here, we show
that TAF4B mRNA correlates with Cyclin D2 mRNA expression in human granulosa cell
tumors. TAF4B may also contribute to regulation of tumor microenvironment due to its
estrogen-responsiveness and ability to act as a cofactor for NFκB. Conversely, TAF9, a
cofactor for p53 in regulating apoptosis, may act as a tumor suppressor in ovarian cancer,
since it is downregulated or deleted in 98% of HGSC. We conclude that a greater under-
standing of mechanisms of transcriptional regulation that execute signals from oncogenic
signaling cascades is needed in order to expand our understanding of the etiology and pro-
gression of ovarian cancer, and most importantly to identify novel targets for therapeutic
intervention.

Keywords:TAF2,TAF4,TAF4B,TAF9,TBP-associated factors,TFIID, differentiation, ovarian cancer

INTRODUCTION
Ovarian cancer is the most deadly reproductive cancer. Although
progress has been made in understanding its etiology and pro-
gression, there has been no improvement in patient overall sur-
vival since the implementation of taxane–platinum therapy in the
1990s (1). For this reason, novel approaches are required to make
headway in this challenging disease. Many researchers are tak-
ing advantage of the genomic data in the cBioPortal for Cancer
Genomics assembled by The Memorial Sloan Kettering Cancer
Center (MSKCC) to identify potential new targets for treatment,
which has greatly contributed to our understanding of the complex
genetic mechanisms governing ovarian cancer (2, 3). However,
targeting specific oncogenic pathways can be challenging, since
resistance develops due to activation of compensatory pathways
(4). These signaling pathways converge on transcriptional control
of genes that regulate differentiation, proliferation, and apopto-
sis, as well as other cancer cell properties including migratory
and invasive potential, immune response, angiogenesis, telomere
maintenance, and energy metabolism. Although not without chal-
lenges itself, investigating cell-type specific mechanisms of global
transcriptional regulation, which may potentially be disrupted to

halt or reverse tumor progression, could open up a new field of
investigation in ovarian cancer research.

At the biochemical level, transcription is controlled by numer-
ous core transcriptional complexes, such as TFIID, along with
various cofactors. Studies in human cells and Drosophila initially
revealed TFIID as an integral component of the core transcrip-
tional machinery for RNA Polymerase II at mRNA encoding genes
(5, 6), and demonstrated that it is composed of TATA-box bind-
ing protein (TBP) and multiple TBP-associated factors (TAFs) (7,
8). To date, 13–14 TAFs (9) and several tissue-specific variants
(10) have been identified. In vivo genetic analyses unveiled a more
complex role for TFIID in regulating tissue-specific and context-
dependent transcriptional programs, demonstrating the existence
of alternative TFIID complexes and tissue-specific TAFs (11–17).
Three such complexes, which will be discussed in greater detail
later in this manuscript, are illustrated in Figure 1. The realization
that TFIID subunits regulate cellular processes in tissue-specific
manners prompted research into TAF involvement in modulat-
ing tumor characteristics, including proliferation, differentiation,
apoptosis, metastasis, and hormone response. The considerable
variability seen in these reports, which are summarized in Table 1,
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Ribeiro et al. TAFs in ovarian cancer

FIGURE 1 |TFIID sub-complexes. Arrows indicate transcription start site.
(A) A TAF1/TAF2 complex contacts Initiator at a TATA-less promoter.
(B) TAF1 contacts a downstream promoter element (DPE) at a TATA-less
promoter. TAF4 is also important for this interaction. (C) TAF4B substitutes
for TAF4 in a TFIID complex bound at a TATA-box by TBP.

further supports the notion that the plasticity of the TFIID
complex allows for variation in transcriptional control depend-
ing on cellular context. However, perhaps due to this plasticity,
our understanding of the contribution of the TFIID complex to
tumorigenesis and cancer progression remains limited.

While biochemical and genetic analyses point to a role for
TFIID in regulating tumor-related phenotypes, the recent assem-
bly of the cBioPortal for Cancer Genomics by MSKCC sheds
further light on the subject. A bioinformatic analysis of 316 high-
grade serous ovarian carcinomas (HGSC) whose copy number,
mutational status, and mRNA levels are stored in the portal, reveals
the TFIID complex as one of the most significantly altered sub-
networks in this panel of tumors; TFIID alterations are detected
in 42% of tumors by the study’s analyses (49). Interestingly, when
comparing the incidence of TAF copy number alterations (CNAs)
and mutations between various tumor types, the HGSC set [The
Cancer Genome Atlas (TCGA); provisional; all tumors] exhibits
the most frequent alterations (59.8%). The overwhelming major-
ity of these alterations are amplifications (Figure 2A), supporting
the argument that the TFIID complex is important in ovarian
cancer. A closer look at specific TAF alterations in the HGSC set
(TCGA; provisional; complete tumors= all tumors with CNAs,
mRNA, and sequencing data) reveals TAF2 amplifications, copy
number gains, and mRNA upregulation (Z -score >+2.0) in 73%
of tumors; TAF4 and TAF4B show these alterations in 66 and 26%
of tumors, respectively (2, 3) (Figure 2B). Other TAFs not depicted

here are also frequently amplified. Conversely, homozygous dele-
tions or mRNA downregulation (Z -score <−2.0) of TAF9 are
observed in 98% of complete tumors (2, 3) (Figure 2B), which is
in accordance with TAF9’s reported role as a cofactor for p53 and
its involvement in promoting apoptosis (44, 45). As suggested by
this TCGA data, as well as the studies outlined in Table 1, par-
ticular TAFs may regulate tumor properties in very precise and
tissue-specific manners. Moreover, studies performed on the role
of TAF subunits in development suggest that specific TAF subunits
function as master regulators of differentiation and prolifera-
tion (11–13, 50–58), which has important implications for the
process of dedifferentiation that occurs with tumor progression.
Herein, we outline the potential for TAFs to regulate differentia-
tion, proliferation, and apoptosis in ovarian tumors, and discuss
the implications of this regulation for tumor cell-autonomous and
microenvironment effects.

MATERIALS AND METHODS
cBioPortal FOR CANCER GENOMICS
The portal assembled by the MSKCC at http://www.cbioportal.
org/public-portal/ was used for analysis of TAF alterations in
ovarian cancer. To generate the cross-cancer alteration summary,
“Mutation and CNA” data types were analyzed for “All Cancer
Studies.” TAF1, TAF2, TAF3, TAF4, TAF4B, TAF5, TAF6, TAF7,
TAF8, TAF9, TAF10, TAF11, TAF12, TAF13, and TAF15 were input
as the gene set to be analyzed. To examine alterations in indi-
vidual TAFs, we queried “Ovarian Serous Cystadenocarcinoma”
(TCGA, Provisional). One hundred fifty-eight “complete tumors”
(those with copy number, mRNA expression, and sequencing
data) were included. For TAF2, TAF4, and TAF4B, the follow-
ing search was performed: DATATYPES: AMP GAIN EXP > 2.0;
TAF2, TAF4, TAF4B, in order to view amplifications, copy number
gains, and mRNA expression (Z -score > 2.0) for these TAFs. No
mutations were present. Copy number data is putative and gen-
erated by GISTIC algorithm. Messenger RNA expression Z -scores
were determined by RNA Seq Version 2 RSEM. Detailed informa-
tion on the GISTIC algorithm and mRNA Z -scores can be found
at http://www.cbioportal.org/public-portal/faq.jsp.

ANIMALS
All animal protocols were performed at Brown University. Mice
were killed by carbon dioxide euthanasia, and all protocols were
reviewed and approved by the Brown University Institutional
Animal Care and Use Committee.

SURGERIES AND LIVER COLLECTION
Mouse hepatectomies were performed as described in Greene and
Puder (59). Briefly, adult mice were anesthetized using insoflurane
prior to surgery. Fifty percent hepatectomy consisted of ligature
and removal of the left and left medial lobe through a mid-
abdominal incision followed by suture of incision. Sham surgeries
involved incision and manipulation of liver, without removal, fol-
lowed by suture of incision. Mice recovered in cages on a 37° warm
plate during the hours following surgery. In the experimental mice,
the left lobes were collected at 0 h (“removed”), and the right lobes
were removed at the indicated timepoints (“recovered”). Total
RNA was isolated for qRT-PCR analysis.
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Ribeiro et al. TAFs in ovarian cancer

Table 1 | Summary of studies onTAFs in cancer.

TAF1

• Frequent mutations in uterine serous carcinoma (18)

• Compensatory for androgen withdrawal in prostate cancer/co-activator for androgen receptor (19)

• Knockdown causes resistance to stress-induced apoptosis/reduces p27 (kip1) expression (20)

• Interacts with HPV protein E2 (21, 22). Overexpression in cervical cancer cells modulates E2-dependent transcription (21)

• Promotes MDM2 degradation of p53 (23). Promotes cell cycle progression by phosphorylating p53 and promoting its degradation (24)

• Histone acetyltransferase (HAT) activity of TAF1 is important for cyclin D1 transcriptional activation and cell cycle progression (25)

• TAF1 inactivation promotes DNA damage response and cell cycle arrest (26)

• TAF1/TAF2 binds TATA-less SRC promoters that have Initiator elements. Transcription from SRC promoters is TAF1-dependent, and the HAT activity of

TAF1 partly regulates transcription from SRC promoters (27)

• Interacts with B-Myb and helps mediate activation of Myb-response genes, which regulate cell cycle (28)

• Bound by c-Jun, which increases TFIID-driven transcription by de-repressing TAF1 repression of TBP binding to TATA-boxes (29)

• Regulates transcription of cyclin A (30)

TAF2

• TAF1/TAF2 binds TATA-less SRC promoters with Initiator elements (27)

• Yeast TAF2 required for transcription of B-type cyclins and cell cycle progression (31)

TAF4 andTAF4B

• TAF4 inactivation in adult mouse epidermis causes epidermal hyperplasia, upregulation of EGF family mitogens, malignant transformation of

DMBA-induced papillomas, and appearance of invasive melanocytic tumors in DMBA-treated mice (32)

• Estrogen upregulates TAF4B in mouse serous ovarian tumors (33)

• TAF4B identified as a hub gene in head and neck squamous carcinoma associated with radiosensitivity (34)

• TAF4B knockdown promotes migration of colon cancer cells in vitro by down regulation of the AP-1 target gene ITGα6 (35)

• TAF4B is a c-Myc target gene in human glioblastoma cells and human promyelocytic leukemia cells (36)

TAF6

• 72 kDa isoform causes growth suppression of normal and transformed breast epithelial cell lines due to novel interaction with the G2 arrest protein

GADD45a (37)

• 72 kDa isoform forms a TFIID complex lacking TAF9; its elevated expression in Hela cells causes apoptosis, increased transcription of p21 and GADD45,

and decreased MDM2 transcription (38)

• TAF6 and TAF9 necessary for transcriptional activation by p53 (39)

TAF7 andTAF7L

• TAF7 knockdown in androgen-independent prostate cancer cells reduces polyamine transport and causes resistance to

methylglyoxalbisguanylhydrazone (MGBG)-induced apoptosis (40)

• TAF7 is a co-activator for the mitogen C-JUN in HEK293 and COS cells (41)

• TAF7L downregulated in 59% of male patients with acute myeloid leukemia (42)

TAF9

• Disruption of interactions between Hedgehog transcription factors (Gli proteins) and TAF9 reduces Gli/TAF9-dependent transcription, suppresses

cancer cell proliferation, and reduces xenograft growth (43)

• UV and IR disrupts hydrogen bonding between Thr18 and Asp21 on p53, reducing MDM2 binding to p53 and allowing recruitment of p53 co-activator,

TAF9 (44)

• TAF9 inhibits MDM2-mediated degradation of p53/acts as a co-activator of p53 (45)

• 72 kDa TAF6 isoform forms a TFIID complex lacking TAF9/its elevated expression in Hela cells causes apoptosis, increased transcription of p21 and

GADD45, and decreased MDM2 transcription (38)

• TAF6 and TAF9 necessary for transcriptional activation by p53 (39)

• TAF9 is a crucial co-activator for p53 (46)

TAF10

• Stimulates transcription from ERE-containing promoters (47)

TAF12

• Upregulated in colon cancer cell lines with RAS mutations or overexpression of mutant RAS; knockdown destabilizes TFIID; and enhances E-cadherin

levels, thereby reducing migration/adhesion of RAS transformed cells with EMT (48)

HUMAN GRANULOSA CELL TUMORS
Samples of human granulosa cell tumors (GCTs) were obtained
from the Ottawa Ovarian Cancer Tissue Bank, with consent
from the patients and under a protocol approved by The Ottawa

Hospital Research Ethics Board (1999540-01H). Frozen tissues
were homogenized in RLT buffer using an IKA Ultra-Turrax
homogenizer and total RNA was extracted using the Qiagen
RNeasy Mini Kit as per the manufacturer’s protocol.
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Ribeiro et al. TAFs in ovarian cancer

FIGURE 2 |TBP-associated factor alterations in high-grade serous ovarian cancer (HGSC). (A) Cross-cancer summary of copy number alterations and
mutations in TAFs for all cancer sets in the cBioPortal for Cancer Genomics (2, 3). (B) Amplifications, copy number gains, and mRNA upregulation of TAF2, TAF4,
and TAF4B, and deletions and mRNA downregulation of TAF9, in the cBioPortal HGSC set (TCGA, provisional, complete tumors) (2, 3). These “oncoprints” are
partial views of alterations in 158 complete tumors. Alterations are present in 158 complete tumors in the percentages noted on the left.

QUANTITATIVE RT-PCR
cDNA was prepared from 1 µg total RNA, and qRT-PCR per-
formed as previously described (33). Data was analyzed using
the ∆∆Ct method and normalized to 18s rRNA. Correla-
tion between TAF4 or TAF4B and CCND2 was determined
by Pearson Correlation Co-efficient (R). P-values were deter-
mined by two-tailed, unpaired Student t -test. Primers used are
as follows:

Mouse Tafa4 F – ATC TCC ACT GTG CAG GCTT CC
Mouse Taf4a R – GGT CAG CTG CCG TGC AAT A
Mouse Taf4b F – GAT GTT ACT AAA GGC AGC CAA GAG T
Mouse Taf4b R – CTG CTC TGG ATC TTC TTT ATT GGA G
Human TAF4 F – CTC AGA ACC CGA CCA ACA TCC
Human TAF4 R – CTT CGG ACG AGG ACC ATT CC
Human TAF4B F – ATC CAG TTT CCT GCT AAT TTG C
Human TAF4B R – CCA ACA TCA ACG GAC CAC TGT
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Ribeiro et al. TAFs in ovarian cancer

Human CCND2 F – CCG ACA ACT CCA TCA AGC CT
Human CCND2 R – AGCACCACCAGTTCCCACTC
18s rRNA F – CCG CGG TTC TAT TTT GTT GG
18s rRNA R – GGC GCT CCC TCT TAA TCA TG

ANTIBODIES AND WESTERN BLOT ANALYSIS
Mouse ESC protein extracts pre- and post-retinoic acid (RA)-
induced differentiation were generously provided by the Fair-
brother lab (Brown University) and prepared as described
in Tantin et al. (60). Western blot analysis was performed
as previously described (33). Antibodies used are as fol-
lows: (1) TAF II p250 (1:200; sc-17134; Santa Cruz); (2)
mouse monoclonal anti-TAF(ii)135 (1:250; 612054; BD Trans-
duction Laboratories); (3) polyclonal rabbit anti-mouse TAF4B
[1:250; raised against amino acids 1–98 (N-terminus/co-activator
domain) of mouse TAF4B (33, 61, 62)]; (4) TBP (ab818;
Abcam); (5) rabbit anti β-tubulin (1:200; RB-9249-P; Thermo
Scientific).

TFIID AS A DIRECT REGULATOR OF CELLULAR
DIFFERENTIATION STATES
Throughout ovarian tumorigenesis and progression, tumor cells
undergo multiple requisite changes in morphology and pheno-
type (Figure 3). The ovarian surface epithelium (OSE) undergoes

metaplasia to a fallopian tube epithelial morphology early in
serous adenocarcinoma formation (63) and is associated with an
increase in E-cadherin expression as the mesothelial OSE obtains
the columnar epithelial phenotype of the fimbrial epithelium (63).
The process of metaplasia is controversial as evidence has accumu-
lated that many HGSC develop from fimbrial epithelial cells that
become lodged in the ovarian stroma (64). However, convincing
arguments still exist for OSE metaplasia, including the fact that the
process can be replicated in mouse and hen models of ovarian can-
cer (63, 65–70). The initial origin of the tumor becomes less impor-
tant as it progresses from a well-differentiated papillary histology
to a dedifferentiated morphology. This process of dedifferentiation
from an organized morphology resembling the tissue of origin to
a disorganized mass of less differentiated cells is a hallmark of
cancer progression in diverse tissues (71–74), and is defined by a
grading system set forth by the International Federation of Gyne-
cology and Obstetrics (FIGO) (75). Poorly differentiated tumors
are associated with a worse prognosis (76–79) since dedifferentia-
tion allows adaptive changes in morphology that promote invasion
and metastasis (71). Thus, tumor dedifferentiation is closely asso-
ciated with the process of epithelial-to-mesenchymal transition
(EMT), whereby loss of epithelial differentiation allows cells to
acquire productive characteristics, such as invasion and migra-
tory capabilities (80). In ovarian cancer, dedifferentiated tumors

FIGURE 3 | Schematic illustrating pathogenesis and dedifferentiation in
epithelial ovarian cancer (EOC). Epithelia on the fallopian tube fimbrae may
become transformed, causing the development of a serous tubal
intraepithelial carcinoma (STIC). These cells may eventually slough off the
fimbrae and become lodged within the ovarian stroma, causing an inclusion
cyst lined with epithelia resembling that of the fallopian tube. Alternatively,

invaginations of the OSE can cause inclusion cysts, which become dysplastic
and then undergo metaplasia to resemble fallopian tube epithelium. These
cysts can eventually develop into tumors that undergo dedifferentiation as
they progress. Ovarian cancer stem-like cells are thought to represent a small
proportion of the tumor bulk (illustrated as yellow cells), and are more likely to
metastasize.
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Ribeiro et al. TAFs in ovarian cancer

manifest as a solid tumor mass, lacking the glandular morphology
seen in well-differentiated serous ovarian tumors (81). Accord-
ingly with loss of epithelial morphology, E-cadherin expression is
frequently reduced in dedifferentiated tumors, ascites, and metas-
tases (72, 82–84). In dedifferentiated tumors where E-cadherin is
not lost, other adhesion complex components, such as the catenins,
could be disrupted (85, 86). Collectively, these studies show that
ovarian tumors undergo complex morphological and functional
changes from their initiation to progression.

Ovarian cancer stem-like cells (OCSCs) represent a very small
percentage of tumor cells and are considered a dedifferenti-
ated, or pluripotent, cell-type. Accordingly, CSCs are charac-
terized by upregulation of mRNAs encoding stem cell mark-
ers, including OCT4, SOX2, stem cell factor receptor (C-KIT ),
NOTCH1, ABCG2, BMI1, and NES (Nestin) (87) and NANOG
protein levels (88). Functionally, CSCs can recapitulate the orig-
inal tumor, form xenografted tumors at limiting dilutions, are
resistant to chemotherapy, form spheroids in culture, and have
increased invasive and migratory potential (89). OCSCs have been
shown to be enriched for CD44+/CD117 (C-KIT)+ cells (87, 90),
CD44+/CD24− cells (91), and CD44+/MyD88+ cells (90). More
recently, ALDH1 and CD133 have been identified as markers for
OCSCs (92–94). Nonetheless, it is challenging to study this pop-
ulation of cells since it represents such a small percentage of the
tumor mass. Since dedifferentiated tumors are further along the
path toward pluripotency, perhaps CSCs represent a small pro-
portion of cells that are furthest along that path. In support of
this notion, Gabbert et al. noted that the “invasion front” of colon
carcinomas was marked by a loss of differentiation, and that in
already undifferentiated colon carcinomas, only subtle changes
were required for the invasive phenotype (71). While it is clear
that tumors undergo these various dedifferentiation processes

throughout tumorigenesis and progression, the precise molecu-
lar events regulating metaplasia, dedifferentiation, EMT, and the
establishment of OCSCs are not well-understood. Understanding
these mechanisms is essential if we hope to identify treatments
that inhibit or reverse these processes.

The importance of TAFs in regulation of normal differentia-
tion processes during development has been well-established in
recent years. One of the first studies to indicate the involvement
of TAFs in differentiation shows a reduction in TAF4 expression
in embryonic cortical neuronal stem cells that differentiate down
a neuronal, but not a glial differentiation pathway (50), suggesting
that specific TAFs are involved in particular differentiation path-
ways. Comparatively, TAF10 is essential for the differentiation of
keratinocytes, but is dispensable in adult epidermis (51), and is
also required for proliferation of undifferentiated embryonic car-
cinoma cells, but not after in vitro differentiation of these cells by
RA (95). These two studies establish the importance of specific
TAFs in regulating proliferation and differentiation of progenitor,
but not differentiated cell-types. In parallel, knockdown of TAF1
and TAF4B in primary mouse embryonic maxillary mesenchymal
cells reduces proliferation and causes deregulation of osteogenic
differentiation (52). In liver, lower levels of TBP and TAFs are
seen in hepatocytes compared to differentiated hepatoblasts and
TAF4 and TBP are reduced upon in vitro induced hepatogenesis
(53). These results are in agreement with the typically low levels
of TAF4B detected in adult liver that we have previously reported
(17). Accordingly, we saw an increase of Taf4b, but not Taf4a (the
mouse homolog of human TAF4), mRNA upon liver regeneration
induced by partial hepatectomy, suggesting that this specific TAF
subunit may be involved in regulating either hepatocyte re-entry
into the cell cycle or differentiation of liver stem cells (Figure 4A).
Collectively, these studies generally reveal a reduction of TAFs as

FIGURE 4 |TBP-associated factor subunits are dynamic during
differentiation and proliferation. (A) Quantitative RT-PCR analysis of
Taf4a and Taf4b in normal (removed) and partial hepatectomy (recovered)
mouse livers. Data represented as fold-increase (recovered/removed)

plotted against hours post-hepatectomy. (B) Western blot analysis of
TAF1, TAF4, TAF4B, and TBP in mouse embryonic stem cells pre- and
post-retinoic acid-induced differentiation. β-tubulin was used as a loading
control.
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cells progress from a pluripotent to a differentiated state, suggest-
ing their importance in regulating this process or in maintenance
of pluripotency.

TBP-associated factors can act outside of the canonical TFIID
complex to regulate differentiation as well. Deato et al. show that
an alternate TFIID complex consisting of TAF3 and TBP-related
factor 3 (TRF3) is required for activator-dependent transcrip-
tion of myogenin and differentiation of myoblasts to myotubes.
Importantly, expression of other TFIID subunits typically believed
to be essential for TFIID function, including TAF1, TAF4, and
TBP, is lost with myoblast differentiation (11–13). Moreover,
higher levels of TAF3 are reported in mouse embryonic stem
cells (mESCs) compared to mouse embryonic fibroblasts (MEFs),
adult spleen, lung, heart, brain, and liver. In a study by Liu
et al., TAF3, along with the pluripotency factor OCT4, are
reduced upon mESC differentiation, accompanied by slight reduc-
tions in TAF4 and TBP. Confirming the importance of TAF3 in
mESC differentiation, when TAF3 is knocked down in plated
embryoid bodies, the cells lose pluripotency, and largely differ-
entiate to neurons. Interestingly, the authors identify a TFIID-
independent transcriptional regulatory role for TAF3, which works
in conjunction with CCCTC-binding factor (CTCF) and cohesin
to regulate transcription of endoderm-specific gene expression
programs (54).

The TAF4 and TAF4B subunits of TFIID are also known to
support pluripotency. Bahat et al. recently reported that the TAF4
paralog TAF4B is highly expressed in mESCs and is downregulated
upon differentiation (55). We have independently observed the
reduction of TAF1, TAF4, TAF4B, and TBP upon in vitro differenti-
ation of mouse embryonic stem cells by RA (Figure 4B). Moreover,
the Bahat et al. study reveals that TAF4B knockdown decreases
mESC self-renewal, differentiation, and cell cycle progression,
along with a reduction in genes that are also reduced upon
RA-induced mESC differentiation. Conversely, they report TAF4
knockdown to increase proliferation and prevent RA-induced dif-
ferentiation (55), suggesting functional differences between these
paralogs in mESCs. Mengus et al. report an increase in serum-
independent autocrine growth upon TAF4 knockdown in MEFs,
which they attribute to compensation by TAF4B (56), suggesting
some functional overlap between these paralogs. However, like
Bahat et al. they also show that there are differences between TAF4
and TAF4B in MEFs, as illustrated by deregulation of over 1,000
genes in the TAF4 knockdown cells that are not compensated for
by TAF4B (56). Although these studies approach TAF knockdowns
from opposite ends of the differentiation spectrum, they both
reveal interesting information about the differences and similari-
ties between TAF4 and TAF4B, and point to a role for these TAFs
in regulating the balance of differentiation and/or proliferation.

Some of the results of the Bahat et al. study regarding TAF4
are in contrast to a related study by Pinjappel et al., in which
the authors show that knockdown of TAF1, TAF3, TAF4, TAF4B,
TAF5, TAF6, TAF9, TAF11, TAF12, and TAF13 each results
in differentiation of mESCs, but does not affect proliferation
or apoptosis (57). TAF5 knockdown alone decreases transcrip-
tion of pluripotency genes, increases transcription of differen-
tiation markers, and decreases OCT4/NANOG binding at the
TAF4 promoter, pointing to transcriptional activation of TAF4

as essential in maintaining stemness. Overexpression of TAFs
during OCT4/SOX2/KLF4/MYC (OSKM) reprograming of MEFs
increases mESC morphology, while omission of TAF4 from the
overexpressed complex abolishes its stimulatory effect on repro-
graming. Eventually, it was found that TAF4 alone promotes the
reprograming of MEFs to induced pluripotent stem cells (iPSCs),
highlighting the importance of this individual TAF in promoting
cellular reprograming to a dedifferentiated state (57). However,
the main discrepancy between these studies – TAF4 knockdown
increasing proliferation and preventing differentiation of mESC
versus TAF4 knockdown not affecting proliferation yet promot-
ing differentiation of mESC – needs to be addressed. Interestingly,
alternative TAF4 isoforms could play a role in modulating differ-
ential functions of TAF4. Kazantseva et al. show that expression of
TAF4 isoforms with structural modifications of the TAF4-TAFH
(co-activator) domain increases during differentiation of human
mesenchymal stem cells, while silencing of TAF4-TAFH intact iso-
forms causes cell cycle arrest and blocks specific differentiation
pathways (58). Moreover, the expression of the TAF4-TAFH dele-
tion isoforms is also cell-type specific, with one of them (TAF4_v4)
being expressed only in the ovary, placenta, stomach, testis, and
thymus (58). This study highlights another layer of complexity
to transcriptional regulation by TAF subunits that is introduced
by alternative splicing events, and also suggests the importance of
taking a tissue-specific approach to studying this regulation.

While the contribution of TAFs to ovarian proliferation and
differentiation has not been well-investigated, these studies sup-
port the general notion that certain core TAFs are reduced upon
differentiation. It is not clear whether other differentiation sig-
nals cause the downregulation of TAFs, or the downregulation
of TAFs promotes differentiation signals; however, a productive
feed-forward loop likely exists between TAF subunits and OSKM
factors, as suggested by Pijnappel et al. Regardless, it is apparent
that TAFs play an important role in maintenance of pluripotency
and cause dedifferentiation when overexpressed in differentiated
cells. It is also clear that diverse TAFs function to regulate differ-
entiation in tissue-specific manners, highlighting the importance
of expanding these studies to include the ovary, and potentially
other tissues. In relationship to cancer, TAF regulation of differ-
entiation state could be important as tumors dedifferentiate as a
whole, or as individual cells take on a more “pluripotent” pheno-
type and become CSCs. Figure 5 illustrates a potential model for
TAF regulation of differentiation and proliferation as it pertains
to development and ovarian tumor progression. As outlined here,
we hypothesize that deregulation of TAF expression, such as what
occurs with amplifications commonly seen in HGSC, contributes
to tumor dedifferentiation or establishment of OCSCs.

TAF REGULATION OF TUMOR-RELATED PHENOTYPES
The contribution of individual TAFs to tumor dedifferentiation
as well as diverse tumor properties and their microenvironment
needs to be considered. For the sake of this discussion, we will
focus on TAF2, TAF4, TAF4B, and TAF9 as illustrative examples
of how specific TAF subunits may be involved in regulating ovar-
ian tumor properties. TAF2 appears to be important in ovarian
cancer since it is most frequently altered in HGSC, with amplifi-
cations, copy number gains, and mRNA upregulation present in
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Ribeiro et al. TAFs in ovarian cancer

FIGURE 5 |Working model forTAF involvement in differentiation during development and tumor progression. Studies show thatTAFs are downregulated
in differentiated cells compared to pluripotent cells. This model illustrates the hypothesis that TAFs are also expressed at lower levels in differentiated cancer
cells, but may be upregulated as these cells progress to dedifferentiated cells or pluripotent cancer stem-like cells. Yellow, normal cells; purple, cancer cells.

73% of tumors (2, 3). Although little is known about the role
TAF2 might play in cancer, it is required for cell cycle progression
in yeast, and expression of yeast TAF2 and several other TAFs
is dramatically reduced when cells are induced into a station-
ary phase (31). From a biochemical standpoint, the TAF1/TAF2
complex recognizes Initiator (Inr) elements (96), the relevance of
which becomes apparent when examining another study showing
that TATA-binding defective TFIID can still initiate transcription
from TATA-containing or TATA-less promoters that have an Inr
sequence (97). Although this study utilized a mutant TBP that was
still capable of binding TFIID (97), a study by Wright et al. investi-
gating the stability of the TFIID complex in Drosophila shows that
TBP knockdown does not affect the stability of the TFIID complex,
suggesting that TBP is not strictly required for TAF assembly (98).
Figure 1A illustrates a TBP-free TFIID sub-complex (TFTC) (99)
that could be responsible for TAF1/TAF2 regulation of transcrip-
tion from Inr consensus sequences. Importantly, the set of genes
containing an Inr sequence overlaps with, yet is distinct from,
those bound only by non-defective TFIID (97), suggesting that a
distinct transcriptional profile could exist in TAF2-overexpressing
cells. In support of this notion, Dehm et al. demonstrate that
the TAF1/TAF2 complex binds C-SRC 5′ exon promoters, which
are TATA-less and contain Inr sequences (27). Interestingly, C-
SRC overexpression and activation are reported in ovarian cancer
(100, 101) and contribute to activation of growth factor signal-
ing cascades (102, 103) and anti-estrogen resistance (100). Given
these results, it is possible that TAF2 overexpression could increase
transcription of C-SRC in some ovarian tumors.

Reminiscent of the TFIID-independent function of TAF3 in
regulation of myogenesis (11–13), the transcriptional control of
Inr-containing promoters by TAF1/TAF2 may be relevant in ovar-
ian cancer, since TBP is predominantly downregulated in many
HGSCs (2, 3). Incidentally, reliance on TBP-independent TAF
functions is one potential reason for this unexpected downregula-
tion of TBP; another could actually be mutation of p53 in HGSC,
since TBP is known to bind and derepress p53 (104). Interestingly,
TAF1 is not commonly deregulated in HGSC, although its role
as a tyrosine kinase and regulator of cell cycle and apoptosis in
other tissues is well-described (19–21, 23–25, 30, 105–107), and it
is also frequently mutated in uterine serous carcinoma (18). The
apparent tissue-specific effects of TAF1 reiterate the importance of
studying individual TAFs in tissue-specific contexts. Further dis-
section of the role TAF2 plays in ovarian cancer could illuminate
whether this TAF regulates alternative transcriptional programs
involved in differentiation and proliferation.

After TAF2, TAF4 is the most frequently amplified and over-
expressed TAF in HGSC (2, 3). We have already discussed its role
in driving MEF dedifferentiation to iPSC (57), suggesting it could
be a major regulator of dedifferentiation/pluripotency in certain
contexts. From a molecular standpoint, TAF4 is interesting for
several other reasons as well. In Drosophila, it is the most crucial
subunit for maintaining the stability of the holo-TFIID complex,
with TAF5, TAF6, TAF9, and TAF12 also contributing to this core
complex. RNAi-mediated knockdown of TAF4 or TAF12, which
dimerize via their histone-fold domains (HFDs), results in degra-
dation of most of the other TAF subunits (98). Interestingly, TAF1,
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TAF2, and TAF11 are less critical (98), which is in support of
the idea that a TAF1/TAF2 complex may initiate transcription as
part of a TFIID sub-complex at Inr elements. Likewise, TAF1 and
TAF4 are important for directing transcription from TATA-less,
downstream promoter element (DPE)-containing promoters (98)
(Figure 1B), while TATA-containing promoters are less depen-
dent on these subunits. This evidence suggests that disruption of
TAF4’s HFD interaction with the HFD of TAF12 could potentially
destabilize both holo-TFIID and many TFIID sub-complexes. The
overexpression of many TAFs in HGSC discussed previously raises
the possibility that inhibition of TFIID-driven transcription, such
as might be possible using small molecule inhibitors, could reduce
expression of a large set of genes potentially important for ovar-
ian tumor growth and differentiation. However, compensation
by alternative TFIID complexes might instead drive some level
of transcription under these circumstances, including a com-
plex containing the TAF4 paralog TAF4B, which is depicted in
Figure 1C.

TAF4B is not as frequently altered in ovarian cancer, but
nonetheless exhibits amplifications, copy number gains, or mRNA
upregulation in 25% of HGSC (2, 3). TAF4B is relevant to the
discussion of TAFs in ovarian cancer because its expression is
enriched in the ovary compared to other tissues, and it is required
for proper ovarian follicle development and murine fertility (17,
61, 62, 108). In addition to oocyte and folliculogenesis defects in
the Taf4b-null ovary, granulosa cell proliferation and survival are
dependent upon TAF4B expression (62). It is still not clear, how-
ever, whether adult Taf4b-deficient ovarian defects are established
during early development or occur due to signals from defective
oocytes that remain into early adulthood in the Taf4b-deficient
ovary. Likewise, the precise contributions of germ cell versus
somatic factors are not well-understood. Studies are underway
to elucidate the mechanisms underlying the Taf4b-null infertile
phenotype. It is clear, however, that TAF4B plays a role in reg-
ulating proliferation in some contexts. The gene for Cyclin D2,
a key cyclin that selectively regulates both normal granulosa cell
and GCT proliferation (109), was identified as a transcriptional
target of TAF4B by chromatin immunoprecipitation (ChIP) of
TAF4B at the Ccnd2 promoter in TAF4B-overexpressing rat spon-
taneously immortalized granulosa cells (SIGCs) (110). In human
GCTs, TAF4B mRNA expression strongly correlates (R= 0.93)
with expression of CCND2, while TAF4 was found to only weakly
correlate to CCND2 levels (R= 0.32; Figure 6). These data sug-
gest that TAF4B regulation of this granulosa cell cyclin could play
a role in GCT proliferation. Other genes linked to ovarian can-
cer were also identified as TAF4B targets in TAF4B-overexpressing
SIGCs, including c-Jun, matrix metalloproteinase-3 (Mmp-3), and
Fibronectin-1 (Fn1) (110). The preferential regulation of these
genes by TAF4B over TAF4 could be due to a slight alteration in
conformation of TAF4B-containing TFIID complexes compared
to TAF4 alone containing complexes, which can affect promoter
occupancy of specific genes, as identified by Liu et al. for c-Jun
(111).

In further support of a potential role for TAF4B in GCT, we have
recently found that TAF4B is upregulated by estrogen in normal
mouse granulosa cells (33). Since estrogen signaling could con-
tribute to GCT pathogenesis (112), perhaps TAF4B is an effector

FIGURE 6 |TAF4B correlates with CCND2 mRNA levels. Quantitative
RT-PCR analysis of TAF4A (black bars), TAF4B (dark gray bars), and CCND2
(light gray bars) mRNA levels in human granulosa cell tumors. Pearson
correlation co-efficient (R) for TAF4B and CCND2=0.93; TAF4A and
CCND2=0.32.

of certain aspects of estrogen signaling in GCT. Execution of
estrogen-dependent effects by TAFs is not without precedence,
as TAF10 was found to be important for efficient transcription
at ERE-containing promoters in MCF7 breast cancer cells (47).
From these data showing TAF4B involvement in estrogen sig-
naling, granulosa cell proliferation, and regulation of a cell cycle
protein, it seems likely that it could play a role in GCT; since
granulosa cells also support epithelial ovarian cancers (EOC) as
the microenvironment in which inclusion cysts arise, we will also
discuss its potential involvement in EOC pathogenesis.

One long standing hypothesis for how the ovarian milieu con-
tributes to ovarian cancer growth is hormonal signaling within
the ovary, especially estrogen signaling. The granulosa cells are the
estrogen producing cells in the ovary, and could support tumori-
genesis from inclusion cysts, whether the cysts arise from the OSE
or fimbrial epithelium. Studies report the stimulatory effects of
estrogen on OSE hyperplasia (113) and metaplasia (114) as well
as the more rapid establishment of serous ovarian tumors by
SV40 Large T-antigen driven transformation of the OSE upon
exposure to exogenous estrogen (66). In support of these exper-
imental studies, epidemiological studies show that women who
have been on long-term estrogen hormone replacement therapy
have a greater risk of developing ovarian cancer (115–120). Our
recent study finding TAF4B to be upregulated by estrogen in
granulosa cells also reports dramatic upregulation of TAF4B in
estrogen-supplemented mouse tumors (33). It is not clear, how-
ever, whether the upregulation of TAF4B in these tumors occurs
in the OSE-derived cells (suggesting cell-autonomous effects)
or in the tumor stroma (suggesting microenvironment effects).
Either of these scenarios is possible, since we see TAF4B expres-
sion in both OSE and fimbrial epithelium in addition to the
granulosa cells. Moreover, while TAF4B is normally regulated by
ERβ in granulosa cells, it can also be regulated by ERα in the
absence of ERβ (33). Collectively, these results do not exclude
either a cell-autonomous or microenvironment role for TAF4B
in EOC.
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Another scenario exists whereby TAF4B could regulate the
ovarian microenvironment to promote tumorigenesis. TAF4B
was originally identified as a TFIID subunit in B-cells (14) and
promotes expression of anti-apoptotic genes by acting as a co-
activator for NFκB. In this manner, TAF4B and NFκB work coop-
eratively to suppress tumor necrosis factor-α (TNFα)-mediated
apoptosis in 293 cells in vitro and in B- and T-cells in mice
(121, 122). While this mechanism has not been investigated
in the ovary, it could represent another way that TAF4B con-
tributes to regulation of the immune microenvironment and
protection from apoptosis, particularly in ovarian tumors with
constitutively activated NFκB signaling. Such constitutive acti-
vation occurs in ovarian cancer due to the chronically inflamed
microenvironment (123), resulting in enhanced growth and pro-
tection from apoptosis (112). Interestingly, NFκB activation may
also be a hallmark of OCSCs and contribute to their escape
from apoptosis. Alvero et al. show that CD44+/MyD88+ cells
have constitutive activation of NFκB, and when treated with
paclitaxel or TNFα, upregulate NFκB signaling instead of under-
going apoptosis (90). It will be interesting to determine if
TAF4B also contributes to this NFκB-mediated protection of
OCSCs.

While TAF4B could potentially be involved in mediating anti-
apoptotic effects, TAF9 is illustrative of a TAF acting as a puta-
tive tumor suppressor, since it is downregulated or deleted in
98% of HGSC. In support of this role, TAF9 is known to be
a co-activator for p53 (44–46), which is ubiquitously mutated
and downregulated in HGSC (2, 3). TAF9 physically interacts
with p53 at its N-terminus, where p53 also interacts with its
negative regulator, MDM2, thereby inhibiting MDM2 degra-
dation of p53. Functionally, this interaction translates to an
increase in p53-induced cell cycle arrest or apoptosis, as demon-
strated by fibroblast growth arrest following TAF9 overexpres-
sion, UV-induced association of p53 with TAF9 (45), and TAF9-
induced apoptosis of neuroendocrine tumor cells deprived of
nerve growth factor (124). The pro-apoptotic role of TAF9 is
illustrative of the complexity of regulation by TAFs and the mul-
titude of effects that are likely species-, cell-type-, and context-
dependent; i.e., while knockdown of TAF9 affects differentia-
tion of mESCs (57), TAF9 can also regulate apoptosis in differ-
ent contexts (44, 45). It will be important to determine if the
downregulation of TAF9 in HGSC is a consequence of TP53
mutations, or if alterations in TAF9 are observed in other sub-
types of EOC, which lack the hallmark p53 mutation of HGSC
(125, 126).

As discussed in this section, individual TAFs have the potential
to regulate tumor properties by a variety of mechanisms. This may
include regulation of differentiation, as discussed in the previous
section, or could also involve cell cycle effects, apoptosis or metas-
tasis. The contribution of TFIID stability, presumably regulated by
histone-fold dependent association of TAF4 and TAF12, as well as
the contribution of putative TFIID sub-complexes that lack TBP
or other subunits, merit investigation in the context of ovarian
cancer. These complexes could have important roles in translating
signals from upstream oncogenic cascades that are deregulated
in ovarian cancer, including those regulating proliferation and
differentiation.

CONCLUSION
Herein, we have outlined a hypothesis that TAF subunits, because
of their documented importance in dedifferentiated cell-types and
loss of their expression occurring with differentiation, also play
a functional role in driving tumor dedifferentiation. TFIID, and
TAF2, TAF4, TAF4B, and TAF9 in particular, are under-explored as
potential contributors to the dedifferentiation process, and could
also contribute to regulation of proliferation and apoptosis. Mea-
suring levels of TAF subunits throughout tumor initiation and
progression could reveal if they are modulated according to the
differentiation state of the tumor. In addition to testing the role
of TAFs in the differentiation of ovarian cell-types, differences
between GCT versus EOC and cell-autonomous effects versus
microenvironment effects should be explored.

It is crucial to investigate new areas in ovarian cancer, especially
avenues that target processes downstream of oncogenic signaling
cascades. Indeed, in yeast, approximately 84% of genes require one
or more TAFs for their expression (127), supporting the notion
that tumor characteristics could heavily rely on proper TAF func-
tioning. Perhaps disruption of this function could be used as part
of combinatorial therapy in ovarian cancer. However, research
will also need to be done to investigate adaptive transcriptional
mechanisms that could circumvent the reduction of TAF activity.
Furthermore, the TAFs associated with RNA polymerase I and III
TBP-containing general transcription complexes could also be rel-
evant to the study of ovarian cancer (128, 129), since these other
polymerases directly promote cellular growth (130). We conclude
that a greater understanding of mechanisms of transcriptional reg-
ulation that carry out signals from oncogenic signaling cascades
is needed in order to expand our understanding of the etiology
and progression of ovarian cancer, and uncover new methods of
treatment for this disease.
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